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a b s t r a c t

We define quality differential coordinates (QDC) for per-vertex encoding of the quality of a tetrahedral

mesh. QDC measures the deviation of a mesh vertex from a position which maximizes the combined

quality of the set of tetrahedra incident at that vertex. Our formulation allows the incorporation of

different choices of element quality metrics into QDC construction to penalize badly shaped and

inverted tetrahedra. We develop an algorithm for tetrahedral mesh optimization through energy

minimization driven by QDC. The variational problem is solved efficiently and robustly using gradient

flow based on a stable semi-implicit integration scheme. To ensure quality boundary of the resulting

tetrahedral mesh, we propose a harmonic-guided optimization scheme which leads to consistent

handling of both the interior and boundary tetrahedra.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Tetrahedral meshes are widely used in computer graphics for
physically based modeling, in particular realistic simulation of
deformable objects [25] and fluid [9] via the finite element or
finite volume method. High-quality tetrahedral meshes can
remarkably improve the numerical accuracy and convergence of
the simulation, as well as the visual appearance of the object
surface. Tetrahedral meshes reconstructed from volume data
or generated by tiling a scanned 3D surface often do not possess
the desired quality. Their surfaces are typically rough due
to physical noises in the data. Badly shaped, degenerate or
tangled (i.e., inverted) tetrahedra are often present and they can
significantly hinder the performance of numerical simulation.

To produce tetrahedral meshes with smooth boundaries and
well-shaped interior tetrahedra, one natural solution is to employ
a two-stage method. In the first stage, feature-preserving surface
fairing is performed to denoise the surface mesh and improve
its quality. The second stage then aims to improve the quality
of the mesh interior while keeping the smoothed surface
boundary approximately unchanged. Typically, the quality of a
mesh element, a tetrahedron in our context, is measured based on
its effect on interpolation error, discretization error, and the
conditioning of the stiffness matrix [30].

Surface fairing has been extensively researched during the last
decade and many excellent feature-preserving fairing algorithms
[8,12,19,32,35] are now available. Many of them can produce
ll rights reserved.
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ity encoding for tetrahedral
smooth, high-quality surface (triangular) meshes while preserving
geometric features. However, surface fairing is generally oblivious
to the quality of the interior tetrahedral mesh. By repositioning
boundary vertices during fairing, one may even damage the
quality of certain boundary tetrahedra.

The handling of boundary tetrahedra is a difficult problem
for both tetrahedral mesh generation and optimization. Previous
methods often tradeoff between two competing goals: quality
improvement and boundary conformation. Some methods
[11,15,14,21,26] choose to fix all boundary vertices during
optimization of tetrahedral element quality, which constrains
the processing of boundary tetrahedra. Other methods [17,20]
optimize the boundary tetrahedra by repositioning boundary
vertices or by changing boundary mesh connectivity under
necessary constraints. However, these methods can still produce
degenerate boundary tetrahedra. Additional processing to remove
the degeneracies [6] is often needed. However, this may in turn
introduce noticeable boundary error and hence new surface
noises as well as distortion of surface features.

As a result, the main difficulties withthe two-stage approach as
we describe above calls for an algorithm which can consistently

improve the quality of the interior and boundary tetrahedra
without introducing noticeable errors at the boundary. Other
issues of concern include numerical stability and speed. Previous
mesh optimization methods [13,16,17] mostly employ nonlinear
optimization whose objective function is built directly from
certain mesh quality metrics [30]. These methods can turn an
initial mesh with sufficient quality into an even better one;
however, they may fail to converge on an input whose quality is
too low. In addition, due to the slow convergence rate and high
computational cost of each iteration, these approaches often
cannot deal with large data sets.
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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Fig. 1. Given an input tetrahedral mesh (left), our method can well improve the mesh quality (middle). With harmonic field guidance, the quality of boundary tetrahedra

(highlighted in red) can be better improved (right). Note the zoomed-in comparison of the boundary tetrahedra with and w/o harmonic field guidance.

Fig. 2. Algorithm overview. Given a tetrahedral mesh, we first compute a

harmonic weight field over the entire mesh. Then our algorithm alternates

between quality encoding with QDC and mesh reconstruction guided by the

harmonic field until convergence. The reconstruction, from QDC to Cartesian

coordinates, minimizes the energy function that measures the distance between

the input mesh and its counterpart with the total element quality maximized.
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In this paper, we propose a variational approach to tetrahedral
mesh optimization based on quality encoding. Our approach is
inspired by existing works on Laplacian mesh editing [1,4,31,36],
where the main idea is to use a representation that captures the
local differential properties of the surface and to preserve these
properties during deformation [4]. Specifically, differential co-
ordinates are used to encode surface details. A deformed mesh is
obtained by reconstructing the mesh geometry under positional
constraints of edited vertices while preserving the surface details
as much as possible.

Analogously, we introduce a volumetric representation, which
we call quality differential coordinates (QDC), to encode the
‘‘quality details’’ at the vertices of a tetrahedral mesh. Specifically,
QDC encodes mesh quality as the deviation of a vertex from a
position which maximizes the combined quality of the tetrahedra
incident at that vertex, where the element quality is measured by
quality metric [30]. Based on QDC, a quadric energy is built to
measure the distance between the input mesh and its counterpart
with the total element quality maximized. Minimizing the energy
under the positional constraints of boundary vertices leads to
optimization of mesh quality.

Different from preserving surface details in the context of mesh
editing, the variational process in our method improves the ‘‘quality
details’’. The resulting nonlinear variational problem is solved
by a semi-implicit gradient flow solver derived from [3]. Through
analysis and numerical experiments, we show that our solver
obtains both robustness and efficiency by improving the condition-
ing of the system matrix. To better optimize boundary tetrahedra,
we propose harmonic-guided optimization. Under the guidance
of harmonic weight fields, the boundary tetrahedra can benefit
from weighted least-squares optimization, resulting in high-quality
boundary tetrahedra (see Fig. 1). Fig. 2 gives an overview of
ouralgorithm. The main contributions of our work are:
�

P
j.
Flexibility: Different quality metrics and their combinations
can be used for quality encoding to obtain different optimiza-
tion behavior and suit different applications.

