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Abstract 

We present an efficient and effective deforma-
tion algorithm for interactive shape manipula-
tion. To obtain the advantages of both surface- 
and space-based deformation, we propose to 
maximally incorporate surface geometry infor-
mation into space deformation framework 
while preventing the dependence on surface 
representation. Our deformation model signifi-
cantly reduces the problem size through sam-
pling the shape surface and then clustering the 
sampled points into deformation clusters under 
the guidance of handle-based harmonic field. 
The deformation computed on deformation 
clusters is transferred to the embedded shape 
through interpolation based on harmonic 
values. With the surface-base clustering and 
interpolation, our method enables fine-grained 
deformation control and provides skeletal de-
formation without requiring skeleton informa-
tion. We introduce a method for efficiently 
evaluating harmonic fields on point clouds. 
Our deformation model works well with the 
approximate harmonic fields and hence can 
handle a wide range of surface representations 
by sampling them into point clouds. 
 
Keywords: shape manipulation, surface-based 
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1. Introduction 

Recent years have seen the remarkable deve-
lopment of detail-persevering shape deforma-
tion techniques. In the most intuitive setting, 
detail  preservation  is  inherently  a  nonlinear 

 
Figure 1: The Armadillo model (left top) is 

manipulated interactively to take 
various dance poses with our 
deformation framework. Only 12 
to 16 deformation clusters are 
used by our method to produce the 
plausible deformation efficiently.  

problem [1]. 
To achieve scalability, reduced deformation 

models approximately formulate and solve for 
the detail-preserving deformation through pro-
jecting the problem to a reduced domain. 
Shape deformation is obtained by interpolating 
the deformations computed in the reduced 
domain. The formulation of detail preservation 
and the interpolation (projection) scheme are 
crucial to the design of an effective reduced 
model. Both of them can be done in either a 
surface-based or a space-based manner. 

Surface-based detail preservation is widely 
employed in designing reduced deformation 
models. The resultant reduced models inherit 
the representation-dependent nature of the 
unreduced surface-based methods. In surface-
based methods, spatial interpolation generally 



can not provide as fine-grained deformation 
control as surface-based interpolation. 

In space deformation, both detail preserva-
tion and interpolation are preformed in a spa-
tial manner. Due to its representation-indepen-
dent feature, space deformation attracted many 
attentions lately. However, previous methods 
have failed to make use of geometry infor-
mation to reduce of the computation com-
plexity. Besides, space deformation shares the 
fine-grained control problem. 

1.1 Approach and Contributions 

To obtain the advantages of both surface- 
and space-based deformation, we maximally 
incorporate surface geometry information into 
space deformation. A harmonic field is first 
computed based on the user selected handles. 
In our framework, we utilize the harmonic field 
to enhance our space deformation in two 
aspects. First, we build a reduced deformation 
model through sampling the surface geometry 
and then clustering the sampled points under 
the guidance of harmonic field. With this 
reasonable clustering, the problem size of our 
space deformation is much smaller than most 
previous approaches. As a result, our method is 
very efficient and robust (Figure 1). Second, 
the deformation computed on the reduced 
model is transferred to the shape through linear 
interpolation based on harmonic values. 
Respecting surface geometry in both clustering 
and interpolation provides our framework with 
the ability of fine-grained deformation control 
like surface-based methods. 

To achieve representation-independence, we 
evaluate harmonic fields on shapes given by 
other representations. We show that harmonic 
field can be computed using a meshless 
method on point cloud models. Other kinds of 
representations can be handled by sampling the 
surface into a point cloud. 
Efficient and robust. By using harmonic field 
as the guidance of clustering, our method 
effectively exploits the spatial coherence in 
shape matching. The number of unknowns in 
our nonlinear optimization is linearly related to 
that of deformation clusters. As a result, our 
method is very efficient and robust. 
Representation-independent. The detail pre-
servation of our space deformation does not 
depend on the underlying surface represen-
tation. With the proposed method for evalua-
ting harmonic field on point cloud, our method 

can handle many other representations by sam-
pling them into point clouds. 
Fine-grained deformation. Our method can 
provide fine-grained deformation control 
similar to the surface-based methods through 
integrating surface harmonic field in both 
deformation clusters building and deformation 
interpolation. 
Direct manipulation. Our method enables 
direct manipulation by employing a local shape 
matching on the manipulated handle. The user 
can pick any point within the region of 
manipulated handle and move it around to 
control the deformation. 

