

3D Attention-Driven Depth Acquisition for Object Identification

Kai Xu, Yifei Shi, Lintao Zheng, Junyu Zhang, Min Liu, Hui Huang, Hao Su, Daniel Cohen-Or and Baoquan Chen

National University of Defense Technology Shandong University Shenzhen University SIAT Stanford University Tel-Aviv University

SA2016.SIGGRAPH.ORG

CONFERENCE: 5 - 8 DECEMBER 2016 • EXHIBITION: 6 - 8 DECEMBER 2016 • THE VENETIAN MACAO, MACAO

Background & motivation

Robotic indoor scene modeling

Perception on object

Background & motivation

Indoor environments acquisition and modeling

[Nießner et al. 2013]

[Xu et al. 2015]

Active object recognition

Active object recognition

Problem setting

- A robot actively acquires new observations to gradually increase the confidence of object recognition
- Two key components:

Object classification

Estimate object class based on so far acquired observations

View planning

Predict the Next-Best-View to maximize its information gain

The main challenge

- Observation is partial and progressive
 - Shape description/matching with partial data is hard
 - Observations from varying views

The main challenge

- Observation is partial and progressive
 - View planning

How can you know which view is better without knowing its observation?

The main challenge

- Real indoor scenes are often cluttered
 - Degrade recognition accuracy
 - Invalidate the off-line learned viewing policy

Related work

SA2016.SIGGRAPH.ORG

CONFERENCE: 5 - 8 DECEMBER 2016 • EXHIBITION: 6 - 8 DECEMBER 2016 • THE VENETIAN MACAO, MACAO

Online scene analysis and modeling

Plane/Object Extraction [Zhang et al. 2014]

SemanticPaint [Valentin et al. 2015]

Active reconstruction and recognition

Next-best-view for reconstruction [Wu et al. 2014]

Next-best-view for recognition [Wu et al. 2015]

Method

SA2016.SIGGRAPH.ORG

CONFERENCE: 5 - 8 DECEMBER 2016 • EXHIBITION: 6 - 8 DECEMBER 2016 • THE VENETIAN MACAO, MACAO

The general framework

An attentional formulation

"Humans *focus attention selectively on parts* of the visual space to acquire information when and where it is needed, and combine information from different fixations over time to build up an *internal representation* of the scene"

Internal representation

onald Rensink

Hand-writing recognition [Mnih et al. 2014]

A woman is throwing a <u>frisbee</u> in a park.

Image caption generation [Xu et al. 2015]

Recurrent Attention Model

Recurrent Neural Networks (RNN)

View-based observation

Network training

Sponsored by 🧹

Part-level attention

Informative parts

How to distinguish these two chairs?

Attention extraction

Attention extraction

Results and evaluation

SA2016.SIGGRAPH.ORG

CONFERENCE: 5 - 8 DECEMBER 2016 • EXHIBITION: 6 - 8 DECEMBER 2016 • THE VENETIAN MACAO, MACAO

57,452 models 57 categories 12,311 models 40 categories

Database	MV-RNN train	MV-RNN test
ShapeNet	49 hr.	0.1 sec.
ModelNet40	22 hr.	0.1 sec.

III ROS

Visualization of attentions

Part-level attention

View sequence

View sequence

NBV estimation

40 classes

Classification Accuracy

••••

Classification Accuracy

Results on real scenes

Sponsored by

Results on real scenes

Results on real scenes

- Recognizable objects
- No contextual information

Γ	Synset Models TreeMap Stats Measures									
	Displaying 1 to 160 of 4045									
		Þ	X	A.		Þ	×	×		
	airplane	airplane	airplane	airplane	bomber	fighter	airliner	straight wing		
	×	st.	and a	×	×	×	to			
	airplane	airplane	airplane	propeller plane	airplane	airplane	airplane	bomber		
	1×	And I	×	4		A.	12	-		
	airplane	airplane	airliner	delta wing	airplane	airplane	jet	jet		
	A.	200	to		-	\checkmark		×		
	airolane ← →	airnlane	airnlane	airnlane	airnlane	propeller	airnlane	airnlane		

Shape database

SIGGRA Future: Multi-robot scene reconstruction & understanding

Attention based on shared internal representation?

Thank you Q & A

More details: kevinkaixu.net & yifeishi.net

SA2016.SIGGRAPH.ORG

CONFERENCE: 5 - 8 DECEMBER 2016 • EXHIBITION: 6 - 8 DECEMBER 2016 • THE VENETIAN MACAO, MACAO