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Figure 1: Space-time co-segmentation for the Pink Panther dataset: motion-based segmentation of individual frames is shown in the top line,
and the co-segmentation result is depicted at the bottom line.

Abstract

Consistent segmentation is to the center of many applications based on dynamic geometric data. Directly segmenting a raw
3D point cloud sequence is a challenging task due to the low data quality and large inter-frame variation across the whole
sequence. We propose a local-to-global approach to co-segment point cloud sequences of articulated objects into near-rigid
moving parts. Our method starts from a per-frame point clustering, derived from a robust voting-based trajectory analysis.
The local segments are then progressively propagated to the neighboring frames with a cut propagation operation, and further
merged through all frames using a novel space-time segment grouping technqiue, leading to a globally consistent and compact
segmentation of the entire articulated point cloud sequence. Such progressive propagating and merging, in both space and time
dimensions, makes our co-segmentation algorithm especially robust in handling noise, occlusions and pose/view variations that
are usually associated with raw scan data.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

† Corresponding authors: Guiqing Li and Hui Huang (ligq@scut.edu.cn,
hhzhiyan@gmail.com)

1. Introduction

Recent advances in the technique of real-time 3D acquisition, such
as commodity RGBD cameras, have made dynamic geometric da-
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ta more accessible than ever. Huge amount of dynamic geometry
has been captured, and the availability of such data has stimulated
many interesting research and applications, e.g., dynamic geometry
reconstruction and processing [CLM∗12], human pose recognition
for somatosensory interaction [SFC∗11], and 3D scene understand-
ing by human activity [SCH∗14, FSL∗15].

Shape analysis and understanding over the input dynamic geom-
etry is to the center of the applications mentioned above. Especially,
meaningful part segmentation of articulated objects is perhaps the
most fundamental and useful analysis task involved, e.g., assist-
ing the reconstruction of dynamic range scans [CZ11] and human
pose recognition [SFC∗11]. For dynamic geometry, it is natural
to consider a space-time analysis to achieve a globally consistent
part segmentation across the whole sequence of animated geome-
try. Such consistent segmentation also implies a dense correspon-
dence across all frames of geometry, which is essential for tasks
such as robust tracking [HRF13] and reconstruction [NFS15].

Co-segmentation has received much attention lately in the fields
of computer vision and graphics. Through co-analyzing a pair or
a set of images/shapes, it is possible to enhance the segmentation
through exploiting the mutually complementary information be-
tween different instances, and further to identify meaningful parts
based on their correspondence [BP10,CGF09,XLZ∗10,SvKK∗11].
Consistent segmentation has been applied to videos through in-
corporating spatial and temporal constraints [DFB13]. Similar-
ly, space-time co-segmentation has also been used to segmen-
t mesh-based animation sequences into rigidly moving compo-
nents [ACH∗13]. For articulated point cloud sequences, in partic-
ularly the noisy and highly incomplete ones captured by low res-
olution RGBD cameras, consensus skeleton extraction, frame-to-
frame registration, and surface reconstruction are all challenging
tasks on their own. It is therefore desirable to achieve space-time
co-segmentation directly over the raw input points.

Space-time co-segmentation of point cloud sequences poses t-
wo major challenges. Spatially, the point cloud of a single frame
could be rather low-quality such that local analysis based on the
geometry can hardly be robust. Temporally, the point clouds of d-
ifferent frames can vary significantly over time, due to pose and/or
view changes. Therefore, it is extremely difficult to find a coher-
ent correspondence across the whole sequence. To address these
challenges, we propose a local-to-global approach to progressive-
ly obtain a globally consistent space-time segmentation (Figure 1),
where the spatial and temporal consistency benefit each other in a
coupled solution. We firstly perform a local segmentation for each
frame through point clustering based on local trajectory analysis.
The local segmentation is then mutually propagated between every
two neighboring frames to attain a consistent over-segmentation,
resulting in a number of sub-sequences formed by the segments
that move near-rigidly. Finally a novel space-time grouping tech-
nique, which aims to group the small segment sequences belonging
to the same rigid part of the moving articulated object, is applied to
achieve a consistent and compact space-time segmentation across
all frames of the entire point cloud sequence.

2. Related work

We focus our review of previous works on closely related topics on
co-segmentation and motion analysis.

