
Creating and Chaining Camera Moves for Quadrotor Videography

KE XIE, Shenzhen University
HAO YANG, Shenzhen University
SHENGQIU HUANG, Shenzhen University
DANI LISCHINSKI, The Hebrew University of Jerusalem
MARC CHRISTIE, Univ Rennes, INRIA, CNRS
KAI XU, Shenzhen University and National University of Defense Technology
MINGLUN GONG,Memorial University of Newfoundland
DANIEL COHEN-OR, Shenzhen University and Tel Aviv University
HUI HUANG∗, Shenzhen University

Fig. 1. Given several landmarks (red areas on the satellite image) and a pair of start and end views (brown camera icons), we generate a suitable camera move
(in yellow) for capturing each landmark, and optimally connect them into a continuous and smooth path using transition trajectories (in blue).

Capturing aerial videos with a quadrotor-mounted camera is a challenging
creative task, as it requires the simultaneous control of the quadrotor’s
motion and the mounted camera’s orientation. Letting the drone follow a
pre-planned trajectory is a much more appealing option, and recent research
has proposed a number of tools designed to automate the generation of
feasible camera motion plans; however, these tools typically require the user
to specify and edit the camera path, for example by providing a complete
and ordered sequence of key viewpoints.

∗Corresponding author: Hui Huang (hhzhiyan@gmail.com)

Authors’ addresses: Ke Xie, Shenzhen University; Hao Yang, Shenzhen University;
Shengqiu Huang, Shenzhen University; Dani Lischinski, The Hebrew University of
Jerusalem; Marc Christie, Univ Rennes, INRIA, CNRS ; Kai Xu, Shenzhen University
, National University of Defense Technology; Minglun Gong, Memorial University
of Newfoundland; Daniel Cohen-Or, Shenzhen University , Tel Aviv University; Hui
Huang, College of Computer Science & Software Engineering, Shenzhen University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/8-ART88 $15.00
https://doi.org/10.1145/3197517.3201286

In this paper, we propose a higher level tool designed to enable even
novice users to easily capture compelling aerial videos of large-scale outdoor
scenes. Using a coarse 2.5D model of a scene, the user is only expected to
specify starting and ending viewpoints and designate a set of landmarks,
with or without a particular order. Our system automatically generates a
diverse set of candidate local camera moves for observing each landmark,
which are collision-free, smooth, and adapted to the shape of the landmark.
These moves are guided by a landmark-centric view quality field, which
combines visual interest and frame composition. An optimal global camera
trajectory is then constructed that chains together a sequence of local camera
moves, by choosing one move for each landmark and connecting them with
suitable transition trajectories. This task is formulated and solved as an
instance of the Set Traveling Salesman Problem.

CCS Concepts: • Computing methodologies→ Computer graphics; In-
terest point and salient region detections; Graphics systems and interfaces;

Additional Key Words and Phrases: Quadrotor videography, trajectory plan-
ning, camera control, scene navigation, visual exploration

ACM Reference Format:
Ke Xie, Hao Yang, Shengqiu Huang, Dani Lischinski, Marc Christie, Kai
Xu, Minglun Gong, Daniel Cohen-Or, and Hui Huang. 2018. Creating and
Chaining Camera Moves for Quadrotor Videography. ACM Trans. Graph. 37,
4, Article 88 (August 2018), 13 pages. https://doi.org/10.1145/3197517.3201286

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201286
https://doi.org/10.1145/3197517.3201286

88:2 • K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang

1 INTRODUCTION
As quadrotor unmanned aerial vehicle (UAV) technology advances
and the prices of drones go down, their use is becoming increasingly
ubiquitous for a wide variety of tasks. In particular, quadrotors are
increasingly used by professional, as well as amateur, photographers
and cinematographers for capturing aerial imagery and videos.
However, manual capture of high quality aerial video footage

with drones is highly challenging, even for experienced cinematog-
raphers. In addition to controlling the trajectory of the drone, one
must simultaneously control the camera’s degrees of freedom. The
common practice requires two persons to capture a drone video,
one to pilot the drone, and another to control the camera at the
same time [Diaz 2015]. Furthermore, limited battery life and quickly
changing lighting conditions make it difficult to rehearse the flight,
or repeat the capture, if mistakes were made during the first attempt.

Recently, researchers have addressed problems such as designing
smooth drone trajectories that interpolate user-specified keyframes
[Joubert et al. 2015], and ensuring that planned trajectories are
dynamically feasible [Roberts and Hanrahan 2016]. In this work,
we also consider drone trajectory design. We, however, introduce
a higher level design tool, intended to enable even novice users to
plan a complete and smooth camera trajectory for capturing the
desired visual content, and based on fairly minimal user input.

More specifically, the goal of this work is to automate the drone
videography process for complex large-scale outdoor scenes con-
sisting of several landmarks of interest. The input to our system
is a coarse 2.5D model of a scene, a set of designated landmarks,
with or without a particular order in which they should be visited,
and the starting and ending camera positions. The model should
also include any potential obstacles or areas that must be avoided.
From this input, our approach automatically generates a continuous
drone trajectory, which is collision-free, visits all of the landmarks,
and satisfies several quality criteria. An example of such a trajectory
is shown in Fig. 1, and more in Section 6.

Our approach starts by automatically generating a diverse set of
candidate local camera moves for observing each landmark, which
effectively sample the huge search space of all possible trajectories
around the landmark. The camera moves are guaranteed to avoid
collisions with the landmarks and any of the other specified obsta-
cles. The trajectories are smooth, adapted to the overall shape of the
landmark, and are guided by a novel landmark-centric quality view
field, which accounts for visual interest and frame composition.

Next, we produce a single continuous trajectory that visits all of
the landmarks, by selecting a single camera move for each landmark,
and chaining them together using smooth transition trajectories
(shown in blue in Fig. 1). These transitions are also designed with
collision avoidance, smoothness, and view quality in mind. The
task of selecting an optimal ordered sequence of alternating tran-
sition and local trajectories is formulated as an instance of the Set
Traveling Salesman Problem, a generalized version of the Traveling
Salesman Problem, where the set of cities is partitioned into several
clusters, and the salesman must follow a minimal cost path that
visits exactly one city from each cluster.