�
 Consistent optimization: With harmonic-guided optimization,

interior and boundary tetraheda can be improved more
consistently.
lease cite this article as: Xu K, et al. Quality encoding for tetrahedral
cag.2009.03.020
�

me
Simultaneous smoothing and untangling: By integrating a
quality metric which is continuous over R3, our algorithm can
simultaneously untangle (removal of inverted elements) and
smooth a mesh.

�
 Robustness and efficiency: Our algorithm can robustly opti-

mize meshes with low quality. The semi-implicit gradient flow
solver provides fast convergence and efficiency.

2. Related works

Tetrahedral mesh optimization, designed to improve the
quality of a mesh, is an important research topic in both computer
graphics and several industrial applications. Many algorithms
have been proposed during the last decade. We only review those
works most related to ours.

The basic methods for mesh quality improvement can be
classified into two categories. The first category of methods
apply topological transformations to improve a mesh, typically
by changing its connectivity. The operations include local face
swapping, element or vertex insertion/deletion, etc. The other
type of methods, referred to as smoothing or vertex reposition-
ing, improve a mesh by moving its vertices while keeping the
mesh connectivity unchanged. For this class of techniques
[11,13–15,21,26], quality improvement is reduced to a numerical
optimization problem where the objective function measures one
or more mesh properties. Minimizing the objective function
through vertex repositioning leads to improvement in those mesh
properties. Combining the two strategies can often result in
higher quality meshes [17,20].

Vertex repositioning employs quality metrics defined on mesh
elements to measure their quality. Shewchuk [30] provided a clear
exposition of the relations between the metrics and (1) the
conditioning of stiffness matrices in finite element methods and
(2) the accuracy of linear interpolation of functions and their
gradients. Based on the quality metrics, two classes of approaches,
local and global optimizations, have been proposed.

For local methods [13,14,21], an objective function is built on a
submesh (see Fig. 3) to locally measure the mesh quality. Quality
improvement is achieved by repeating a local optimization of the
objective function defined on each submesh.

Objective functions for global methods [10,15,26] are con-
structed by accumulating contributions from each local measure
into one scalar function of vertex positions. The overall mesh
is optimized through minimizing the global objective function.
In [15], two methods, inexact Newton and block coordinate
descent, for numerically optimizing global objective functions
were compared. While inexact Newton method leads to all-vertex

optimization [15] where all of the free vertices are moved
simultaneously within a single iteration, the block coordinate
descent results in a single-vertex optimization [15] in which only
sh optimization. Computers and Graphics (2009), doi:10.1016/
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Fig. 3. Illustration of QDC vector (a) and QDC weighting scheme (b) in a 2D planar submesh Mðv0Þ, where v0 is the free vertex. u0 is the optimal position of v0, maximizing

the overall quality of Tðv0Þ while holding the positions of the other vertices in Mðv0Þ fixed. u0 is the weighted average of the 1-ring vertices, where the weights are

computed based on the optimal position for each triangle in the submesh. For instance, in (b), u1 is the optimal position of v0 with respect to the quality of triangle T1 while

holding the positions of v1 and v2 fixed.
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one vertex at a time is modified through a suboptimization for
that vertex. Local methods can also be seen as single-vertex
methods. Generally, all-vertex approaches have faster conver-
gence rate and often provide more accurate optimization results
than single-vertex ones, although they need more computation for
a single iteration [15]. Our method fits into the all-vertex category
since our energy function is built globally and all the vertices are
repositioned simultaneously.

Methods reviewed above can only optimize a valid mesh, i.e.,
one that does not have tangled elements, since their objective
functions present singularities when any element is tangled. To
overcome this problem, Freitag et al. [13] proposed a two-stage
method to untangle and smooth tetrahedral meshes separately. By
modifying two quality metrics and their corresponding objective
functions to ensure their continuity over R3, Escobar et al. [11]
obtained an algorithm which can simultaneously smooth and
untangle a tetrahedral mesh.

Minimization of the above objective functions is often a
nonlinear problem. For meshes with very low quality, most
of the existing methods will run into slow convergence or even
divergence. Furthermore, previous methods [10,11,15] often result
in bad boundary tetrahedra since boundary vertices are fixed for
boundary conformation and hence boundary tetrahedra benefit
less from the optimization than interior ones. Some methods
[17,20] relax the problem to approximately preserve the boundary
shape. They employ constrained smoothing of boundary vertices,
in which a boundary vertex can be moved within a common plane
or edge of its neighbor vertices to avoid boundary shape distortion
[17]. However, curved boundaries cannot benefit from such an
approach as few neighboring vertices share a common plane or
edge [20].

Alliez et al. [2] proposed a variational meshing algorithm, in
which both vertex positions and connectivity are updated to
minimize the same quadric energy. This energy is defined based
on optimal Voronoi partition [5] where no element quality metric
is considered. In our approach, quality metrics are encapsulated
explicitly into the objective function. Moreover, the variational
meshing algorithm also shares the problem of boundary degen-
eracy due to the requirement of boundary conformation.

Laplacian mesh processing has been extended to optimize
triangular meshes recently [24,27]. Their methods can be
successfully used for quality improvement of triangular mesh.
However, for optimization of tetrahedral mesh, simple Laplacian
smoothing can produce tangled tetrahedra when the mesh
boundary is non-convex.
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
j.cag.2009.03.020
3. Mesh quality encoding

In this section, we give a brief review of mesh quality
measurement. Then, we introduce QDC-based quality encoding.

Let a tetrahedral mesh M be described by a triple ðV;E;TÞ,
where V is the set of vertices, E the set of edges and T the set of
tetrahedra. V̂ �V denotes the set of boundary vertices, and Ê �
E the set of boundary edges. Let j � j denote the size of a set. The
position of vertex vi 2V is represented by Cartesian coordinates
vi ¼ ðxi; yi; ziÞ

T
2R3. X ¼ ðxT; yT; zTÞ

T
2 R3�jVj refers to the collec-

tion of all-vertex coordinates, where x ¼ ðxiÞ
T
vi2V
2 RjVj, y ¼

ðyiÞ
T
vi2V

and z ¼ ðziÞ
T
vi2V

. Throughout the paper ‘‘tet’’ will be the
abbreviation for tetrahedron. Each tet t consists of a small subset
of the vertices, denoted by Vt. Xt 2 R3�jVt j is the coordinate
matrix of all vertices in t. Tet t is a boundary tet if and only if at
least one of its vertices is a boundary vertex.
3.1. Mesh quality measurement

Mesh generation and optimization algorithms often evaluate
element quality by a continuous function q : R3�jVt j ! R. In parti-
cular, qðXtÞ or qt for short, measures the quality of the tet t, where we
assume a larger value indicates higher quality throughout this paper.
Many such quality metrics are available [22,30]. We, however, prefer
those algebraic ones which can measure the orientation of a tet,
allowing to optimize against tangled tets. Specifically, qt ¼ 1 if t is a
regular tet, qt ¼ 0 if it is flat, and qto0 if it is tangled (inverted).
Objective functions are often built with the inverse of qt (denoted by
~qt , where ~qt 2 ½1;1Þ when t is not tangled), so that quality
improvement can be achieved by a minimization process. In our
experiments, we use the original versions of the quality metrics to
evaluate and compare the quality of resulting meshes.