Co-segmentation of statics meshes. Most of co-segmentation ap-
proaches consist of three steps: over-segmenting the meshes indi-
vidually to produce a large set of patches, computing multiple fea-
tures for each patch, and clustering the patches in feature spaces.
Golovinskiy and Funkhouser [GF09] pioneer the co-segmentation
of sets of 3D shapes, where the problem is formulated as graph-cut
and solved with the normalized cut algorithm. Xu et al. [XLZ∗10]
perform co-segmentation for a set of shapes belonging to the same
family via style-content separation, where the style is defined as
anisotropic part proportion. Sidis et al. [SvKK∗11] obtain a com-
patible segmentation of a set of meshes in three stages: per-object
segmentation, descriptor-space spectral clustering, and refined co-
segmentation. This is followed by several other approaches with
various schemes of feature selection and fusion [MXLH13, H-
FL12, WWS∗13]. Common to these co-segmentation works is that
the goal is to identify functional part shared among shapes of the
same family. For the animation sequence of a specific shape, it is
natural to perform motion-based analysis to extract motion-wise
independent parts.

Co-segmentation of animated meshes. Given an animated se-
quence of meshes sharing the same connectivity, Lee et al. [L-
WC06] conduct co-segmentation by analyzing triangular face tra-
jectories and performing dual graph segmentation. By measuring
the local deformation degree with the change of the dihedral angle
between adjacent faces, Wuhrer and Brunton [WB10] cast the co-
segmentation problem as the d-partition of a dual graph of mesh
faces with the edges weighted by the maximal change of dihedral
angles. Group-valued regularization [RBB∗13,RBBK12,RBB∗12]
formulates motion-based surface segmentation as a piecewise-
smooth regularization problem for transformations between poses.
This approach attempts to find a rigid transformation at each sur-
face point such that the overall transformation is described by a
relatively sparse set of such transformations, each corresponding to
a rigid part of the object.

Ghosh et al. [GSLB12] segment a sequence of meshes of an ar-
ticulated object in various poses into rigid parts. They introduce a
modified distance dependent Chinese restaurant process to allow
nonparametric segmentation. Assuming vertices ongoing a similar
rigid/scaling transformation during motion have similar local ge-
ometric attributes, Liao et al. [LXL∗12] achieve segmentation by
clustering all vertices in an attribute space. This method can deal
with animated meshes with different connectivity. Vasilakis and Fu-
dos [VF14] develop a method for varying level-of-detail segmen-
tation of arbitrary animated objects. This is achieved by first per-
forming a partitioning-aware over-segmentation over the animat-
ed meshes and then conducting a simplification over the segments
based on rigidity-preserving criteria.

There is a significant amount of work for co-segmenting ani-
mated 3D shapes. However, most of them deal with only clean
meshes. For dynamic range scans, Chang et al. [CZ11] perform
motion-based segmentation and global registration simultaneously
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Figure 2: Pipeline of our space-time co-segmentation: given an input sequence of point clouds, our method starts by performing a local
per-frame segmentation through motion-based point clustering (left). The local segmentation are then mutually propagated between every
two adjacent frames, obtaining a number of sub-sequences formed by the segments with near-rigid motion (middle). Finally, we conduct a
space-time grouping over the sub-sequences to form a globally consistent and compact segmentation over the whole 4D sequence (right).

for space-time surface reconstruction. Zheng et al. [ZST∗10] in-
troduce the notion of consensus skeletons for non-rigid space-time
registration of a deforming point-based shape. However, the ex-
tension from the consensus skeletons to the motion consistent co-
segmentation is not trivial, especially when dealing with the joint
areas. Our method is devised to deal with low-quality raw point
cloud sequences without explicit skeleton extraction.

Trajectory analysis for motion structures. For a video sequence,
the feature points of an object can be traced to form a set of mo-
tion trajectories. It has been a long-standing problem in computer
vision to reconstruct motion structures of the objects in the video
out of these trajectories [TK92]. Akhter et al. [ASKK11] propose a
dual approach to describe the evolving 3D structure in a trajectory
space with a linear combination of basis trajectories independent
of objects in motion. Zaheer et al. [ZAB∗11] present a factoriza-
tion approach for 3D reconstruction from multiple static cameras
based on the compact trajectory subspace representation. Frade-
t et al. [FRP09] formulate a labeling problem to solve the mo-
tion pattern recognition among a set of trajectories with variety of
life-spans. It randomly generates a number of motion models and
groups the trajectories to vote the best models using an agglomer-
ative clustering strategy. We extend this method to deal with more
challenging input of point cloud sequences, through progressively
propagating the local trajectory analysis to form a globally consis-
tent motion-guided segmentation.

3. Algorithm Overview

Problem description. Given a point cloud sequence S =
{C1,C2, · · · ,CF}, capturing F frames of a performance, our goal
is to consistently segment all frames in the sequence into parts
with distinct rigid motions. The implication of such space-time co-
segmentation are two-fold. Firstly, the point cloud of each frame is
segmented into a set of disjoint parts, each of which admits an inde-
pendent rigid motion, denoted by a set of segments C f = ∪n f

k=1C f
k .