2. Related Work 

Reduced surface-based deformation. Huang 
et al. [4] introduce the subspace deformation 
where the subspace is defined by a coarse 
control mesh surrounding the original mesh. 
The positions of control mesh vertices serve as 
the control variables. Shi et al. [5] build the so-
called tetrabones to encode the transformations 
of mesh skeleton. The control variables, 
skeleton position and weights for rigging, are 
computed with a cascading optimization 
process. Zhou et al. [6] propose the direct 
manipulation of subdivision surfaces. In their 
work, the smooth surface can be seen as a 
reduce model used for computing an initial 
estimation for the highly nonlinear components 
of the deformation energy. 

Instead of vertex positions, Au et al. [7] use 
transformations associated to isolines of har-
monic fields as control variables. Although 
more related, our method is quite different with 
their work in two aspects. First, the method in 
[7] is surface-based and tightly coupled with 
mesh representation. Our method adopts space 
deformation framework and hence facilitates 
representation-independence. 
Space deformation. Space deformation obtain 
scalability by decoupling the complexity of 
deformation from the surface complexity. 
Botsch et al. [8] propose a space deformation 
method by adaptively discretizing the space 
into rigid cells. Sumner et al. [9] design the 
deformation graph to represent space 
deformation. Both the rigid cells and the 
deformation graph can be seen as space-based 
reduced structures. Space deformation often 
uses transformations as control variables, 



which are associated with the control elements, 
e.g. rigid cells and deformation graph nodes. 

One of the main problems of space 
deformation is the resolution of the control 
structure must be high enough in order to 
accurately represent the deformation of the 
embedded shapes. However, large number of 
control variables inevitably leads to high 
computational cost [8] calling for effective 
models to explore spatial coherence. Rivers 
and James [11] perform shape matching on 
regions formed by clustering the lattices [10] to 
improve their matching performance. While 
the clustering used by [11] is oblivious to 
surface geometry, our method clusters the 
control elements under the guidance of surface 
harmonic field, which is more reasonable and 
effective. Space-based interpolation makes the 
fine-grained deformation control difficult for 
space deformation methods. Sumner et al. [9] 
suggest to “cut” the undesirable influence with 
the user assistant, which is a tedious task for 
models with complex shape. Our method 
addresses this problem through surface-based 
interpolation with harmonic fields. 

3. Set-Up and Nomenclatures 

3.1 Handle-Aware Manipulation and Harmo-
nic Fields 

Handle is a popular metaphor in shape editing. 
Our framework also employs the handle-based 
paradigm, where the moved handle is referred 
to as manipulated handle while all other 
handles are called fixed handles. 

Handle-based surface harmonic field is com-
puted by solving the Laplace equation 2 0ϕ∇ =  
under the boundary constraints of 1 for mani-
pulated handle and 0 for fixed handles. One of 
the most important features of the handle-based 
harmonic fields is that all the surface vertices 
with the same harmonic value receive the same 
degree of transformation propagation from the 
manipulated handle [12]. This feature moti-
vates us to reduce the complexity of space 
deformation methods through clustering the 
control elements according to harmonic values. 

3.2 Harmonic-Guided Clustering for Space 
Deformation 

Our method builds the control elements by 
first sampling the surface and then clustering 
the sampled points with the same harmonic 

value into a point set which we call 
deformation cluster in this paper. We associate 
to each deformation cluster a transformation T 
(consisting of a rotation R, and a translation t) 
as control variable. The embedded shape is 
deformed through linearly interpolating the 
transformations of the clusters with harmonic 
values. 

We design two kinds of deformation clusters: 
isocluster and range-cluster. Isocluster, asso-
ciated with a single harmonic value C j

ϕ , is 
composed of a set (IC) of sampled points with 
that harmonic value. Range-cluster, associated 
with an interval of harmonic value min max

C C[ , ]
j j

ϕ ϕ , 
contains the sampled points whose value is 
within that interval. A serial of isoclusters form 
a “spine” of the embedded shape and produce 
rubber like deformation. Range-cluster can be 
used to represent the bone of an articulated 
shape in implementing skeletal deformation. 

Our method uses the linear interpolation: 
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where
1C C Cj j jiα ϕ ϕ ϕ ϕ
+

= − − and iT is the 
transformation of vertex i with harmonic value 

iϕ . If a vertex belongs to a range-cluster as the 
first case in (1), it uses the transformation of 
that cluster. Otherwise, its transformation is 
computed by linearly interpolating the transfor-
mations of its neighboring clusters. For range-
cluster, C j

ϕ denotes its mean harmonic value. 
By sampling the handle regions, handles are 

also treated as deformation clusters, named 
manipulated handle cluster and fixed handle 
cluster. Figure 2 shows the deformation 
clusters for a bar containing 2 handle clusters 
and 10 isoclusters. 