We employ three algebraic quality metrics which measure a
tet’s deviation from a regular tet and its volume-(edge)length
ratio, respectively:

Modified inverse mean-ratio (MIMR): Mean-ratio [22] is a well-
known algebraic metric in the literature. It measures the quality of
a tet using the norm of the affine mapping matrix that maps the
tet to a regular one. Let St denote the weighted Jacobian matrix of
the tet t, which is the affine map that takes t to a regular tet. The
mean-ratio of St is the scalar:

Zt ¼
3s2=3

t

kStk
2
F

,

mesh optimization. Computers and Graphics (2009), doi:10.1016/
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where kStkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðST

t StÞ

q
is the Frobenius norm of St and st ¼

detðStÞ. Escobar et al. [11] replace s by hðsÞ ¼ ðsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4d2

p
Þ=2

(see [11] for details on choosing d) to remove the singularities
appearing in the inverse mean-ratio metric when t is tangled,

leading to a metric that is continuous over R3:

~Zt ¼
kStk

2
F

3hðstÞ
ð2=3Þ

.

Modified inverse condition number (MICN): This metric is also
derived by Escobar et al. [11] through modifying the condition
number metric [22] with the same consideration as for MIMR:

~kt ¼
kStkF � kS

�
t kF

3hðstÞ
,

where S�t ¼ stS
�1
t is the adjoint matrix of St .

Modified inverse volume-length (MIVL): The volume-length
metric, suggested by Parthasarathy et al. [28] and denoted by
rt ¼ 6

ffiffiffi
2
p

V=l3rms, is the signed volume of a tet divided by the cubic
of the root-mean-square of its edge lengths. We modify this
metric similar to [11] and use

~rt ¼

ffiffiffi
2
p

l3rms

12hðVÞ
.

Note that the three modified metrics are all continuous over R3

with respect to the coordinates of tet vertices and reach their
minimum (equal to 1) when t reaches its highest quality, the
measure of a regular tet. They are also referred to as the smooth
quality metrics in the literature [30].

3.2. Quality encoding

In detail-preserving shape editing, differential representations
have gained significant popularity over the past few years
[1,4,31,36]. Given a surface mesh, the differential coordinates of
a vertex vi are defined by a displacement vector between vi and
the weighted average of its 1-ring neighborhood:

di ¼ ½d
ðxÞ
i ; d

ðyÞ
i ; dðzÞi �

T ¼ vi �
X

j2N̂1ðiÞ

wjvj, (1)

where N̂1ðiÞ ¼ fjjði; jÞ 2 Êg is the set of 1-ring neighborhood of vi. In
[36], the volume differential coordinates which encode the so-
called volumetric details were introduced for volume-preserving
mesh deformation. For a tetrahedral mesh, volume differential
coordinates are defined through extending the 1-ring neighbor to
the interior, where the 1-ring set is given by N1ðiÞ ¼ fjjði; jÞ 2 Eg.

In a sense, differential coordinates locally encode the geo-
metric details through measuring the deviation of a surface mesh
from its smoothed version. Enlightened by this observation, we
define analogously the ‘‘quality details’’ as the deviation of a
tetrahedral mesh from its counterpart with the total element
quality maximized.

Similarly, we use a differential representation to represent the
(volumetric) ‘‘quality details’’. We consider the local submesh

MðviÞ formed by TðviÞ which is the set of all the tets that share
vertex vi. Vertex vi is the free vertex of submesh MðviÞ. See Fig. 3
for a submesh of a 2D planar triangle mesh. The quality of vi is
encoded with a displacement vector (Fig. 3a):

ci ¼ vi � ui, (2)

where ui is the optimal position of vi, which maximizes the
overall quality measure for all tets in TðviÞ, with the other
vertices in MðviÞ held fixed. We call ci the QDC of vi in this paper.
Akin to the differential coordinates for geometric details, we write
ui as a weighted average of the 1-ring neighbors of vi and rewrite
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
j.cag.2009.03.020
QDC as follows:

ci ¼ ðg
ðxÞ
i ; g

ðyÞ
i ; gðzÞi Þ

T
¼ vi � XN1ðiÞwi, (3)

where XN1ðiÞ 2 R3�jN1ðiÞj is the Cartesian coordinate matrix of
fvjjj 2 N1ðiÞg, and wi ¼ ðwijÞ

T
2 RjN1ðiÞj�1 (j 2 N1ðiÞ) the weight

vector. As a result, the computation of QDC is reduced to finding
the optimal weights wi satisfying vi ¼ XN1ðiÞwi:

wi ¼ argmin
wi

X
t2TðviÞ

~qt . (4)

The matrix that transforms a vector of Cartesian coordinates to the
QDC vector is

Qx ¼ cðxÞ, (5)

where x and cðxÞ are jVj-vectors containing the x Cartesian and
QDC of all the vertices, respectively. The same goes for y and z

coordinate vectors. We will simply use x and cðxÞ to cover all the
three dimensions in the following discussion. Q is called QDC

matrix in this paper which has the form (assume the weights are
normalized)

ðQ Þij ¼

1; i ¼ j;

�wij; ði; jÞ 2 E;

0 otherwise:

8><
>:

The local differential representation comes at the expense of a
global reconstruction computation, i.e., the generation of Carte-
sian coordinates from differential coordinates requires one to
solve a global PDE [31]. However, different from shape editing,
we do not want to preserve the differential coordinates. Instead,
we hope the reconstructed mesh would minimize the quality
deviation for the purpose of quality improvement. This is the core
of our algorithm, which we describe in Section 5.
4. Computing QDC