Secondly, we establish correspondence for the segments of adja-
cent frames based on their rigid motions, such that two segments in
correspondence, e.g., C f

k and C f+1
π f (k)

, represent a consecutive rigid
motion, where π f denotes the correspondence map. We seek the op-

timal co-segmentation, which can explain the input sequence with
the minimal number of rigidly moving segments. To make the prob-
lem tractable, we assume that two adjacent frames Ci and Ci+1 have
moderate time interval so that the difference between the two point
clouds can be discriminated but still support a valid correspondence
(e.g., > 5 frames per second for general human motions).

We propose a local-to-global approach to progressively achieve
the space-time co-segmentation. Our method consists of three ma-
jor phases, as shown in Figure 2, including motion-based cluster-
ing for per-frame local segmentation, cut propagation for consistent
over-segmentation, and space-time grouping of the fine segments
for the final co-segmentation.

Per-frame segmentation. While the point clouds vary moderate-
ly between adjacent frames, they may change significantly across
the whole sequence due to pose/view change and occlusion. There-
fore, we start our space-time segmentation from each single frame
through analyzing trajectories of all its points with the help of the
neighboring frames. Given a point at the current frame, we build its
local temporal trajectory through finding its corresponding points
in the neighboring frames, using a simple deformable 3D shape
registration method [PB11]. We randomly choose a number of tra-
jectory triplets, each of which determines a rigid motion model.
These models are then used to perform an agglomerative hierar-
chical clustering for all point trajectories, leading to a rigid motion
based local segmentation of the current frame (Figure 2(left)).

Cut propagation. The per-frame segmentation, based on local tra-
jectory analysis, may be inconsistent even for neighboring frames.
In order to achieve consistent segmentation across as-long-as-
possible sub-sequences, our next step is to mutually propagate the
cutting seams between every two neighboring frames, based on the
point-to-point correspondence between them; see Figure 2(middle).
Although this may lead to an over-segmentation for most of the
frames, it guarantees that neighboring frames are consistently seg-
mented into rigid parts.

Space-time grouping. To compute a compact segmentation for
all frames, we perform a space-time grouping step to merge the
segments resulted in the over-segmentation of the previous step;
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(a) (b)

(c)

Figure 3: Illustration of local similarity registration: (a) two o-
riginal frames; (b) the blue frame (11581 points) is iteratively de-
formed to register with the red frame (12648 points); (c) correspon-
dence illustration of partial points using red lines.

see Figure 2(right). This is achieved by formulating a space-time
graph-cut to guarantee spatial and temporal compactness of the fi-
nal segments. Spatially, we merge the segments of each frame in-
dicating the same rigidly moving part. Temporally, we group the
segment trajectories, which represent a consecutive rigid motion.

4. Motion-based per-frame segmentation

For the sake of efficiency, we down-sample the input point cloud of
each frame using the simple octree-based method in [RL01] with a
sampling rate of 10%. All operations in this section are performed
on the simplified data.

4.1. Registration of adjacent frames

3D shape correspondence is a fundamental problem in geometry
processing and many approaches have been proposed for 3D point
clouds [vKZHCO11]. We adapt the method in [PB11], a variant
of ICP incorporating local similarity transformation, into our prob-
lem setting. Specifically, to handle relatively large inter-frame point
cloud variation, we improve the method by introducing a corre-
spondence optimization procedure based on local smoothness.

Given the point clouds of two frames Cs and Ct , the method inter-
leaves between correspondence and deformation to iteratively im-
prove the registration. In the correspondence stage, we first match
each point p ∈ Cs to its closest point in q ∈ Ct as in [PB11]. We
then optimize p’s matching point by searching over q’s k-nearest
neighbors such that the matching error around the local neighbor-
hood is as smooth as possible. The rationale of doing this is, as-
suming the underlying surfaces of the point clouds are smooth, the
matching error should vary smoothly across the surface for a good
correspondence. Formally, the corresponding phase seeks a map-
ping τs→t : Cs→Ct by minimizing a Laplacian smoothness energy
of the residual field {τs→t(p)− p : p ∈Cs}:

Esmooth(τs→t) = ∑
p∈Cs

‖∆(p)‖2, (1)

R R R R R R-3 -2 -1 1 2 3

f

t
t

Figure 4: Three trajectories t1, t2, t3 determine a motion mod-
el M = (R−r, · · · ,R−1,R1, · · · ,Rr). Here the trajectories are of
length 7, namely, r = 3.

where the residual Laplacian ∆(p) is defined as:

∆(p) =
1

|N (p)| ∑
q∈N (p)

[(τs→t(p)− p)− (τs→t(q)−q)].