We tested our planning tool on five large-scale outdoor scenes.
To evaluate the quality, we have also conducted a user study, where

for each of four scenes, three different versions of aerial videos
produced in three different ways are compared. The analysis drawn
from 160 samples (80 participants with 2 repetitions) clearly shows
the superiority of our technique over manually created trajectories,
as well as trajectories created with a classical GPS waypoint tool.

2 RELATED WORK

2.1 Virtual Camera Control
The control of a camera in a virtual 3D environment is strongly
guided by the type of tasks to perform together with the target
application, and has been addressed by a wide variety of techniques;
see [Christie and Olivier 2009; Christie et al. 2008]. Below, we review
a few techniques most closely related to our approach.
The automated computation of single viewpoints has first been

addressed by Blinn [1988], who proposed an efficient iterative tech-
nique to compute the position and orientation of a camera from the
specification of on-screen properties. The problem has then been ex-
pressed in a more general framework, where visual properties in the
image space (position and orientation of targets) are translated into
constraints or costs applied on the degrees of freedom of the camera,
and solved through a range of optimization techniques [Bares et al.
2000; Drucker and Zeltzer 1994; Ranon and Urli 2014]. Aspiring
to generate more cinematographic viewpoints and trajectories, re-
searchers have been formalizing elements of the filmic language
into properties to be enforced on the cameras. He et al. [1996] first
presented a set of heuristics to pose virtual cameras based on visual
composition principles. The use of different camera representations
such as the Toric Space simplifies the expression and solving of such
problems [Lino and Christie 2015].
Computing sequences of viewpoints (camera trajectories) im-

poses new challenges, such as collision and visibility over time, but
also smoothness along trajectories. When a priori knowledge of the
3D environment is available, techniques rely on the construction
of environment abstractions such as roadmaps, and then compute
paths through roadmap traversal techniques and trajectory smooth-
ing; see [Salomon et al. 2003] or [Nieuwenhuisen and Overmars
2004]. Several visibility-aware camera planning techniques have
been proposed. Oskam et al. [2009] attempted to enforce visibility
of targets along the path, by precomputing visibility between pairs
of targets and computing a camera path using an A∗ planner, which
is then smoothed. Lino et al. [2010] perform a real-time potential
visibility set computation.

In dynamically changing environments, local motion strategies
for camera control have been explored, based on incremental hier-
archical solving [Halper et al. 2001], local roadmaps [Li and Cheng
2008], or cinematographic behavior strategies [Galvane et al. 2013].

For visualization of animated volume data, Hsu et al. [2013] pro-
posed a dynamic camera motion planning mechanism that incorpo-
rates multiple quality criteria into a single system.

2.2 Scene Navigation and Exploration
Scene navigation approaches address the problem of generating a
guided tour of a 3D environment, generally constrained by visiting
a set of given landmarks. By contrast, scene exploration provides
means for the user to interactively explore 3D environments, while

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

Creating and Chaining Camera Moves for Quadrotor Videography • 88:3

Fig. 2. A 2.5D model of a large-scale scene with landmarks highlighted in red. Top: several candidate moves generated for each of the four landmarks. Bottom:
a continuous drone trajectory generated by chaining together the most suitable local trajectories (in yellow) using smooth transition trajectories (in blue).

avoiding non-relevant areas or viewpoints. Scene exploration has
largely been addressed in the context of interactive virtual museum
tours [Andújar et al. 2004; Chittaro et al. 2003; Drucker and Zeltzer
1994]. Scene navigation and exploration techniques are founded
on the visual interest of the 3D environment, a characteristic that
may be predefined (e.g., a preset of good views of landmarks), or
computed automatically through visual interest metrics.

Vázquez et al. [2001] introduced viewpoint entropy in an attempt
to quantify the amount of information that a viewpoint conveys
about a 3D scene, and use this concept to automate the computation
of good views. In scene navigation, similar visual metrics can be
exploited to automate the computation of camera paths, an approach
followed by Sokolov et al. [2008]. Given a set of good viewpoints, the
authors generate a path that interpolates the viewpoints by solving
a Traveling Salesmen Problem (TSP) where the cities to traverse are
viewpoints and the cost is a combination of the Euclidean distance
between the viewpoints and the visual quality along the path. The
approach has been extended by considering a semantic distance
metric between the good views, whose goal is to avoid transitions
between unrelated landmarks. Serin et al. [2012] applied a similar
approach for the specific task of navigation on a 3D terrain. TSPs
have also been used in scene exploration to design interactive guided
tours [Elmqvist et al. 2007].

While our contribution also relies on the use of TSP techniques to
construct a camera path, the problem we address is more complex:
first a large collection of suitable camera moves around landmarks
is generated, which attempt to satisfy a number of safety and quality
requirements, and then a global path is designed, which selects the
best camera move for each landmark and connects them together.

2.3 Aerial Cinematography and Trajectory Planning
Mounting cameras on UAVs has triggered the development of tech-
niques to assist users in the complex task of simultaneously control-
ling the drone and the camera. Applications range from automated

surveillance tasks to area coverage [Fan 2014], scanning of unknown
environments [Dunkley et al. 2014], capture of aesthetic aerial shots
of buildings [Joubert et al. 2015], or human subjects performing
an activity outdoors [Joubert et al. 2016]. All approaches compute
camera paths that must be physically realizable by the UAV.
Assisting the design of camera trajectories for aesthetic aerial

videography has received increasing attention [Gebhardt et al. 2016;
Joubert et al. 2015; Roberts andHanrahan 2016]. The process consists
of prototyping a trajectory in a 3D simulator before executing it
automatically in the real environment. The virtual trajectory is
designed by creating an ordered collection of manually positioned
look-from/look-at viewpoints (keyframes). Joubert et al. [2015] also
required the user to specify the timing of the keyframes. A specific
C4 continuous trajectory, represented as a 7th degree piecewise
polynomial, is created between the keyframes. This representation
was found to produce the smoothest and most reasonably bounded
control signals for quadrotors [Joubert et al. 2016, 2015]. 7th degree
polynomials are also used in the robotics literature [Mellinger and
Kumar 2011; Richter et al. 2016]. The feasibility of this trajectory is
then analyzed and reported to the user, so he/she can iteratively alter
the keyframe timings. More recent work addresses the feasibility
issue in an automated way [Roberts and Hanrahan 2016] using an
optimized time-warping of the trajectory.