In this section, we describe how to compute QDC. As we have
stated in Section 3.2, the key is to find a set of optimal weights for
each submesh (1-ring neighborhood of a vertex). Our main idea is
to find approximately optimal weights such that minimizing the
QDC of a free vertex in a submesh can untangle and smooth the
submesh.
4.1. Weighting scheme

The basic idea of our weighting scheme is to put larger weights
on those vertices which have shorter distance to the optimal
position of the free vertex in a submesh. However, computing
the optimal position itself is a nonlinear optimization problem.
Therefore we compute it approximately based on the optimal
position of the free vertex for each element. To make it clearer, we
show the weighting scheme on the 2D planar submesh Mðv0Þ

shown in Fig. 3b. Let us take triangle T1 formed by v0, v1 and v2 for
example. Let u1 be the optimal position of v0 which makes T1 a
regular triangle and hence optimizes T1’s quality. T1’s contribu-
tion to the weight of a 1-ring neighbor vertex, e.g., v1, is inversely
proportional to the square of the distance from v1 to u1. The same
goes for other triangles in the submesh. Meanwhile, triangles with
worse quality will contribute more to the weight computation in
order to improve the worst tets preferentially. The final weight of
a 1-ring neighbor is obtained by accumulating contributions from
each of the triangles in Mðv0Þ.
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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Fig. 4. Approximate optimal position in a tet.
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Thus the weighting scheme can be formularized as Eq. (6). In
submesh MðviÞ, the weight of vj, a 1-ring neighbor of vi, is

~wij ¼
X

t2TðviÞ

~q2
t

kvj � utk
2

, (6)

where TðviÞ is the set of tets in MðviÞ and ~qt is the quality of tet t.
The weights should be normalized:

wij ¼ ~wij=
X

k2N1ðiÞ

~wik. (7)

Although the estimation of optimal position of a vertex in a
triangle (with the other vertices fixed) is obvious as mentioned
above, it is not trivial in a tetrahedron. To achieve that, one can
define an objective function of the position of the free vertex
to measure the quality of the tet with some quality metric and
optimize this objective function with a gradient-based algorithm.
This expensive suboptimization needs to be performed 4jTj times
for the entire mesh, where jTj is the number of tets.

We relax the requirement to find an approximate optimal
position along a specific direction which we describe with a tet in
Fig. 4. The tet t is composed of vertices v1, v2, v3, and v4. Suppose
that v1 is the free vertex (the other three vertices are fixed) and
we want to find the position where v1 optimizes t’s quality.
Instead of finding v1’s optimal position over the entire R3, we
search it along the ray, whose starting point is pc (the barycenter
of 4v2v3v4) and whose direction is along n (the normal of
4v2v3v4, pointing into Mðv1Þ, the submesh around v1). Therefore,
the problem is reduced to a standard Armijo line search problem
which is easy to solve:

poptðv1Þ ¼ pc þ a� � n;
a� ¼ argmin

a
~qtðpc þ a � nÞ s:t: aX0: (8)

4.2. Further analysis

For a different position of the free vertex in a submesh, there
is a different set of optimal weights and hence a different QDC
vector. A QDC vector field, defined over the space in which the
submesh is embedded, can be constructed with all QDC vectors
for different positions of the free vertex. To observe and analyze
the behavior of our weighting scheme, we visualize the QDC
vector field in a 2D planar submesh (see Fig. 5), in which the
magnitudes of all QDC vectors are illustrated as a color-coded
scalar field while the directions of QDC vectors are demonstrated
with arrows. We also depict the position of the barycenter of a
1-ring neighborhood (shown with a red point in Fig. 5) of the free
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
j.cag.2009.03.020
vertex to compare our QDC approach with Laplacian smoothing
for improving element quality.

The weighted average of 1-ring vertices is located at the
position where the free vertex approximately optimizes the
quality of the submesh. We call this position the approximate
optimal position of the free vertex. The smaller the magnitude of a
QDC vector is, the closer the free vertex is to its approximate
optimal position. In consequence, the position where the QDC
magnitude reaches the minimum can be seen as the approximate
optimal position of the free vertex.

If the submesh is convex (Fig. 5a), the approximate optimal
position almost coincides with the barycenter. Otherwise, if the
submesh is non-convex (Fig. 5b), the two positions can be quite
different. As shown in Fig. 5b, the free vertex can be safely moved
to the approximate optimal position without introducing any
tangled triangle. This is not true for the barycenter, however. That
is why Laplacian smoothing can cause element tangling for a non-
convex mesh, whereas our method does not.

The feasible region of a submesh is an interior region of the
submesh, within which moving the free vertex will not introduce any
tangled elements [11]. By observing the scalar fields in Fig. 5c and d,
it can be found that the distribution of QDC magnitudes roughly
reflects the feasible region of a submesh (see the blue regions in the
two figures). Specifically, the magnitude of a QDC vector is relatively
small when the free vertex moves within the feasible region. When it
moves out of the feasible region, the magnitude increases quickly.
Meanwhile, QDC magnitude reaches its minimum in the feasible
region. These properties meet approximately the requirements of
mesh untangling and quality improving.

Another important feature of QDC is that if there is no feasible
region in a submesh (Fig. 5e and f), the approximate optimal
position again coincides approximately with the barycenter. This
feature leads to stability of our method for optimizing meshes
of very low quality: our QDC-based optimization first smoothes a
low-quality mesh, in which almost no feasible region is available,
like Laplacian smoothing. As the smoothing proceeds, more
feasible regions appear on which our method performs both
smoothing and untangling simultaneously.
5. Variational optimization

The computation of QDC is essentially a process of mesh
quality encoding. The Cartesian coordinates of mesh vertices can
be reconstructed from the QDC under certain boundary condi-
tions. As QDC measures the quality deviation of a submesh from
its counterpart with the total element quality maximized, in order
to optimize the quality of the reconstructed mesh, the QDC
vectors in the reconstruction should be set to zero. In Laplacian
mesh editing, one must fix at least one vertex as additional
constraint to guarantee that the reconstruction has a unique
solution [31]. In tetrahedral mesh optimization, the boundary
vertices will serve as the positional constraints as we hope to keep
the boundary unchanged.