HereN (p) is the set of the k-nearest neighbors of point p. In the de-
formation phase, we estimate a similarity transformation, denoted
by (s,R, t), a triplet of scaling factor, rotation matrix and translation
vector, to minimize a fitting error between the local neighborhood
of p ∈Cs and its matched counterpart:

Efitting(s,R, t) = ∑
q∈N (p)

‖τs→t(q)− (sRq+ t)‖2. (2)

This minimization has a closed form solution which can be comput-
ed with SVD decomposition [SMW06, YPG01]. Figure 3 demon-
strates the two phases in aligning two poses of an arm (a). The blue
pose is iteratively deformed to align with the red one (b) while a
dense correspondence is established by the improved method (c).

4.2. Trajectory-based clustering

Toldo and Fusiello propose J-linkage clustering. It utilizes agglom-
erative clustering to extract multiple models in RANSAC where the
affinity of classes is measured by the Jaccard distance [TF08]. This
method has been widely adopted to detect various kinds of model-
s in computer vision [FRP09, FSB10]. Different from the existing
applications, we apply this method to motion-based segmentation
of 3D point cloud sequences via analyzing temporal trajectories.

Local temporal trajectories. When dealing with raw scan data,
it is often impossible to track a full temporal trajectory across the
whole sequence since some areas of the object seen before may
disappear in some later frames due to pose/view occlusion. Even
if there exist full trajectories for some points, the correspondence
(tracking) error along them may accumulate severely, making the
analysis based on them rather unreliable. Therefore, we instead re-
ly on short-range, local trajectories to obtain motion-based point
clustering. Specifically, we construct the local trajectory for a giv-
en point p ∈ C f for a window of 2r + 1 frames, covering frames
from C f−r to C f+r. The trajectory is created with the help of the
correspondence computed in the previous step. r is a user-specified
parameter and is set to 2 for all experiments described in Section 6.

Trajectory analysis. Given a frame of point cloud C f , we perform
clustering over the points based on their local trajectories. Follow-
ing the work of [FRP09], we start by randomly selecting a number
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of triplets of local trajectories to generate a set of initial rigid mo-
tion models, denoted by M f = {Mm}m=1,··· ,|M f |, where the model
count is set to |M f | = |C f | in all our experiments. The random se-
lection of the triplets does not rely on any prior, making the method
simple and practically robust. Each motion model Mm is represent-
ed as a sequence of 2r rigid transformations corresponding to a
triplet of local trajectories, as illustrated in Figure 4.

Each transformation maps the three points of a frame to their
corresponding points of the adjacent frame.

Next, we evaluate how well a given motion model fit-
s a known trajectory. Specifically, for a given trajectory t =
(p f−r, · · · , p f , · · · , p f+r) and its corresponding rigid motion model
M = (R−r, · · · ,R−1,R1, · · · ,Rr) (See Figure 4), we compute 3D
position residual between a trajectory t and a motion model M:

Rpos(t,M) = ∑
−r≤i≤r,i6=0

‖Ri p
f+i−sign(i)− p f+i‖2. (3)

Following that, we create a binary matrix V ∈ R|C
f |×|M f | to use

the trajectories to vote the models. The entries of V are defined as:

V (k, l) =
{

1 Rpos(tk,Ml)< ε,
0 Rpos(tk,Ml)≥ ε,

where tk ∈ T f , Ml ∈ M f , and the threshold ε is assigned with the
ρ|C f ||M f |-th smallest one among all residuals Rpos(tk,Ml). The
percentage parameter ρ is set to 55% by default in our experiments
if not specified. We define the preference set of a trajectory tk, de-
noted by P(tk) = { j : V (k, j) = 1}, as the intersection of the pref-
erence sets of its all elements.

J-linkage clustering starts with each single trajectory of T f as
a class and iteratively merges two nearest classes until the conver-
gence conditions are satisfied. Therefore, we need to measure the
similarity between two trajectory sets. Let Ta and Tb be two clus-
ters of trajectories with their preference sets denoted by P(Ta) and
P(Tb) respectively. The preference set of a trajectory set is simply
the union of that of its members. We measure the dissimilarity be-
tween trajectory sets using the Jaccard distance following [FRP09]:

dT (Ta,Tb) = 1− |Ta∩Tb|
|Ta∪Tb|

. (4)

It should be noted that it does not work to perform traditional
clustering methods, such as k-means and spectral clustering, direct-
ly in the space of trajectories, which necessitates our motion model
based clustering. Figure 5(a) shows a girl raising a hand while lift-
ing a leg. The segmentation results demonstrate that our method
(d) can correctly extract the motion components while the other
two fail as shown in (b) and (c).