Similarly to Joubert et al. [2015], Gebhardt et al. [2016] proposed a
design tool where a camera path can be drawn and edited in a virtual
environment and then optimized to ensure its feasibility. Given the
multiple constraints (such as avoiding collisions), the optimization
process does not guarantee to respect the user inputs: a trade-off is
necessary between user inputs and conflicting constraints.
To account for more cinematographic properties on quadrotors,

Fleureau et al. [2016] presented a tool to automatically maintain
visual on-screen properties (orientation, composition) on moving
targets, and automatically compute transitions between viewpoints
with moving targets. The approach relies on the Toric Space rep-
resentation [Lino and Christie 2015] to express cinematographic

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

88:4 • K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang

properties (distance to target, angle on target, screen positions of
targets) and perform interpolations in the Toric Space to maintain or
transition between visual properties. Galvane et al. [2016] introduce
an interactive tool that allows a user to produce well composed
shots of moving actors in real time, by only specifying high level
cinematographic commands; however, this tool assumes a fully cap-
tured indoor environment. Nägeli et al. [2017] described a high-level
drone trajectory planning tool aimed at dynamic and cluttered en-
vironments. We target a different scenario of large-scale outdoor
scenes containing static landmarks of interest.

While our approach shares some ideas with [Gebhardt et al. 2016;
Joubert et al. 2015], we propose a higher level and more automated
design tool. Our tool requires users to provide neither viewpoints
(except starting and ending), nor timings. Only the set of landmarks
of interest needs to be specified, and our tool automatically proposes
and selects among camera moves typical of aerial video sequences.
This makes our tool particularly well suited for novice users.

Andersson et al. [2017] proposed an active learning approach for
quadrotor collision avoidance in the presence of non-cooperative
moving obstacles. In this work, we assume that obstacles are static
and compute a collision-free optimal trajectory offline.

3 OVERVIEW
The goal of our tool is to enable even novice users to easily capture
smooth and visually compelling aerial videos covering multiple land-
marks in a complex large-scale outdoor environment. We assume
that a rough 2.5D or 3D scene model that includes all the landmarks
of interest is available. This model should also include any poten-
tial obstacles that must be avoided. Fig. 2 shows an overview of
our method, which is comprised of two main phases: creating local
(landmark-centric) camera moves (Section 4), and chaining them
together into a single continuous trajectory (Section 5).

In the first phase, we compute, for each landmark, a set of camera
trajectory candidates. The guiding principles for creating such local
camera moves are driven by requirements identified by the media
production industry [Messina et al. 2017] and include: i) avoiding
any collisions with the landmark or any other obstacles in the scene;
ii) adapting to the overall shape of the landmark; iii) maximizing
the visual interest of video frames captured along the trajectory;
and iv) maximizing smoothness and minimizing rotations along the
trajectory. To meet these goals, we construct a volumetric landmark-
centric view quality field in the obstacle-free space around the target
landmark (Section 4.1). Guided by this field, a number of possible
local shape-aware camera moves are generated that maximize the
view quality and trajectory smoothness (Section 4.2).

In the second phase, our goal is to select a single local camera
move for each landmark and generate a continuous and smooth
trajectory that chains together the selected local moves. To this
end, we compute a set of possible transition trajectories that con-
nect together endpoints of local moves from different landmarks
(Section 5.1). Each local move and each transition trajectory has an
associated cost, with smaller cost corresponding to higher quality.
The task of selecting a maximal quality ordered sequence of alternat-
ing transition and local trajectories is formulated as an instance of
the Set Traveling Salesman Problem (STSP), where the local moves

Fig. 3. No-fly zone generation. Top left: based on the 2D contours of land-
marks (red) and obstacles (gray) provided as input, we dilate each contour
curve (top right) to account for map or GPS inaccuracies. Each dilated con-
tour is extruded based on the height of the corresponding structure to form
the no-fly zones (transparent red in bottom figure).

are nodes in the same set, while the transitions are edges connecting
nodes from different sets (Section 5.2). A near-optimal solution for
the STSP is then obtained using an existing algorithm [Helsgaun
2015]. Examples of the resulting global drone camera trajectories
are shown in Figs. 1 and 2.

4 CREATING LOCAL CAMERA MOVES
In this section, we describe the construction of local camera moves
around a given landmark. Our challenge here is to produce safe
(collision-free) trajectories, which could be considered good from a
cinematographic standpoint, based only on a coarse model of the
scene. Our key ideas consist of: (i) assessing the visual interest of
a given view on a landmark by computing a saliency field on the
landmark surface, which may then be rendered from any viewpoint;
(ii) using a weight map based on well known photographic com-
position principles to weigh the visual interest map for a given
view, yielding a landmark-centric view quality field; (iii) reducing
the search space of possible trajectories around each landmark to
a manageable size; and (iv) proposing a strategy for generating a
small number of diverse promising camera move candidates.

4.1 Landmark-Centric ViewQuality Field
No-fly zone. When planning drone trajectories, safety is our first

priority. To avoid the drone colliding into landmark structures or
other potential obstacles under inaccurate GPS readings, we gener-
ate a no-fly zone for each indicated structure in the scene. Under the
assumption that each such structure a is represented using its 2D
footprint polygon Pa and its height ha , the no-fly zone is generated
by first computing the Minkowski sum in 2D between Pa and a disk
with a radius of rs (20 meters by default). The resulting dilated 2D
contour is then extruded into a 3D volume with a height of ha + rs .
The drone trajectory is prohibited from entering any of the no-fly

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

Creating and Chaining Camera Moves for Quadrotor Videography • 88:5

Fig. 4. Visualization of saliency features of the landmarks from Fig. 3. Darker
shades indicate lower saliency.

zones in the scene (Fig. 3), while the volume outside of these no-fly
zones is considered safe for flying.

Landmark viewing space. When generating a local trajectory that
focuses on a given landmarkm, it does not make sense to place the
drone too far away fromm. Hence, a maximum viewing distance
is computed based on the dimensions of the landmarkm and the
camera’s field of view, such that the landmark occupies no less than
2/3 of the frame, when viewed from the maximum viewing distance.
The volume within the maximum viewing distance while excluding
all no-fly zones is referred as the landmark viewing space S (m).
To find a variety of good viewpoints within the viewing space,

we discretize S (m) into cubic cells (voxels) and evaluate the view
quality at each voxel center. To simplify the task, we assign a default
viewing direction for each voxel center v . That is, so long as v
is higher than the geometric centroid of landmarkm (referred to
as Cm), the view direction is set to point at Cm . Otherwise, the
view direction is set to point horizontally towards the ground plane
projection ofCm , since most drone cameras cannot be tilted upward.