Our optimization solves the following quadric minimization
problem:

min
x
ðGðxÞx� gðxÞÞTðGðxÞx� gðxÞÞ, (9)

where GðxÞ ¼ ½Q ðxÞ;B�T and gðxÞ ¼ ½0;b�T. B is the positional
constraint matrix for boundary mesh, and b is the original
positions of boundary vertices of input mesh. The resulting mesh
will reduce the above-mentioned quality deviation while preser-
ving the positions of boundary vertices in a least-square sense.
The quadric energy is defined globally over the entire mesh. All
the inner vertices are repositioned simultaneously.
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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Fig. 5. Visualization of the QDC vector fields for several 2D planar submeshes. The free vertex and all edges involved are hidden for clarity. In each submesh, the QDC vector

field is visualized with both a scalar field to illustrate the magnitudes of all QDC vectors and arrows on a regular grid to demonstrate the directions of the QDC vectors. The

barycenter of a 1-ring neighborhood in the figure is shown by a red point.

Fig. 6. The cut-away views of the medial axis transform (left) and harmonic fields

(right) of two tetrahedral meshes. The harmonic fields are computed using

boundary surface constraint and the medial axes (middle).
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5.1. Harmonic-guided optimization

Most previous tetrahedral mesh optimization methods run
into issues with boundary optimization: boundary tets often
benefit less from the optimization than interior ones since the
positions of boundary vertices are fixed as positional constraint.
Our optimization by solving (Eq. (9)) has the same problem.

We propose harmonic-guided optimization to overcome
this inconsistency problem. To allow the boundary tets to benefit
more from the optimization, we employ weighted least squares
where we weight the residuals for each vertex according to
their distances to the boundary. We compute a harmonic
scalar field for the tetrahedral mesh to be optimized, which
reaches maximum at its boundary and minimum at its medial
axis. Using the values in the harmonic scalar field as weights,
both the boundary and interior tets can be optimized more
consistently.

A harmonic function h defined on mesh vertices satisfies
Laplace’s equation r2h ¼ 0. We prescribe the value 1 as boundary
conditions for surface vertices acting as sources, and 0 for the
vertices located at the medial axis serving as sinks. By solving
Lh ¼ 0 (where h ¼ ðhiÞ

T
i¼1;2;...;jVj) with respect to these boundary

conditions, we obtain a harmonic function that smoothly blends
between 0 and 1. Therefore the weight matrix we use in the
weighted least squares is composed of two parts, harmonic
weights and positional weights:

W ¼ diagðoIh1;oIh2; . . . ;oIhjVj;oB; . . . ;oB|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
jV̂j

Þ,

where oB is the positional weight which is used to tweak the
importance of positional constraints of boundary vertices. Larger
oB leads to more accurate boundary shape preservation but less
interior mesh quality improvement. We find by experiments that
jVj=jV̂j is a relatively good tradeoff. oI is the maximum weight
for interior vertices, which can be seen as the decreasing rate of
the harmonic weights from the boundary to the medial axis. The
larger the decreasing rate we use, the larger the weight difference
between boundary and interior and hence the more optimization
the boundary tets can obtain. However, large oI weakens the
boundary constraint (weighted by oB) and introduces more errors
in boundary mesh at the same time. In our experiments, we use
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
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oI ¼ 0:4oB. The new energy is thus

min
x
ðWðGðxÞx� gðxÞÞÞTðWðGðxÞx� gðxÞÞÞ. (10)

The extraction of medial axis for a mesh model is often a time-
consuming task. Fortunately, a tetrahedral mesh provides a natural
voxelization (tets stuffed in its boundary) on which the medial axis
transform (MAT) [29] can be performed to obtain an approximate
medial axis (see Fig. 6 for some results). In practice, the tets in a
low-quality input mesh are often too badly shaped to obtain an
accurate MAT. To remedy this, we first use Eq. (9) to pre-optimize
the initial mesh to obtain a mesh with adequate quality, on which a
satisfactory MAT can be evaluated. The approximate medial axes
computed using the above process are sufficient for our task.

Fig. 7 gives the cut-away view of two tetrahedral meshes to
compare the effect boundary optimization of our method with
and w/o harmonic field guidance. The boundaries of these meshes
are firstly faired using Laplacian smoothing, which is not a
feature-preserving method and can introduce much surface
degradation. We use this method for surface fairing only for a
more obvious demonstration. It can be observed from the figure
that, with the guidance of harmonic fields, our method can better
optimize the squished boundary tets.
6. Numerics

This section discusses some details on solving the QDC-based
variational problem. Since QDC depends nonlinearly on vertex
mesh optimization. Computers and Graphics (2009), doi:10.1016/

dx.doi.org/10.1016/j.cag.2009.03.020
dx.doi.org/10.1016/j.cag.2009.03.020
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Fig. 7. Effects of harmonic-guided optimization. For different input tetrahedral meshes (left), optimization results w/o (middle) and with (right) harmonic field guidance

are compared. Note the comparison of boundary tets (highlighted in red) especially.
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coordinates, minimization of the energy function (Eq. (10)) is a
nonlinear least-squares (NLS) problem. We derive a robust and
efficient solver based on the gradient flow approach [3]. In order
to achieve robustness for low-quality input meshes, the quality
metric in computing the QDC should satisfy the smoothness
conditions, which we discuss in this section.

6.1. Semi-implicit gradient flow solver

The main difficulty of using the standard methods, e.g.,
Gauss–Newton (GN) and Levenberg–Marquardt (LM), to solve
our problem lies in the estimation of the Jacobian of the residual
vector rðxÞ ¼ GðxÞx� gðxÞ. The derivatives of QDC with respect to
vertex Cartesian coordinates are hard to compute since the
estimation of the optimal weights for QDC adopts a suboptimiza-
tion (line search) and hence QDC cannot be expressed analytically
as a function of vertex coordinates.