4.3. Smoothing of segment boundaries

The segmentation quality for individual frames is important to the
subsequent processing; imperfect segmentation may have adverse
effect on inter-frame segment correspondence. We improve the seg-
mentation boundaries through solving a relabeling problem. The
goal is to produce a new segmentation, with the same segment

(a) (b) (c) (d)

Figure 5: Trajectories clustering comparison: (a) three frames
of the input sequence; (b-d) segmentation by K-means clustering,
spectral clustering and our method, respectively.

count, with smoother boundaries between adjacent segments. Sup-
pose the current segmentation is denoted by {C f

k : k = 1,2, · · · ,n f }
of C f . The labeling map is l : C f → {1,2, · · · ,n f } with label k
indicating the class determined by segment C f

k . We minimize the
following objective function:

Eb(l,C f ) = ∑
p∈C f

Eb
data(l, p)+λ ∑

(p1,p2)∈G(C f )

Eb
reg(l, p1, p2), (5)

where G(C f ) is the set of edges of the KNN graph generated for
the points of C f , and Eb

data and Eb
reg are data and regularity terms

respectively (see below). Without specification, we always set the
element number of KNN sets to 20. λ is a blending weight and is
fixed to 0.1 for all experiments in Section 6.

We generate a local temporal segment sequence for each C f
k and

then fit a motion model M f
k (a geometric transformation sequence)

using RANSAC which separately transforms C f
k to the other seg-

ments of C f . For point p f ∈ C f , we define its data item as the
deviation of its local trajectory (p f−r, · · · , p f , · · · , p f+r) from its
rigid motion predicted by an arbitrary motion model M f

k :

Eb
data(l, p f ) =Rpos(p f ,M f

k ).

For simplicity, we define Eb
data(l, p f ) =∞ if p f is neither in C f

l(p f )

nor in a segment neighboring to C f
l(p f )

.

The regularity term is defined with the similarity of two points
p1, p2 ∈ C f , measured using positions and normals. Specifically,
assigning two neighboring points with different labels is penalized:

Eb
reg(l, p1, p2) =

{
0, l(p1) = l(p2),

e−|p1−p2|en(p1)·n(p2), l(p1) 6= l(p2),

where n(p) is the normal of point p.

Figure 6 demonstrates the segmentation results over an example
with and without boundary smoothing.

5. Space-time co-segmentation

The segmentation of individual frames in previous section only re-
lies on local temporal trajectories. In order to achieve a globally
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Figure 6: Smoothing the boundaries between the segments gener-
ated by J-linkage clustering (middle) leads to a segmentation with
more desirable cutting seams (right).

(a)  (c)  (b)  

Figure 7: Propagate the segmentation between two frames (a); (b)
cut the middle part of the left frame into two under the guidance
of the boundary between middle and bottom parts of the right; (c)
transfer the cut in the left frame to the right one.

consistent segmentation, we associate the per-frame segmentations
through a space-time analysis. The problem is challenging due to
(1) the large point cloud variation across the sequence and (2) the
incompatible segmentation boundaries between adjacent frames.
To address these issues, we propose to first propagate the initial
segmentation cuts aggressively between every two adjacent frames,
to attain a compatible over-segmentation, and then merge the seg-
ments based on motion using a space-time graph-cut.

5.1. Cut propagation between adjacent frames

Taking a sequence of segmentation C f = {C f
k : k = 1, · · · ,n f } for

individual frames as input, we propagate the segmentation cut-
s across the whole sequence, in an incremental manner. We start
from C1 and C2 and perform mutual cut propagation. Supposing
C1, · · · ,C f having been processed, we first propagate the cuts from
C f to C f+1 and then propagate those of C f+1 backward to all pre-
vious frames. To facilitate the propagation, we maintain a segment
graph G f for each frame C f with its segments as nodes and seg-
ment adjacency as edges. During the propagation, the nodes of G f

would be split into multiple ones, if it matches to multiple segments
of the adjacent frames.

To propagate cuts of C f to C f+1, we traverse the edges of G f

and find for each edge the segments in C f+1 which should be par-
titioned. The partition is performed one by one and a segment is
split into two each time, as shown in Figure 7. We update G f+1

accordingly after cut propagation.