Figure 2 : Deformation clusters on Bar model. 
Isoclusters (IC), fixed handle clu-
sters (FC) and manipulated handle 
cluster (MC) are extracted based on 
the harmonic field (top left). 



4. Deformation Energy 

In this section, we describe the constraints for 
detail preservation, transformation propagation, 
direction manipulation and length preservation. 
Each constraint is implemented as an energy 
term of the global deformation energy. 

4.1 Detail Preservation 

Detail preservation is achieved by ensuring the 
transformation of each deformation cluster to 
be close to a pure rotation. In order for a 3×3 
matrix R to represent a rotation in SO(3), it 
must satisfy six conditions [13]: each of its 
three columns must be unit length, and all 
columns must be orthogonal to one another. 
Similar to [9], the squared deviation from these 
constraints for each affine transformation is: 

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2
1 2 1 3 2 3 1 1

2 2
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Rot( ) 1
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where c1, c2 and c3 are the 3×1 column vectors 
of R. This constraint is nonlinear. The energy 
term EDetail sums the rotation error over all 
transformations of the nC clusters: 

C

Detail C
1

E Rot( )
i

n

i=
=∑ R                   (3) 

Since the user’s control is applied to the 
manipulated handle, the constraint (2) exerted 
on the manipulated handle cluster will present 
larger error than other clusters. In the nonlinear 
least-squares problem of (3), the residual 
vector is dominated by this constraint, which 
we refer to as manipulated handle constraint 
(MHC). In order to improve the stability of our 
system, we put heavier weight on MHC since 
the rotation guarantee for the manipulated 
handle cluster is more important than for other 
clusters. We re-write the energy terms in (3) 
with preferential weight on MHC: 

IC

Detail MHC MC IC
1

E Rot( ) Rot( )
i

n

i
w

=

= +∑R R�     (4) 

where nIC is the number of isoclusters. our 
experiments show RHC IC1.2w n= ×  is a rela-
tively good choice. Figure 3 shows the com-
parison between the MHC-preferential weigh-
ting scheme of our method and the uniform 
scheme used by embedded deformation [9]. 
The Dinosaur model is dragged by a large 
distance. While the embedded deformation 
presents visible artifacts near the manipulated 

handle, our method can robustly deform the 
model in a nature way. 

 

 
Figure 3: Stability comparison between the

uniform scheme of [9] (top) and our
MHC-preferential scheme (bottom).

4.2 Transformation Propagation 

For any two adjacent deformation clusters, 
their transformations should be as consistent as 
possible to each other. This consistency is 
dedicated to propagate the transformations 
from manipulated handle to other deformation 
clusters. To achieve this, we adopt the shape 
matching technique. For all the points of two 
adjacent clusters, their positions transformed 
by one cluster should match those transformed 
by the other one (Figure 4). 

C
i

C
i+1

 
Figure 4: Shape matching on two adjacent 

clusters, Ci and Ci+1. 

This matching is performed over all adjacent 
cluster pairs and introduces the following 
energy term: 

C

2

Prop C C
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i j
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= −∑ ∫ T x T x x       (5) 

where EC is the set of all adjacent cluster pairs. 

4.3 Direct Manipulation 

The user controls the deformation through 
direct manipulation of the manipulated handle. 
Any point in the region of manipulated handle 
can be picked as the manipulated point. We use 
shape matching [10] to compute correct posi-
tion and orientation for the manipulated handle 



under the positional constraint of manipulated 
point (Figure 5). 

 
Figure 5: When the user drags a point (the 

green circle) in region of the mani-
pulated handle, the shape matching 
matches the new configuration (the 
red polygon) with the original one 
(the blue polygon). 

This shape matching problem can be stated 
as follows: Given initial and manipulated 
positions of points of the manipulated handle, 

(0)
kx  and kx . Find the affine transformation for 

the manipulated handle cluster, RMC and tMC, 
which minimize: 

(0) (0) 2
MC MC MC( ( ) )k k k

k MC

w
∈

− + −∑ R x c t x      (6) 

where kw  are weights of individual points. To 
achieve accurate manipulation, the weights are 
set to 10 for manipulated point and 1 for other 
points in all of our examples. The optimal 
translation MCt  turns out to be the vector from 
barycenter of the initial configuration, (0)

MCc , to 
that of the manipulated configuration, cMC: 

(0)
(0)

MC MC MC
k k k kk k

k kk k

w w
w w

= − = −∑ ∑
∑ ∑

x x
t c c      (7) 

The optimal rotation is found by matching 
the two configurations in their local coordinate 
reference frame respectively, which results the 
following energy term: 

(0) (0) 2
Manip MC MC MCE ( ( ) ( ))k k k

k MC

w
∈

= − + −∑ R x c x c  (8) 

Minimizing both (8) and (3) simultaneously 
ensures MCR  is the desirable rotation. 