We linearize our problem and derive an inexact solver from the
point of view of gradient flow. The gradient flow method [3] solves
the NLS problem by means of integration of a first order ordinary
differential equation (ODE). A necessary condition for point x�

to be an optimal solution for the NLS problem minx2Rn FðxÞ ¼
1
2 � rðxÞ

TrðxÞ is

rFðx�Þ ¼ JT
r ðx
�Þ � rðx�Þ ¼ 0, (11)

where Jr is the Jacobian of rðxÞ. To fulfill this optimality condition,
we rely on a reformulation of the continuous gradient flow of the
NLS problem. Specifically, we solve the ODE

dxðtÞ

dt
¼ �rFðxðtÞÞ, (12)

with the initial condition

xð0Þ ¼ x0. (13)

The optimal solution can be obtained by following the trajectory
of a system of ODEs. We employ a semi-implicit scheme to
discretize the right-hand side of Eq. (12), where we use Gk � xkþ1 �

gk to approximate rðxkþ1Þ. Thus Jrðxkþ1Þ is approximated by Gk. The
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
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resulting discretized form of Eq. (12) is

ðGT
kGk þ IÞ � xkþ1 ¼ GT

kgk þ xk. (14)

The computation for each iteration only amounts to solving a
sparse linear system and no evaluation of the Jacobian matrix is
needed. The approximation to Jrðxkþ1Þ with Gk is valid only when
rðxÞ is quasi-linear with respect to x, where the two following
conditions hold: (1) GðxÞ is a nearly constant matrix which
changes slowly at each iteration and (2) gðxÞ is a vector whose
Jacobian is small, i.e., kJgk5kGk.

The first condition reveals that the success of the semi-implicit
solver highly depends on the changes between Gk and Gkþ1. We
give a simple analysis for the accuracy of our linearization by
estimating the matrix variance kGkþ1 � Gkk. According to the
mean value theorem in calculus, the variance satisfies the
following inequality:

kGkþ1 � GkkpkG
0
ðnÞkkxkþ1 � xkk,

where G0ðxÞ is the derivative of the matrix function GðxÞ and n ¼

ð1� lÞxkþ1 þ lxk ð0olo1Þ is the mean value vector. To ensure
that the solver converges with a relatively large step size, G0ðxÞ
must have a small upper bound. Although the derivative of GðxÞ is
hard to compute analytically, it is sufficient to evaluate it along
the direction of the vector xkþ1 � xk as we only need to know how
fast GðxÞ changes along that direction. We use the finite difference
method to evaluate the directional derivative. In particular, we
solve for xk in each iteration and compute the difference quotient
using the forward Euler scheme:

kG0kk 	
kGkþ1 � Gkk

kxkþ1 � xkk
.

We find in the numerical experiments that for any given initial
unknown x0, the directional derivative converges to 0 as the
iterations proceed. Table 1 shows the numerical results.

The second condition can also be satisfied asymptotically for
our problem: kJgk (evaluated with the finite difference method)
becomes small as compared to kGk after 2–3 iterations of Eq. (14)
(Table 1). This is owed to the smooth definition of QDC: the
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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Table 2
Comparison of the conditioning of the system matrix using explicit and semi-implicit methods in their first four iterations.

Input mesh Iteration steps

Name jVj k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4

Cube kex
k 5:72eþ 4 1:61eþ 4 5:67eþ 3 4:93eþ 3 1:23eþ 3

379 ksi
k

2:19eþ 2 6:35eþ 1 4:22eþ 1 3:35eþ 1 1:67eþ 1

Sphere kex
k 2:73eþ 6 9:35eþ 5 6:18eþ 5 3:79eþ 5 7:20eþ 4

993 ksi
k

1:91eþ 3 4:63eþ 2 3:16eþ 2 1:37eþ 2 4:03eþ 1

The condition number of our semi-implicit method, denoted by ksi
k , is smaller than that of the explicit method, denoted by kex

k , throughout the iteration steps.

Table 1

Values of dk ¼ kG
0
ðxkÞk and rk ¼ kJgðxkÞk=kGkk at the first four iterations of Eq. (14).

Input mesh Iteration steps

Name jVj k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4

Fertility dk 1:24e� 1 2:03e� 3 2:89e� 5 4:75e� 7 3:01e� 7

21;213 rk 3:96e� 3 5:10e� 5 2:21e� 6 1:93e� 7 1:15e� 7

Pegasus dk 3:19e� 1 2:44e� 3 6:47e� 5 1:08e� 6 7:91e� 7

46;212 rk 2:12e� 2 1:52e� 4 8:95e� 5 6:25e� 6 3:73e� 6

Although kG0k and kJgk=kGk are initially large, they decrease to no more than 1:0� 10�6 and 1:0� 10�5, respectively, within four iterations.
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weighted sum definition of the weights in Eq. (6) and the
smoothness of the quality metric adopted (Section 4.1). Our
experiment shows that the latter factor is more crucial to the
second condition and numerical convergence. If a non-smooth
quality metric, e.g., the minimum sine of dihedral angles [30], is
used in QDC, our solver can hardly converge for low-quality
meshes. Moreover, the rate of change of gðxÞ with respect to x
decreases rapidly during the first few iterations (Table 1). This is
because our QDC-based optimization behaves like a Laplacian
smoother on a low-quality mesh at the beginning of optimization
(recall the analysis in Section 4.2), which helps to reduce the
nonlinearity of QDC.

A key factor to the numerical stability of an iterative solver is
the finite condition number of the associated system matrix,
denoted by kð�Þ; it is the ratio between the largest and the
smallest non-zero eigenvalues of the matrix. Compared to explicit
integration of Eq. (12), which results an inexact variant of the GN
solver whose system matrix is GTG, our semi-implicit method is
more robust as kðGTGþ IÞ is much smaller than kðGTGÞ. Note that
kðGTGÞ is dominated by kðQ TQ Þ ¼ ðlQ

max=l
Q
minÞ

2,where Q is QDC
matrix with lQ

max and lQ
min as its the largest and the smallest non-

zero eigenvalues, respectively. Following [30], the lower bound of
lQ

min is proportional to the volume of the smallest tet and lQ
max

to lmax= sinðyminÞ, where lmax is the length of the longest edge and
ymin is the smallest dihedral angle in the tetrahedral mesh.
For a mesh of low quality, lQ

min is small and lQ
max is large. It

follows that ððlQ
max þ 1Þ=ðlQ

min þ 1ÞÞ25ðlQ
max=l

Q
minÞ

2, indicating that
kðGTGþ IÞ5kðGTGÞ. In addition, the conditioning of GTGþ I can be
further improved by quality improvement as the iterations
proceed (see Table 2).