Without loss of generality, suppose that we are given an edge

t
（a） （b）

（c） （d）

t

t t

Figure 8: Generation of graph G for grouping segment sequences:
(a) graphs for individual frames, where the same color is assigned
to nodes in different graph to indicate segments belonging to the
same motion segment sequence; (b) connecting the same color n-
odes in different graph to form a global graph; (c) collapsing nodes
into one; (d) merging nodes which share at least one node and as-
sociate with segment sequences with overlapping in the time axis.
Note that here the size of nodes indicates the length of its associated
segment sequence.

in G f connecting neighboring segments C f
1 and C f

2 . We map the
boundary points between the two segments to C f+1 and find a
segment containing the image points. Let us denote this segmen-
t by C f+1

k . We then cast the problem to a labeling one with t-
wo labels (corresponding to two split segments) over the KNN
graph G(C f+1

k ) of the points of C f+1
k . Let l be the labeling map

l : C f
k →{1,2}. We define the following segment splitting energy:

Es = ∑
p∈C f+1

k

Es
data(p, l)+µ ∑

(p1,p2)∈G(C f+1
k )

Es
reg(p1, p2, l), (6)

where µ is a weight used to tune the importance of the two terms.

To define the data term, a natural idea is to utilize the correspon-
dence information. It encourages that the labeling is compatible
with the correspondence. So for a point p ∈C f+1

k , we define:

Es
data(p, l) = e−

xl(p)
x1+x2 ed(p,τ f→ f+1(τ f+1→ f (p))),

where x1 (x2) is the number of points in the intersection of C f
1 (C

f
2 )

and the KNN of τ f+1→ f (p), xl(p) is one of x1 and x2, and d(p1, p2)
denotes the Euclidean distance of p1 and p2. In case that p has
correspondence neither C f

1 nor C f
2 , we always defined Es

data(p, l) as
a constant regardless what the label of p is.

The regularity term is defined based on the point connectivity in
the KNN graph of C f+1

k :

Es
reg(p1, p2, l) =

{
0, l(p1) = l(p2),
1, l(p1) 6= l(p2).

5.2. Space-time grouping of segment sequences

After the cut propagation, we obtain an over-segmentation for al-
l frames in terms of both space and time. Spatially, a rigid part
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Table 1: Description of tested datasets.

Datasets #Fra. #Ave. of pts. Data sources #Fig.
Cabinet 30 92126 Kinect 9(t)
Fan 50 19807 Kinect 9(b)
One girl 20 1134 Kinect 12
Two girls 175 5478 Kinect 10
Panther 40 30684 Range 1
Hand 130 36237 Range 11
Horse 32 31891 Virtual 13

in a frame could be over-split into more than one segments which
should be merged. In temporal direction, there is the case that a
rigid part is missing in some frames due to occlusion, leading to
broken sequences of some rigid motion. It is desirable to concate-
nate these sequences into a longer trajectory, if the missing frames
do not take a long time interval. We propose to address the above
two issues in a unified space-time grouping framework, which is
again formulated as a graph-cut problem.

Note that the segmentation for each frame has been updated after
cut propagation, for which we still use G f to refer the segment
graph of C f . Each node of G f generally has a corresponding node
in both G f−1 and G f+1 representing the same rigid motion.

To perform space-time segmentation, a global graph G of sub-
sequences is built for the whole sequence based on the graphs
{G f : f = 1,2, · · · ,F}; see Figure 8(a) for an illustration. Not-
ing that a set of segment sequences have been generated during
cut propagation, we connect all node pairs from adjacent frames if
they are two successive segments in one segment sequence (Fig-
ure 8(b)). All nodes associated with the same segment sequence
are then collapsed into one node (c). Furthermore, we traverse the
nodes of the current graph (c) to detect node pairs which potentially
represent the motion of the same part of the object. For each node,
its adjacent nodes are checked to find node pairs where the two
nodes represent the same region of the object but their correspond-
ing segment sequences do not overlapping temporally. Collapsing
all connected nodes yields the graph of sub-sequences (d).

We now turn to evaluate the graph edge weights that measure
the similarity between two segment trajectories. Let e = (u,v) be
an edge of G, where u and v are two neighboring sub-sequences.
Suppose that Mu = (Rs(u)

u , ...,Re(u)
u ) and Mv = (Rs(v)

v , ...,Re(v)
v ) are

the motion models associated with u and v, and s(u) and e(u) rep-
resent the start and end time for sub-sequences u (the same goes for
v), respectively. We then define the similarity between u and v as:

S(u,v) = e−
y(u,v)
ymax
− z(u,v)

zmax ,

where y(u,v)=max{||Ru
t −Rv

t ||F : max{su,sv} ≤ t ≤ min{eu,ev}}
with || · ||F as Frobenius norm. ymax is the maximum value of
y(u,v). z(u,v) is the average point number of segments associated
with u and v, with zmax being the maximum value.

6. Experimental results and applications

Our space-time co-segmentation algorithm was implemented in
C++ and tested on an Intel(R) Core(TM) i5-2300CPU@2.80GHz

Table 2: Average computation time (in second) per sequence.