Salient features. Based on the rough model for landmarkm, we
now predict the quality of the view captured from the center of
each voxel v under the default view direction. This yields a view
quality field, denoted as Qm , which fills the viewing space S (m).
For each voxel center v ∈ S (m), the view quality Qm (v) measures
the landmark’s shape-aware visual interest based on its visually
important features (salient features). That is, we favor those views
fromwhich more salient features of the landmark’s shape are visible.
The salient features include the landmark’s silhouettes, sharp edges
of the landmark shape’s surface, as well as the medial region of the
shape’s top surface(s), which we refer to as the skeletal region. The
reason for including the latter is that for large area landmarks, such
as a stadium or a harbor, observing the landmark from around its
perimetermay not be as effective as flying above the landmark’s area,
which affords better views of the central region of the landmark.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

Fig. 5. Estimating the view quality of a given frame based on a rough model
of the landmark. Top: a weight map is generated that assigns higher weights
based on proximity to the center and the Rule of Thirds lines. Bottom: the
saliency scores assigned to the landmark’s 3D surfaces (shown in red) are
projected to the camera view and multiplied by the weight map.

The silhouette can be directly extracted from the landmark’s 2D
footprint and sharp vertical edges can be detected based on the
angle between the footprint edges, or the dihedral angle between
faces, if the landmark’s 3D mesh is given. The skeletal region cap-
tures the medial region of the top area (flat field or rooftop) of a
landmark. One could simply compute the medial axis of the top face
polygon. However, due to the noise-prone nature of medial axis, we
instead opt to erode the top polygon(s). The resulting eroded region
approximates the skeleton of the original polygon.
The silhouette edges, sharp edges, and skeletal regions are as-

signed with a saliency value of 1, inducing a saliency field across
the landmark’s shape via a Gaussian decay mapping; see e.g., Fig. 4.

View quality. To compute the view quality at a given view point
v , we render each landmark’s shape using the intrinsic and extrinsic
parameters of the drone camera, with each point colored according
to its saliency value, as shown in Fig. 4. This results in a visual
interest map, Im (v), for each view point v .

To achieve an aesthetically pleasing composition, we encourage
interesting content to appear in the central region of the frame or
to follow the well-known Rule of Thirds in photography, which sug-
gests dividing an image into nine parts by equally spaced horizontal
and vertical gridlines, and placing important elements along these
lines or their intersections. To this end, we define a composition
weight map, Iω , representing the importance of the central region
and the vertical and horizontal gridlines, as shown in Fig. 5 (top).
The final view quality score is then computed as the dot product of
the visual interest and the composition weight maps:

Qm (v) = Im (v) · Iω , (1)

e.g., as the sum of the values in the bottom right image in Fig. 5.

4.2 Field-Guided Local Camera Moves
Guided by the landmark-centric view quality field, our goal now is
to generate a few promising local camera moves passing through
the viewing space S (m). Since it is infeasible to enumerate and rank
all of the possible trajectories through S (m), we apply a number of a
priori constraints from the literature [Messina et al. 2017] to define
a more manageable search space. First, given that the camera moves

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

88:6 • K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(2, 6)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(3, 6)

(a) (b)

Fig. 6. (a) The viewing space is partitioned into multiple stacks of pie-shaped
cells defined using cylindrical coordinates with origin at the centroid of the
landmark footprint. A single candidate key view is selected for each cell and
shown with a camera icon. (b) A 2D table arrangement of the view cells with
rows corresponding to layers and columns to radial sectors. Different colors
indicate the grouping of cells into five regions. A candidate local trajectory
that starts from the bottom left cell must traverse at least four cells before
reaching its ending point. Thus, it must end in one of the cells surrounded
by the red frame, also illustrated with red camera icons in (a).

are intended to explore the landmark, we require that each trajectory
should be sufficiently long and feature a significant change either
in the altitude or the angle from which the landmark is viewed.
Second, view quality along the trajectory should be high. Third, the
trajectories should adapt to the shape of the landmark, while being
smooth and avoiding sharp or sudden turns. Finally, a diverse set of
moves satisfying the constraints above should be considered.

Viewing regions, cells, and key views. Taking the above considera-
tions into account, we divide the viewing space S (m) into several
viewing regions defined by radial sectors around the landmark, and
an additional region above the landmark. Each of these regions is
further split into vertically stacked view cells, and a single locally
best key view is selected inside each view cell; see Fig. 6(a).

To ensure that the landmark is observed from a substantial range
of views, we only consider smooth trajectories between pairs of key
views, which traverse no less than a prescribed minimal number of
view cells along the way. For each trajectory in this reduced set, we
compute a cost which accounts for the view quality along the tra-
jectory, compatibility with the landmark’s shape, and the amount of
camera view changes. Finally, we classify all the trajectories into five
categories, based on how many regions they traverse. Trajectories
traversing a small number of regions are mostly vertical, thereby
covering a variety of viewing altitudes, while those traversing more
regions are more horizontal, covering a wider variety of radial views.
From each category we select the trajectory with the highest score
as a candidate local camera move to be considered by the trajectory
chaining stage (Section 5).

More specifically, we divide S (m) into S+ 1 viewing regions: S ra-
dial sectors around the landmark, and one region above it. The radial
regions are further divided into L vertically stacked slices, forming
L view cells per radial view region. The vertical stacking starts from
the lowest flying altitude of the drone, hmin = rs by default, and
the height of each layer is set by default to max{hmin, (hm + rs)/L},
where hm is the height of the landmark m. Two more layers of
the same height are then added onto the top above the landmark,
forming the top view region, which is divided into 2S view cells, as

Shortest Distance to the Landmark

ψφ

(a) (b) (c)

Fig. 7. Trajectory interpolation. (a) Given a pair of starting (in blue) and
ending (in green) camera poses, we compute four intermediate poses in order
to fit a 5th degree B-spline curve. The intermediate poses are defined by
linearly interpolating the tilt angle ϕ to the landmark centroid, the heading
ψ to the landmark centroid, and the shortest distance to the landmark’s
no-fly zone surface. Since the heading may be interpolated in two different
ways (clockwise and counter-clockwise), two possible outcomes of camera
pose (b) and view direction (c) interpolation are shown.

shown in Fig. 6. In practice, we found that S = 4 radial sectors split
into L = 5 slices suffice for generating a sufficiently diverse set of
moves. Thus, we have at most 28 view cells (up to 7 layers times 4
sectors) arranged in 5 viewing regions around each landmark. This
grouping is visualized using different colors in Fig. 6(b).
Within each view cell, we select a single locally best key view,

while avoiding choosing two key views which are too close to each
other. This is achieved using a greedy algorithm, which first picks
the viewpoint with the highest quality score across all cells. Then
all candidate viewpoints within rs radius of selected viewpoints are
eliminated, before the next best viewpoint is selected for another cell.
Fig. 6(a) shows the candidate key views selected within surrounding
viewing space of a given landmark.