To obtain a better-conditioned system matrix, we can intro-
duce a reasonably chosen parameter to GTGþ I and solve the
following linear system instead:

ðGT
kGk þ mkIÞ � xkþ1 ¼ GT

kgk þ mkxk, (15)

where mk is a positive parameter. Eq. (15) is essentially an inexact
variant of the LM method, where Jrðxkþ1Þ is approximated with Gk
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
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under the aforementioned quasi-linear conditions. To improve the
conditioning of the system matrix, mk should be set to a large
value for a mesh with low quality as kðGT

kGk þ mkIÞ is non-
increasing with respect to mk. We follow the choice of [34] and use
mk ¼ kG

T
kgkk

2 (with the same approximation as above), which has
all of our desirable features. If xk is far away from the optimal
solution, which is the case when the mesh quality is low, mk is
large and thereby kðGT

kGk þ mkIÞ is small. When the mesh quality is
improved and xk is close to the optimal solution, mk can be quite
small while GT

kGk þ mkI remains well-conditioned since a high-
quality mesh has a small kðGT

kGkÞ.
At each iteration, we solve Eq. (15) using Cholesky factoriza-

tion. Although the system matrix is sparse, it depends on x and
thus changes at each iteration. Therefore, the full factorization
cannot be reused. However, the non-zero structure remains
unchanged since our optimization does not change the mesh
connectivity. As a result, a fill-reducing permutation of the system
matrix and symbolic factorization based only on its non-zero
structure can be precomputed and reused [33].
7. Results and discussions

We have implemented our algorithm with the three quality
metrics described in Section 3.1. We find that the MIMR and MICN
metrics have similar optimization behavior, e.g., in their resulting
distribution of dihedral angles. The MIVL metric, however,
works somewhat differently. The running times presented are
recorded on a PC with 1.83 GHz AMD Sempron processor and
512 MB RAM.

7.1. Different metrics on different kinds of meshes

First, we test our algorithm on meshes generated by three
different meshing algorithms. Table 5 shows the meshes before
and after quality improvement by our variational optimization
using the MIMR and MIVL metrics, respectively. Histograms of
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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dihedral angle distributions are also shown. Meshes 1 and 2 are
generated using the Nuages software [18] which takes parallel
cross sectional contours as input. Tetrahedral meshes recon-
structed from cross sectional data are widely used in biomedicine
since the 3D data of human organs are often obtained from CT and
MRI data. Since any two adjacent contours can be arbitrarily
different in shape and/or vertex distribution, this approach
usually generates boundary tets of very low quality. The tetra-
hedral meshes 1 and 2 are obtained by cutting a surface mesh into
a stack of cross sectional contours and then feeding them to the
Nuages software. Meshes 3 and 4 are generated with the
variational tetrahedral meshing algorithm of Alliez et al. [2]. They
produce better boundary tets due to a global optimization of mesh
connectivity (including boundary connectivity). However, sliver
tets can still appear in these meshes due to boundary conforma-
tion. Isosurface stuffing [23] can provide tetrahedral meshes with
guaranteed good dihedral angles. For the resulting meshes, 5 and
6, the tets with the worst dihedral angles are also the boundary
ones.

The boundaries of the meshes generated by Nuages are often
noisy and of poor quality. We first perform a feature-preserving
surface fairing on the boundaries. Note that not all feature-
preserving fairing algorithms are suitable for this task. For
example, fairing via mean curvature flow [8] can remove surface
noise along the normal direction while not attempting to improve
the quality of the triangles; the latter would require tangential
movement of the mesh vertices. We have found by experiments
that Taubin’s ljm filtering [32] and the Min-Dist flow algorithm
[35] are more suitable and they have been applied to meshes 1
and 2, respectively.

As shown in Table 5, our method significantly improves the
dihedral angles of the meshes generated with Nuages. Dihedral
angles of the high-quality meshes generated by the variational
tetrahedral meshing and the isosurface stuffing algorithms can be
further improved by our algorithm thanks to our harmonic-guided
optimization step. Another observation is that our variational
approach presents different optimization behavior when different
quality metrics are integrated. The MIMR metric often leads to
more centralized distribution of dihedral angles and a sharper
peak near 60
 in the histograms than the MIVL metric, indicating
Table 3
Comparing quality (measured by the mean-ratio metric) improvements of four algorith

Input tetrahedral mesh Initial quality

Name jVj jTj qZ sZ

Fertility 21,213 108,120 0.417 0.280

Pegasus 46,212 234,512 0.635 0.401

Stanford dragon

91,201 483,394 0.701 0.455

Chinese dragon 108,596 601,355 0.577 0.413

qZ and sZ denote the average and standard deviation of the mean-ratio measures, resp

respectively.
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the tet shapes in the resulting meshes are more regular. However,
meshes by MIVL have better minimum and maximum dihedral
angle bounds. This can be explained intuitively as follows. Mean-
ratio directly measures the deviation of a tet from a regular one.
As a result, the energy built with MIMR penalizes more the
deviation while pays relatively less attention on improving
dihedral angles. On the contrary, MIVL penalizes more the tets
with undesirable dihedral angles.
7.2. Comparison with other methods

Table 3 compares our algorithm with three other optimization
techniques. The first one is the Opt-MS package developed by
Freitag [13]. This software adopts a local optimization algorithm
and uses a two-stage method to smooth and untangle a mesh.
The second one, which we refer to as SUS, is proposed by Escobar
et al. [11]. SUS is also a local algorithm, using steepest descent
for optimization. In addition, we extend SUS and implement a
global version by building a global objective function based on the
modified quality measurements proposed in [11]. Wherein, the
inexact Newton method is employed to perform an all-vertex
global optimization. Note that all of the three methods achieve
smoothing and untangling. In our algorithm, the MIVL metric is
used. To speed up the optimization on large meshes, we utilize
the out-of-core factorization provided by TAUCS [33]. For each
method, iteration continuous until convergence or the maximum
execution time (200 min) is exceeded. We use the mean-ratio
metric to measure the qualities of meshes. Both the mean and
standard deviation of the quality measures are computed for
comparison.

As all-vertex algorithms, QDC and global SUS can obtain better
mesh quality than Opt-MS and local SUS. Our algorithm can
achieve even better quality measures than global SUS due to
improved boundary optimization. Also shown in Table 3, although
the global SUS improves the convergence rate (obtaining better
mesh quality with much fewer iterations in contrast to Opt-MS
and SUS), it does not save the computational cost since each
iteration is more costly. Our method, however, is more efficient
thanks to not only the fast convergence but also the low
ms: Opt-MS [13], SUS [11], Global SUS and our QDC.