Datasets #Samp. pts. Reg. Ind. seg. Co-seg. Tot.
Cabinet 2688 38 158 6 202
Fan 1966 18 73 6 97
One girl 1134 5 13 6 24
Two girls 1601 12 34 14 60
Panther 1037 5 13 18 36
Hand 2001 19 56 16 91
Horse 2040 20 79 25 124

Figure 9: Applying our algorithm on man-made objects with me-
chanical motion (the input data are shown with the overlapped se-
quence to the left). Top row: a cabinet with an opening door. Bottom
row: a stand fan with a shaking head.

with 12GB RAM. The result shown in Figure 1 demonstrates the
capability of our method in handling raw inputs of point cloud se-
quence. Note that the point cloud in each frame is a single view
scan. Our method can also robustly extract some tiny parts (e.g.,
mouth and ears) with small motion. In this section, we present more
examples (Figures 9-14), including both real-world and synthet-
ic datasets to qualitatively demonstrate and quantitatively evaluate
the effectiveness and robustness of the proposed method. Following
that, the limitations are discussed and showcased with Figure 15.

Datasets, parameters and performance. The datasets we tested
include three categories: low quality motion data acquired using
Kinect, animated range scan data captured by rather high quality
3D sensors, and synthetic data generated by virtual scanning. Ta-
ble 1 summarizes several important statistics about the input data
we have tested, including frame count (#Fra), the average num-
ber of points per frame (#Ave. of pts), and the acquisition method.
There are tunable parameters designed in our algorithm, includ-
ing the sampling rate (section 4), the length (2r+ 1) of local tem-
poral trajectories (subsection 4.2), the threshold ε in trajectory
analysis (subsection 4.2), the smoothing regularity weight λ (sub-
section 4.3), and the propagation regularity weight µ (subsection
5.1). We use their default values throughout all examples present-
ed here. The computation performance, which mainly consists of
three stages: registration (Reg.), individual frame segmentation (In-
d. seg.) and co-segmentation (Co-seg), is recorded in Table 2 as
well as the total time (Tot.) spent. The average number of sampling
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Figure 10: Space-time co-segmentation over a sequence with multiple moving objects. Our method not only separates the two girls but also
accurately identifies their body parts based on the articulated motion from highly noisy, sparse and incomplete data.

Figure 11: Space-time co-segmentation of a clenching hand over the motion data shown as the overlapped scan sequence to the left. Top
row: per-frame motion-based segmentation. Bottom row: our co-segmentation result.

Figure 12: Co-segmentation of a sequence with topology changes
in the captured motion: top and bottom rows render segmented
raw point clouds from two different views, respectively. Clearly, our
method is able to accurately and consistently identify the girl’s two
swing arms, which move fast and occasionally stick to the body.

points for each frame (#Samp. pts.) is also depicted. Note that the
sampling rate varies for different datasets, but we use a 5-level oc-
tree to perform the sampling for all experiments.

Motion-based space-time co-segmentation. The rigid motion as-
sumption of our method makes it especially suitable for analyzing
man-made objects with mechanical motions. Figure 9(top) shows
an example in which the door of a cabinet is gradually opened.
The input data (Figure 9(top-left)) was captured using Kinect, and
our method can correctly detect the moving and still parts (Fig-
ure 9(top-right)). Figure 9(bottom-left) depicts a stand fan rotates
around the axis of its support strut, also acquired using Kinec-
t. The still strut and the moving head is correctly separated (Fig-
ure 9(bottom-right)) by our co-segmentation algorithm.

Figure 10 demonstrates an example of multiple moving objects
with mutual interactions. Specially, it shows a motion scene with
two girls approaching to each other and shaking hands. From the
result, our method can not only separate different humans but also
identify each body part with nearly-rigid motion. Moreover, note
how sparse and noisy the raw input data is due to the low resolution
of the Kinect depth maps.

Figure 11(left) presents an example of a clenched hand, which
contains a large near-rigid part (the palm) and a set of small mo-
tion parts (finger). A hand contains tens of joints, making the co-
segmentation very challenging. Especially for the last few frames to
the right, where the bent fingers introduce severe occlusion. The re-
sult (right) demonstrates that the proposed co-segmentation method
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(a) Motion-based per-frame segmentation.

(b) Space-time co-segmentation.

(c) Segmented and animated clean mesh sequence (ground truth).