Trajectory generation. Based on the key views computed in the
previous stage, we generate candidate camera moves around the
landmark. Considering each key view as a starting point, we gen-
erate all of the trajectories that traverse at least four cells before
reaching an ending key view. Thus, we avoid considering short tra-
jectories, and all of the considered trajectories traverse a significant
range of altitudes, or angles around the landmark, or both. Fig. 6(b)
shows all the possible ending cells for a trajectory starting at the
bottom left cell (indicated with a blue dot).

Given a pair of starting and ending camera key views, we generate
a smooth trajectory represented by a 5th degree B-spline curve,
which goes from the starting pose to the ending pose, through 4
intermediate poses. While previous works [Joubert et al. 2016, 2015]
advocated the use of 7th degree splines in order to generate smooth

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

Creating and Chaining Camera Moves for Quadrotor Videography • 88:7

control signals for quadrotors, we chose to use 5th degree splines,
since we use the manufacturer’s waypoint SDK to control the drone,
rather than generating the control signals directly ourselves. This
is explained in more detail in Section 6.

Each camera pose is specified using the tilt angle ϕ and the head-
ing angleψ with respect to the landmark’s centroid, as well as the
distance of the camera from the landmark’s no-fly zone. The an-
gles and the distances of the intermediate poses are obtained by
linearly interpolating those of the starting and ending camera poses
(Fig. 7(a)), and a 5th degree B-spline curve is fit to the resulting
sequence of six camera poses. The camera’s view direction is also
linearly interpolated. Since the heading may be interpolated in two
different ways (clockwise and counter-clockwise), each pair of start-
ing and ending poses gives rise to two possible camera trajectories,
as shown in Figs. 7(b-c).
Each camera trajectory generated as described above is adapted

to the shape of the landmark, since the intermediate poses are
obtained by interpolating the distances to the landmark’s no-fly
zone. Nevertheless, this alone cannot guarantee that the trajectory
does not penetrate the no-fly zone of the landmark or those of
other obstacles in the scene. Thus, for each generated trajectory, we
verify that it is indeed collision-free, and discard it otherwise. Only
collision-free trajectories are considered from this point onward.

Trajectory cost. Given a trajectory Ts,e from viewpoint s to e , we
define its associated cost Elocal (Ts,e) as a sum of three terms:

Elocal (Ts,e) = Equality + Eaxis + Erot (2)

The first term Equality defines the cost based on the average quality
of views sampled along Ts,e :

Equality = 1 −
1
|Vs,e |

∑
v ∈Vs,e

Qm (v), (3)

where |Vs,e | is the cardinality of the set of sample views along
trajectory Ts,e and Qm (v) is the view quality field value at v . We
have also considered computing the cumulative view quality along
the trajectory, rather than using the average view quality, however,
we found that cumulative quality tended to result in somewhat more
boring and redundant trajectories.

The second termmeasures how well the trajectory is aligned with
the dominant axis of the landmark:

Eaxis = 1 −
|(ps − pe) · Dm |

max(∥ps − pe ∥2, ∥Dm ∥2)
, (4)

where ps and pe are the trajectory’s starting and ending positions,
and Dm is the dominant principle direction of landmarkm.
The third term Erot penalizes the rate of change in the camera

view direction, as it travels from s to e along the trajectory Ts,e :

Erot =
1

γ (Ts,e)
(1 − (qs · qe)), (5)

where qs and qe are unit view direction vectors at s and t , respec-
tively, and γ (Ts,e) denotes the arc length of the trajectory.

We classify all trajectories into at most S + 1 categories, based on
the number of viewing regions they crossed. Then for each category,
we pick the trajectory with the smallest score in Eq. (2) as a local
camera move candidate. In other words, for each landmark, the final

output of this stage is the top K ≤ S + 1 camera moves that sample
a diverse set of trajectories through the landmark’s safe viewing
space. As mentioned earlier, in practice K ≤ 5; see e.g., Fig. 2(top).

5 CHAINING CAMERA MOVES
Having established a set of top-K candidate local camera moves
Tm = {Tmj }

K
j=1 for each landmarkm, our next task is to compute a

set of transition trajectories connecting pairs of local trajectories of
two given landmarks. An optimal trajectory for the entire flyby is
then generated by chaining together selected local and transition
trajectories in alternating order, so as to maximize the total quality
(i.e., minimize the cost) of the resulting trajectory.

5.1 Constructing Transition Trajectories

A good transition trajectory Tmm′
j j′ that connects two local camera

moves, Tmj for the source landmark m and Tm
′

j′ for the destina-
tion landmark m′, should satisfy several requirements. It should
be collision-free and efficient (i.e., short), saving time and battery
power. To better convey the overall structure of the scene, we pre-
fer to have either the source or the target landmark to be visible
during most of the transition. Finally, as with local camera moves,
we would like the camera motion to be smooth, avoiding fast cam-
era rotations and unnecessary turning. Below we describe how we
formalize these requirements.

Safety and efficiency. Aswith local camera moves, we require each
transition trajectory to be collision-free. To this end, we construct
a visibility graph between the starting and ending points of the
transition and the no-fly zone surfaces of the landmarks and the
obstacles in the scene. Over this graph, we compute the shortest path
between the starting and ending points using a classic algorithm
proposed in [Alt and Welzl 1988]. The two local moves for landmark
m andm′ together with this shortest path in-between are smoothed
to form one transition trajectory, which is obstacle-avoiding.

