Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes


Xiaogang Wang1,  Bin Zhou1,  Yahao Shi1, Xiaowu Chen1,  Qinping Zhao1,  Kai Xu2


1State Key Laboratory of Virtual Reality Technology and Systems, Beihang University,   2National University of Defense Technology

(Kai is corresponding author.)

CVPR 2019 (Oral)



teaser

Abstract: For the task of mobility analysis of 3D shapes, we propose joint analysis for simultaneous motion part segmentation and motion attribute estimation, taking a single 3D model as input. The problem is significantly different from those tackled in the existing works which assume the availability of either a pre-existing shape segmentation or multiple 3D models in different motion states. To that end, we develop Shape2Motion which takes a single 3D point cloud as input, and jointly computes a mobility-oriented segmentation and the associated motion attributes. Shape2Motion is comprised of two deep neural networks designed for mobility proposal generation and mobility optimization, respectively. The key contribution of these networks is the novel motion-driven features and losses used in both motion part segmentation and motion attribute estimation. This is based on the observation that the movement of a functional part preserves the shape structure. We evaluate Shape2Motion with a newly proposed benchmark for mobility analysis of 3D shapes. Results demonstrate that our method achieves the state-of-the-art performance both in terms of motion part segmentation and motion attribute estimation.


teaser

Visual results of mobility analysis. For each example, we show from left to right the input point cloud, the extracted mobilities (motion parts and motion axes) and the point cloud with motion parts moved according to detected mobility.
Bibtex
@inproceedings{wang2019shape2motion,
    title = {Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes},
    author
= {Xiaogang Wang and Bin Zhou and Yahao Shi and Xiaowu Chen and Qinping Zhao and Kai Xu},
    booktitle = {CVPR},
    pages = {to appear},
   
year = {2019}
}

 


    Back to TopHome