Figure 13: Space-time co-segmentation for the dataset of a galloping horse. Compare our individual per-frame segmentation (a) and
co-segmentation (b) with the ground truth (c), which is a pre-segmented and animated mesh sequence.
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Figure 14: Influence of three key parameters on motion co-segmentation results. Left: the percentage ρ for determining the J-linkage
threshold. Middle: the number of initial motion models (transformation matrices). Right: the sampling rate. The rand indices are computed
at all cases to measure the approximation degree of our co-segmentation to the co-segmentation ground truth (Figure 13(c)).

can establish correct correspondences between the segments of d-
ifferent frames, even for the frames with occluded parts.

Figure 12 depicts an example with topology changes in the cap-
tured motion sequence. The performer swings her two arms back
and force, which move fast and occasionally stick to the body then
separate. Our method accurately segments two arms out from the
body at each pose frame, performing robustly to topology changes.

Quantitative evaluation against ground-truth. To quantitatively
evaluate the segmentation quality of our method, we compare our
result against a co-segmentation ground-truth derived from a seg-
mented and animated mesh sequence. Specifically, given a horse
mesh, we manually segment it into rigidly moving parts and then
generate a dynamic sequence by animating its segmented parts with
consistent correspondences. The co-segmented mesh sequence can
therefore serve as the ground truth; see Figure 13(c). We then vir-
tually scan the mesh sequence from only two views to generate an

incomplete point cloud sequence for testing our motion-based per-
frame segmentation (Figure 13(a)) and space-time co-segmentation
(Figure 13(b)). We evaluate the effectiveness of our segmentation
technique using the Rand index criterion proposed in [CGF09]. For
the co-segmented nine frames presented in Figure 13(b), the cor-
responding Rand index values from the left to right are 0.91, 0.92,
0.93, 0.93, 0.93, 0.92, 0.93, 0.94, 0.89, respectively. All values are
relatively high and verify that our algorithm produces good seg-
mentation results for all dynamic frames, behaving robustly.

Furthermore, we evaluate the influence of three key parameters
on our motion co-segmentation results in Figure 14, which include
the percentage ρ for determining the threshold ε of J-linkage (Sec-
tion 4.2) at left, the number of initial motion models (Section 4.2)
in the middle and the sampling rate (Section 4) at right. We change
one parameter while fixing others to generate the co-segmentation
on the motion sequence, and then estimate the Rand index of each
our result against to the co-segmentation ground truth as shown
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Figure 15: Our method fails for sequences which are seriously vi-
olating the rigidity assumption, e.g., a clip of dancing performance
with non-rigid skirt movement.

Figure 13(c). Four parametric values are depicted in all three sub-
plots of Figure 14. This experiment verifies the robustness of our
algorithm against the parameter tuning. All results evaluated sus-
tain a high Rand index.

Limitations The effectiveness of the proposed approach depend-
s on the preciseness of the correspondence built between adjacent
frames. Therefore, it may fail for those datasets in which adjacent
frames exhibit substantial movements. It often results in mismatch-
ing between adjacent frames in such cases. In addition, though our
approach is robust to the performances with rigid parts of the object
being added with small perturbation, it can not work out a good seg-
mentation for those performances with large-scale non-rigid move-
ments as shown in Figure 15. In this example, the skirt of the danc-
ing girl flutters around, making our method hard to obtain a suitable
co-segmentation of the soft skirt regions.

7. Conclusions

We have described a local-to-global approach to co-segment dy-
namic point clouds. All frames of the point clouds are consistent-
ly decomposed into nearly-rigid parts implied by the motion. Our
method first conducts per-frame segmentation via local trajectories
analysis. Propagating the segmentation cuts of individual frames
between every two adjacent frames yields a globally consisten-
t over-segmentation. Finally, we devise a space-time grouping al-
gorithm over a graph of temporal segment sequences to achieve
space-time co-segmentation.

Our algorithm can handle the raw input of low quality motion da-
ta, which often exhibits noise, outliers, significant missing regions,
and geometric variations due to occlusions and view changes. We
have tested the proposed technique on a variety of datasets, con-
sisting of object motions in real world acquired by low-cost Kinect
sensor, dynamic geometries captured by 3D scanners, and synthet-
ic data generated by virtual cameras. Experimental results clearly
demonstrate that our method can produce plausible space-time co-
segmentation for most of the motion datasets and is robust against
to heavy noise and high incompleteness of point cloud sequences.

Due to the complexity and defect of dynamic motion data, co-
segmenting them into meaningful parts with both spatial and tem-
poral coherence is a very challenging task. In the future, we plan
to combine the analysis of both geometric and semantic informa-
tion to improve the accuracy of the segmentation boundaries. Non-

rigid motion guided co-segmentation is another interesting direc-
tion with high potential. We would also like to explore application-
s that may benefit from our co-segmentation results, such as the
global registration among consecutive 3D frames and 4D consen-
sus skeleton representation.
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