Transition trajectory cost. Similarly to local trajectories, each tran-
sition trajectory is also assigned an associated cost Etrans, defined
as a sum of three terms:

Etrans (T
mm′
j j′) = Equality + Erot + Eturn. (6)

The view quality term Equality differs from the local move case in that
it takes into account both the start landmarkm, and the destination
landmarkm′. Specifically, we define for each viewpoint v along the
trajectory a joint view quality:

Qmm′ (v) = wmQm (v) +wm′Qm′ (v), (7)

wherewm = e
−

d2 (v,m)

σd2 (m,m′) andwm′ = e
−

d2 (v,m′)
σ ′d2 (m,m′) are weights used

to balance the influence of the two landmarks. Here d is the Eu-
clidean distance between a viewpoint and a landmark’s center. We
set σ = 0.05 and σ = 0.3, thereby biasing the quality score to be
influenced more by the destination landmark.

The Equality term of a transition trajectory is then defined as the
average of the joint view quality along the trajectory:

Equality = 1 −
1

|Vm,m′ |

∑
v ∈Vm,m′

Qmm′ (v), (8)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

88:8 • K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang

middle point

Fig. 8. Estimation of the amount of turning for transition trajectories (blue).
The overall trajectory is approximated by a coarse four-segment polyline.
The opposing directions in the first and the second pair of line segments in
the bottom example indicate a significant amount of turning, corresponding
to an undesirable zig-zag trajectory.

where |Vm,m′ | is the cardinality of the set of sample views along
the trajectory.
The second term is identical to the rotation speed penalty term

that we use for local moves in Eq. (5).
The third term, Eturn, is introduced in order to discourage zig-

zag trajectories. This term penalizes the amount of turning when
transitioning from one local trajectory to another. As an extremely
simple measure of the amount of turning we examine the angles of
a coarse polyline approximation of the transition. Specifically, let
dm , dmt , dtm′ and dm′ denote the vectors of a polyline connecting
the midpoints and endpoints of the starting, transition, and ending
trajectories, as shown in Fig. 8. The term Eturn is then defined as:

Eturn =
1
4
(2 − (dm · dmt) − (dtm′ · dm′)). (9)

As illustrated in Fig. 8, this term discourages the first pair of seg-
ments (dm , dmt) from having opposing directions, and similarly for
the second pair (dtm′ , dm′).

5.2 Global Trajectory Planning
At this point we have several local camera move candidates around
each landmark, and a collection of transition trajectories connect-
ing different pairs of local moves. Given a starting and an ending
camera position, our goal is to produce a single trajectory which
includes one local move for each landmark, in an optimal order,
with the appropriate transition trajectories between each pair of

Start

End

Fig. 9. Top: each pair of local trajectories may be connected using four differ-
ent transition trajectories. Bottom: The local trajectories for each landmark
define a cluster of nodes in the graph. Given the start (big blue dot) and
end (big purple dot) views, as well as a landmark visiting order (optional),
the final global optimal path shown in green is computed via solving the
STSP, which visits exactly one node in each cluster.

moves. We solve this difficult combinatorial optimization problem
by formulating it as a generalized version of the Traveling Salesman
Problem (TSP), also known as the Set TSP (STSP).
Given a graph with several disjoint subsets (clusters) of nodes,

as well as a set of edges for each pair of adjacent node clusters, the
goal of STSP is to find a minimal cost (i.e., maximal quality) tour,
which visits each cluster exactly once. The standard TSP may be
viewed as a special case of STSP, with only one node per cluster.
This implies that the STSP problem is also NP-hard.

In our case, each landmark is to be visited once, and therefore the
local moves around a single landmark form a single cluster of nodes
in the graph. More specifically, each local camera move contributes
to two nodes in the cluster, since its trajectory may be traversed in
two directions. The cost of a node is given by Elocal (Ts,e) in Eq. (2),
computed along the corresponding local candidate trajectory.
The transition trajectories Tmm′

j j′ that connect the end of a local
trajectory Tmj of landmark m to the beginning of a local trajec-
tory Tm

′

j′ of landmarkm′, correspond to edges connecting nodes
from two different clusters, one cluster containing the local moves
around landmarkm and another containing the local moves around
landmarkm′; see an illustration in Fig. 9. The cost of an edge is de-
fined by Etrans (Tmm′

j j′) in Eq. (6), evaluated along the corresponding
transition trajectory.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

Creating and Chaining Camera Moves for Quadrotor Videography • 88:9

0°

-180° 180°
-90°

0°

Fig. 10. For a DJI drone camera, the controllable heading range (left) is
[−180◦, 180◦] and the tilt range (right) is [−90◦, 0◦].

Each transition trajectory corresponds to one directed edge if
the visiting order of landmarks is given by the user, otherwise
to two directed edges in the graph, each with a different cost (6),
since it is non-symmetric. Therefore, the graph contains at most
2KM + 2 nodes, where each of the M landmarks has 2K nodes
representing the endpoints of itsK local trajectories. Two additional
nodes are used to represent the starting and ending point of the
drone’s flight. The trajectories connecting these points to each of
the local moves can be computed and evaluated similarly to the
transition trajectories, as described in Section 5.2. The number of
edges is capped at (2K)2 (M − 1) + 4K when the visiting order is
specified by the user, and (2KM)2+4MK when the order is unknown.

In summary, each local move defines a node in the graph, whose
cost is given by Eq. (2) and each transition defines an edge between
different node clusters, whose cost is given by Eq. (6). A minimal
cost path in this graph corresponds to an alternating sequence of
transition trajectories and local moves, whose quality is maximal.
Such a path is approximately found by solving the STSP problem,
using the software package developed by Helsgaun [2015].

6 RESULTS AND EVALUATION

6.1 Drone System
We use the DJI Phantom 4 Pro, a portable yet powerful drone, to
capture our aerial videos. The drone’s flying movements consist of
forward, backward, left or right along a horizontal plane, increasing
or decreasing its altitude, and changing its heading clockwise or
counterclockwise (Fig. 10(left)). It is equipped with a 4K/60fps 20
megapixel camera, stabilized by a 3-axis (pitch, roll, yaw)mechanical
gimbal. The camera tilt, i.e., pitch angle, may be controlled in the
range of [−90◦, 0◦]; see Fig. 10(right)).