Optimization method Optimized quality Cost

qZ sZ I T(min)

Opt-MS 0.796 0.113 5 3.1

SUS 0.878 0.102 6 8.7

Global SUS 0.938 0.100 4 10.7

QDC 0.945 0.065 3 0.5

Opt-MS 0.761 0.233 12 8.9

SUS 0.842 0.203 15 19.7

Global SUS 0.916 0.121 7 41.9

QDC 0.923 0.089 3 1.7

Opt-MS 0.722 0.318 26 58.2

SUS 0.853 0.197 28 138.7

Global SUS — — – 4200

QDC 0.892 0.174 4 12.4

Opt-MS 0.628 0.300 37 140.2

SUS — — – 4200

Global SUS — — – 4200

QDC 0.867 0.136 4 29.5

ectively. I and T are the number of iterations and total running time (in minutes),

mesh optimization. Computers and Graphics (2009), doi:10.1016/
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Table 4
Comparison of mesh untangling of Opt-MS [13], SUS [11] and our QDC.

Input tetrahedral mesh Opt-MS SUS ODC

Name qZ Ntangle qZ T(min) qZ T(min) qZ T(min)

Fertility 0.437 3555 0.441 1.74 0.807 4.62 0.812 0.17

Pegasus 0.537 6754 0.534 3.87 0.761 15.6 0.758 0.57

Happy Buddha 0.353 9801 0.358 8.96 0.713 38.7 0.693 0.75

Ntangle is the number of tangled tets in the input mesh. T is the minimum running time (in minutes) needed to untangle all the tangled tets present in the input meshes. q̄Z is

the average of mean-ratio quality measure at time T .

Fig. 8. Mesh quality measures and boundary error (symmetric Hausdorff) plotted against the ratio between interior and boundary weights.
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computational cost per iteration. In addition, we obtain smaller
standard deviation of the quality measures than global SUS and
hence more uniform tet shapes in the resulting meshes.
7.3. Simultaneous untangling and smoothing

To compare the mesh untangling behavior of our QDC
algorithm with Opt-MS and SUS, we show in Table 4 the minimum
execution time needed to untangle all the tangled tets in the input
meshes and the resulting quality measures. By observing the
quality measures, it can be found that our algorithm can improve
the mesh quality during untangling. Therefore, our algorithm
achieves simultaneous smoothing and untangling as SUS since the
QDC-based energy function penalizes tangled tets.
Fig. 9. Color-coded illustration of boundary quality (mean-ratio metric) for both

input (left) and optimized meshes (middle), as well as that of boundary error

(right) introduced. The latter is again measured by symmetric Hausdorff distance

using the Metro tool.
7.4. Boundary optimization and boundary error

Our algorithm does not ensure exact boundary conformation,
since boundary preservation is achieved only in a least-square
sense. As we pointed out in Section 5.1, the ratio between interior
and boundary weights can be used to tradeoff between mesh
quality and boundary error. The larger the ratio, the higher the
mesh quality, while larger boundary errors can be introduced at
the same time. This is confirmed by Fig. 8, in which we plot the
mesh quality (measured by both the mean-ratio and condition
number) against the weight ratio, as well as a color-coded
illustration of the boundary error, computed by the Metro tool
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
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[7]. Note that the boundary errors shown in Fig. 8 does not include
those introduced by surface fairing.

Fig. 9 demonstrates the boundary optimization results of our
method. To visualize the quality of boundary tets, we compute for
each boundary vertex the average quality measures of its 1-ring
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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Table 5
Six meshes before and after quality improvement.

In each box, the left mesh is the input, the middle mesh is optimized with the MIMR metric integrated, and the right one with the MIVL metric. Red tets have dihedral

angles under 5
 or over 175
, orange ones have angles under 15
 or over 165
, yellow ones have angles under 30
 or over 150
, green ones have angles under 40
 or over

140
 , and the remaining tets are not colored. The histograms (in 1
 intervals) show the distributions of dihedral angles in each mesh, where the minimum and maximum

angles are indicated at the two top corners. Note that in order to plot the distributions in the same scale while revealing them better, we down-scale the plot over certain

intervals. Specifically, each red bar should have its height multiplied by 20 to reflect the true distribution.
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tets and color-code the average measures on the boundary. The
figure shows that our method significantly improves the quality of
boundary tets with only very small boundary error introduced.
Regions with large boundary errors roughly agree to those with
low boundary quality. Since the distribution of boundary errors
does not appear to depend on surface geometry, our method
typically do not lead to more shape degradation at sharp features
than over flat regions.

Other limitations: Another limitation of our current method is
that it does perform well on tetrahedral meshes with many thin
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
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regions where almost all the tets are boundary ones. Since most
vertices in these regions serve as the boundary condition, little or
no optimization can be performed. This case necessitates an
optimization for mesh connectivity.
8. Conclusion

We have presented a variational tetrahedral optimization
approach based on per-vertex quality encoding. Our approach
mesh optimization. Computers and Graphics (2009), doi:10.1016/
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leaves the boundary smoothing to feature-preserving surface
fairing and focuses on how to improve the boundary and interior
tets consistently. The QDC-based representation provides our
method with robustness (for optimizing meshes of very low
quality, effectiveness (for respecting dihedral angle and other
quality measures), efficiency (fast convergence rate and low
computational cost per iteration) and flexibility (allowing for
different optimization behavior with different quality metrics
integrated). Our method also significantly improves the quality of
boundary tets through harmonic-guided optimization.

Our optimization procedure is performed through vertex
repositioning without considering topological transformation,
such as mesh connectivity. We believe that even higher mesh
quality can be achieved by coupling topology transformation with
our energy minimization, at the expense of higher computational
cost. We wish to investigate this in future work.
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[9] Elcott S, Tong Y, Kanso E, Schröder P, Desbrun M. Stable, circulation-
preserving, simplicial fluids. ACM Trans. Graphics 2007;26(1):4:1–12.

[10] Eppstein D. Global optimization of mesh quality. In: Tutorial at 10th
international meshing roundtable; 2001.
Please cite this article as: Xu K, et al. Quality encoding for tetrahedral
j.cag.2009.03.020
[11] Escobar JM, Rodrı́guez E, Montenegro R, Montero G, Gonzàlez-Yuste JM.
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