4.4 Length Preservation 

When dealing with humanoid figures, it is 
particularly useful to preserve the length of 
models. We add a distance constraint for each 
pair of adjacent clusters to as follows: 

( )
C

C

2(0)
Length

( , )

E ( ) ( )
n

i i j j ij
i j E

l
∈

= + − + −∑ c t c t    (9) 

where (0)
ijl  is the original distance of the 

barycenter of two adjacent clusters i and j. 

4.5 Optimization 

Our shape manipulation framework solves for 
the deformation through minimizing the 
weighted sum of all the above-stated energy 
terms, which results the following nonlinear 
least-squares (NLS) problem: 

C C
Detail Detail Prop Prop Manip Manip Length Length,

FC FC

min E + E + E + E .

s.t.  ,                                            (10)
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in which we use wDetail=1, wProp=10, wLength=20, 
wManip=100 for all our examples. The fixed con-
straint in (10) is handled trivially by treating 
RFC and tFC as constants, leaving 12nIC+12 free 
variables. We implement the iterative Gauss-
Newton algorithm to solve the unconstrained 
NLS problem [14]. The number of unknowns 
is small so the solver can robustly converge 
within 4 iterations for all of the examples. 

5. Skeletal Deformation 

In deforming articulated figures, it is more 
desirable to constraint the parts corresponding 
to bones of the figures to be unbendable. We 
propose a simple method to provide skeletal 
deformation. Our method only needs the user 
to designate the joint parts (instead of provide 
the whole skeleton). 

Our method is based on our key observation: 
Skeletal deformation is handle-aware. As was 
pointed in [7], the gradient magnitude of har-
monic field at all vertices forms a rigidity field. 
Therefore, the joints located at relatively large 
gradient regions have low rigidity and hence 
act more effectively than others. We call this 
kind of joints effective joints in this paper. As a 
result, the skeletal deformation is determined 
only by effective joints. An effective joint is 
generally bent along the gradient direction of 
harmonic field, so it can be modeled with a 
serial of isoclusters with consecutive harmonic 
values. Consequently, we can partition shape 
surface into bone regions and joint regions 
according to harmonic values. 

The user selects several joint regions on 
shape surface. Our approach first calculates the 
upper and lower bound of harmonic values for 
each region. Then the regions are sampled into 
a serial of isoclusters. The rest parts of the 
surface will form several range-clusters repre-
senting bone regions (Figure 6).  



  

  
Figure 6: Deformation clusters for “spine”

(top) and skeletal (bottom) defor-
mation  on a 2D bar. 

An important feature of this approach is that 
it does not introduce new constraint to the 
optimization and hence is very efficient and 
easy-implemented. Figure 7 shows the skeletal 
deformation result on Cylinder model. The 
user selects a joint part. Our method computes 
deformation clusters with respect to the 
selected joint region and provides natural 
skeletal deformation. 

 
Figure 7: “Spine” deformation (e) vs. skeletal 

deformation (f) on Cylinder model. 
The deformation clusters are com-
puted for both “spine” (b) and ske-
letal (d) deformation with a joint at 
the central part shown in (c). 

6. Representation-Independent De-
formation 

It is obvious that almost all kinds of geometry, 
such as polygon soup, point set surface, and 
even implicit surface, can be easily sampled 
into a point cloud. For this reason, instead of 
seeking a method for each kind of geometry, 
we focus on the evaluation of harmonic field 
on point-sampled surfaces. 

Our deformation clusters are computed by 
point sampling, which is not sensitive to the 
accuracy of the harmonic field. As a result, an 
approximate harmonic field for point-sampled 
surface is enough for our task. 