Our current implementation uses the DJIWaypointMission SDK in
order to program the drone and the camera to follow the trajectory
generated by our method. With this SDK it is possible to specify
a sequence of up to 99 waypoints (physical locations to which the
drone will fly). The desired camera heading and tilt may be specified
for each waypoint. The drone then travels from one waypoint to
the next at a preset speed, adjusting altitude, heading, and camera
tilt as it advances. Thus, given a trajectory to follow, we place up
to 99 samples along the trajectory. The overall speed at which the

Fig. 11. Given a pair of starting and ending views (brown camera icons)
looking at a building, a spiral-like smooth camera move can be easily inter-
polated using our method illustrated in Fig. 7.

Fig. 12. City Bay: this flyby has three landmarks (highlighted in red) of
very different shapes. Please see the supplementary video.

trajectory is executed is therefore controlled by the DJI software.
The locations, camera headings and tilts at these sample points are
computed and used to set waypoints. Effectively, this means that
the drone follows a roughly piecewise linear approximation of our
smooth planned trajectory.

Furthermore, the accuracy and the smoothness of the actual cam-
era motion also depends on the accuracy of the drone’s GPS. While
our results demonstrate that the resulting aerial videos are reason-
ably smooth, in the future we plan to implement and use our own
lower level drone control program that would be able to follow a
planned trajectory in a more precise manner. The tool we designed
also proposes a virtual preview of the flight sequence by using the
smoothed computed trajectory. The speed of the preview is set to
the autoFlightSpeed value of the DJI SDK.

6.2 Aerial Videos
Let us start by re-iterating that even a seemingly simple camera
move around a single landmark can be difficult to execute when

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

88:10 • K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang

Fig. 13. Sunny Beach: this flyby has four landmarks (highlighted in red) of very different sizes. Please see the supplementary video.

Fig. 14. Sea World: this flyby has five landmarks (highlighted in red), where four of them are very close to each other. Please see the supplementary video.

Fig. 15. User can also specify a mandatory key view that he/she wants to
include in the flyby, e.g., here indicated by the pink camera icon. He/She
can also change the starting and/or ending view accordingly, as shown by
the rightmost brown camera icon. This will result in a must-choose local
camera move and thus alter the whole global optimal trajectory. Compare
with the fully auto one shown in Fig. 14, and the corresponding video has
been submitted as supplementary material.

piloting the drone using manual controls. For example, Fig. 11 shows
a simple task of viewing around a building. An experienced drone
operator was not able to pilot the drone in a smooth and accurate
manner along a desirable trajectory, even after several attempts, the

best of which is included in the supplementary video. In contrast,
our tool successfully produced a smooth spiral-like trajectory by
using interpolation in the safe viewing space.
We further tested our trajectory design tool on five large-scale

outdoor scenes; see Figs. 1, 2, 12, 13, and 14, respectively. As shown,
the test scenes contain landmarks of different shapes and sizes. More
detailed statistics about these five tests are summarized in Table 1.
In addition to a fully auto planning, our algorithm can easily

incorporate the user’s preference. For example, as shown in Fig. 15,
if a user indicated amandatory key view that he/shewants to include
in the resulting flyby, we add it into our candidate set of key views
and select the best five (by default) local camera moves that pass
through it. The global optimal trajectory generated accordingly will
then contain the views that users prefer to see.

The resulting captured aerial video sequences are included in the
supplementary materials, sped up by a factor of ×4 or ×8. Even with
the accelerated playback, the camera motion is quite smooth, and
most of the transitions between landmarks appear natural.

It takes our current implementation roughly 5-10 minutes to gen-
erate each final global optimal trajectory. As may be seen from

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

Creating and Chaining Camera Moves for Quadrotor Videography • 88:11

Table 1. Test scene statistics: number of landmarks (#m), the total time
for computing view quality fields, local trajectory construction time, global
optimization time, and distance of the global optimal trajectory in meters.

Figure #m Timef Timel Timeд Distance
Fig. 1 3 5m 15s 10s 2475
Fig. 2 4 7m 37s 15s 2179
Fig. 12 3 5m 18s 15s 3190
Fig. 13 4 10m 41s 38s 3806
Fig. 14 5 8m 50s 31s 2998

Table 1, almost all of the computation time is spent on the computa-
tion of the view quality fields, a process that can be performed once
during the pre-processing and re-used for multiple local and global
trajectory construction.

6.3 User Study
User evaluations are conducted to measure the quality of the videos
generated by our tool in comparison with i) videos created by an
experienced drone pilot, and ii) videos created through the DJI GS
Pro design tool1.
We considered four different locations (Sea World, University,

City Bay, Sunny Beach). For each location a number of landmarks
were identified; see Table 1. Landmarks were communicated to
our experienced drone pilots whose task was to fly the drone to
“highlight the landmarks and to perform good transitions between
the landmarks”. Each drone pilot had a direct visual feedback from
the camera, using a tablet connected to the DJI GO APP2. For each
location, the drone pilot shot multiple takes and proposed his pre-
ferred one for the user study. Resulting videos represent theManual
condition. Two different but both experienced pilots created the
videos, either working alone or together.

This landmark information was also given to our experienced
drone pilots who used the DJI GS Pro iPad application to create a
virtual trajectory by designing a sequence of waypoints on a 3D
map (tap and waypoint flight mode) and then flying along them auto-
matically. The resulting videos represent the DGS condition. Finally,
we used these landmarks to generate videos with our tool, referred
to as the Auto condition. The videos for the three conditions were
shot in different weather and lighting conditions, which may have
affected the perception of viewers. To perform such recordings with
very similar color and lighting conditions remains challenging. It is
important to note that for each question, there were multiple scenes
compared, therefore the lighting conditions may have influenced
both our method as well as the others.
Our hypotheses are: the videos created by our tool are more

pleasing to watch than the others (H1), provide a clearer overview of
the landmarks than the others (H2), follow a more reasonable route
than the others (H3), provide better transitions between landmarks
(H4), and create smoother drone trajectories (H5).