We propose a simple method which finds 
approximate 1-ring neighbors for each point of 
the point-sampled surface and use the found 
neighbors to evaluate Laplacian approximately. 
Suppose we have obtained the neighborhood 
information for each point, a quasi-Laplacian 
matrix L̂  with uniform weighting scheme is 
defined as follows: 

1 1

 1                     
ˆ ˆ ˆ( )  #( ( ))      ( )

0                    otherwise.
ij
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N i j N i

=⎧
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− ∈⎨

⎪
⎩
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For finding approximate neighbors, we 
employ the k-nearest neighbors searching 
together with normal information of each point. 
Normal is used to remove from the k-nearest 
neighbors the points which have a reverse 
orientation with the center point. Belkin [16] 
has shown that with the sampling rate 
increasing, this approximate graph Laplacian 
of point cloud converges to the Laplace-
Beltrami operator of the underlying manifold. 

7. Results 

Besides the direct manipulation, our system 
also provides a frame-based metaphor to 
facilitate the regular editing tasks which are 
hard to accomplish by freely manipulating with 
mouse, such as the example in Figure 8. This 
metaphor is quite easy to implement by elimi-
nating the local shape matching in (8) and 
treating the manipulated handle as a fixed one. 

Detail preservation. Figure 1 and 8 demon-
strates that our deformation method can 
preserve features of the shape well. A bumpy 
plane is edited by fixing the left edge of the 
place and translating the right edge upward. 
Although this manipulation is purely trans-
lational, our algorithm successfully finds for 
deformation clusters the transformations which 
are as close as possible to pure rotations under 
the positional constraints on the two edges. As 
a result, the bumps on the plane deform in a 
natural fashion without shearing artifacts. 

Figure 8: Deforming a bumpy plane. 

 



Figure 9: Comparison between our method and the embedded deformation [9] in fine-grained 
deformation control. The deformation graph (left) of the embedded deformation 
presents many undesired connections at the two hind legs of the camel (see the zoomed 
depiction), which can result undesirable inter-influencing among the two legs. Our 
method, however, avoids this phenomenon and obtains correct results (right). 

 
Fine-grained deformation control. Figure 9 
demonstrates our fine-grained control ability 
through comparing with the space deformation 
method, embedded deformation [9]. As shown 
in Figure 9, the two hind legs of the camel are 
very close to each other. The purely spatial 
nature of embedded deformation can result in 
undesired inter-influencing between the two 
legs, which is shown by the undesired 
connections among the deformation graph 
nodes located at two different legs. When the 
user drags one of the hind legs with the fixed 
handles shown in the figure, the other hind leg 
follows the former one undesirably. In contrast, 
our method nicely resolves this problem by 
respecting surface geometry in both clusters 
construction and deformation interpolation. 
Efficiency. Table 1 gives the statistics on mesh 
and deformation clusters, as well as the timing 
for clusters building and online manipulation, 
measured in milliseconds on a 2.4GHz Intel 
Core 2 Duo PC with 2GB of RAM. 

Model #Vert #C Build Solve Def
Armadillo 172,974 16 1,564 ms 5 ms 26 ms
Armadillo 51,893 16 302 ms 4 ms 8 ms
Buddha 243,652 14 2,659 ms 6 ms 40 ms

Dinosaur 56,194 16 472 ms 5 ms 10 ms
Dinosaur 56,194 100 498 ms 36 ms 16 ms
Dragon 437,645 12 5,035 ms 7 ms 59 ms

Table 1: The column “Build” shows the time
statistics for building #C deformation 
clusters on mesh with #Vert vertices. 
The column “Solve” gives the time 
required for each Gauss-Newton itera-
tion. The time for interpolating the de-
formation of clusters to surface ver-
tices is listed in the column “Def”. 

As dictated in the table, our implementation 
achieves both fast building of reduced model 
and interactive deformation. The time for 

building deformation clusters is mainly spent 
on harmonic field computation. Our method 
can produce satisfying results with generally 12 
to 20 deformation clusters. For the Dinosaur 
model, we show timing statistics for as many as 
100 deformation clusters, which still maintains 
interactive performance with only 36ms 
required for each iteration. Since we adopt the 
linear interpolation, the deformation trans-
ferring from clusters to shape is fast. 

8. Conclusions 

We presented a natural and intuitive deforma-
tion algorithm for interactive shape manipula- 
tion. By incorporating surface harmonic field 
information into space deformation framework, 
our method obtains both efficiency and the 
fine-grained control feature of surface-based 
models. 
From the current limitations of our system, we 
see two avenues for future work. First, we will 
try to propose a multi-resolution method for 
efficiently evaluating harmonic fields on large-
scale models. Second, due to the linear 
interpolation on transformations, our method 
shares the linear effect problem with [7] and 
hence can not provide smooth enough 
deformation when few deformation clusters are 
used. We will consider integrating some more 
advanced interpolation methods, such as the 
radial basis functions, into our framework. 
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