To evaluate these hypotheses, we ran multiple side-by-side video
comparisons rather than individual ratings [Yannakakis and Hallam
2011]. Each side-by-side comparison consisted in watching two
1https://www.dji.com/ground-station-pro
2https://www.dji.com/goapp

videos of the same location generated by different flying methods
and then answering 5 questions on a 5-point Likert scale. A 2D view
of the scene was displayed above the videos with the landmarks
highlighted in red. Users had full control over the videos (start,
pause, stop and navigate in time). A total of 80 participants were
recruited (age varies from under 20 to over 40, with majority fall
into the range of 20-30). There is a total of 12 videos (4 locations and
3 methods per location). Each participant watched 6 side-by-side
video comparisons:

• two versions of Auto vs. Manual, one version per location
• two versions of Auto vs. DGS, one version per location
• two versions of Manual vs. DGS, one version per location

Each video is 1-2mins in time, and the total experiment time for a
user was around 25mins. Each user answered a total of 30 questions.
In these experiments, we emit the hypothesis that the results

are not influenced by the locations and therefore aggregated the
results over different locations. Running the comparisons on two
versions ensured repeatability. While we were not interested in the
results ofManual vs. DGS, we ran these comparisons to ensure each
condition was viewed exactly 4 times by each user. The left-to-right
ordering of videos was determined randomly. Order of comparisons
was shuffled between participants. For one given condition, the size
of the statistical sample is 160 (80 participants with 2 repetitions).
The questions were: (Q1) the left video was more pleasing to

watch than the right video on a 5 point Likert scale ranging from
“completely agree” to “completely disagree”, displaying “neutral” in
the middle; (Q2) the left video provided a clearer overview of the
landmarks than the right one; (Q3) the left video follows a more
reasonable route than the right one; (Q4) the transitions between
the landmarks are more pleasing on the left video and (Q5) the
trajectory of the drone was smoother in the left video.

Fig. 16 displays the results of our user evaluation for questions Q1
toQ5, in comparing ourAuto approach v.s. theManual approach (left
chart), and our Auto approach vs. the DGS approach (right chart).
Given that we are performing side by side comparisons, we relied
on Wilcoxon signed rank tests. A post-hoc Bonferroni correction
was applied with n = 3 (the number of pairwise comparisons for the
3 conditions). The applied correction value is therefore p = 0.013.
On question Q1, the hypothesis that our video is preferred over
the Manual version is ensured (Wilcoxon signed rank test with
p = 0.0127). On the same question Q1 when comparing with DGS,
the null hypothesis could not be rejected (Wilcoxon signed rank test
with p = 0.0281) however being above the non-corrected threshold
value (p = 0.05). For H2 (providing a better overview), the null
hypothesis can be rejected both when comparing Auto v.s. Manual
(p = 0.0088), and Auto v.s. DGS (p = 0.0101). For H3 (following a
more reasonable route), the null hypothesis can also be rejected
(Auto v.s. Manual with p = 0.0071, Auto v.s. DGS with p = 0.0092).
For H4 (providing better transitions), the conclusions are the same
(Auto v.s. Manual with p = 0.0040, Auto v.s. DGS with p = 0.0031),
as well as for H5 (creating smoother drone trajectories) with Auto
v.s. Manual with p = 0.0001, Auto v.s. DGS with p = 0.0113). We
also ensured that the location does not influence the results of the
users. A Wilcoxon rank sum test shows that the hypothesis of a
difference does not hold on all questions (p = 0.01052).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

88:12 • K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong, D. Cohen-Or, and H. Huang

(a) Auto vs. Manual (b) Auto vs. DGS

Fig. 16. Boxplot visualizations of the user evaluation comparing (a) Auto vs.Manual videos, and (b) Auto vs. DGS videos. On the scale, 0 corresponds to a
neutral answer, −2 corresponds to completely disagree and +2 corresponds to completely agree on questions Q1 to Q5. Blue dashes represent minimum
and maximum values answered, and the red dash represents the median value. The boxes stretch from the first quartile (bottom) to the third quartile (top),
meaning that 25% of the values are below the first quartile and 75% are equal or above the third quartile.

In addition to these statistical results, the experienced drone pilots
(1.5 years experience each) mentioned during discussions that the
design of the drone trajectories in the Manual condition was a com-
plex task to perform due to the combination of multiple objectives:
avoiding collision, maintaining visibility on the drone, maintain-
ing drone velocity, and framing the landmarks while ensuring a
smooth trajectory. Smoothness in the trajectory and camera angle
was the most difficult task over such long flights, and many takes
were required. In opposition, the DJI GS Pro application simplified
the process, however, some iterations between designing the path
in the tool and flying the drone were required to adjust camera
angles around landmarks. One experienced drone pilot commented
on the results to our Auto approach by mentioning “Some generated
moves are quite impressive and well respect the shapes of landmarks”,
highlighting the benefits of our solution.

7 CONCLUSION AND FUTURE WORK
We have introduced a new high level drone trajectory design tool,
which generates a smooth trajectory for capturing a continuous
flyby video of a collection of nearby landmarks. The tool takes
as input a rough 2.5D models for the landmarks to be visited and
additional obstacles that the drone should avoid.
Our method uses landmark-centric cylindrical coordinates to

produce a set of local candidatemoves that are smooth, collision-free,
and adapted to the shape of each landmark. Global combinatorial
optimization based on a generalized TSP solver is then used to
produce a single continuous flyby trajectory by chaining together a
sequence of selected local camera moves, one for each landmark.
While our results indicate that our method can greatly assist

users in capturing aerial videos, there are a number of promising
directions for future work. First of all, our current approach follows
cinematographic composition guidelines by encouraging visually
interesting features appear in the center of the frame or along the

one-third lines. However, it does not take into account the light-
ing conditions and the relative positions between foreground and
background objects. To film a landmark under a desired composi-
tion or from a desired orientation with respect to the lighting at
the time, users could insert mandatory key views, but no effort is
made to maintain these lighting or composition conditions along
the generated trajectory. Future work should develop metrics for
assessing lighting condition and quality of frame composition for
intermediate views along the generated trajectories. Such metrics
should be taken into account by the optimization process in order
to yield aerial videos of higher cinematographic quality.

Another promising direction is to perform a study on the camera
moves used by professional aerial videographers, and compile a di-
verse collection of parameterized interesting camera moves. Armed
with an arsenal of such moves, given a specific landmark with a
set of potential key-views, as well as other constraints, local trajec-
tory candidates could be generated by optimizing the parameters
so as to best fit the shape of the landmark and the constraints. Such
an approach would make it even easier for inexperienced users to
generate high-quality professional looking aerial videos.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments. This work
was supported in part by NSFC (61522213, 61761146002, 6171101466,
61532003, 61622212), China Postdoc Foundation (2017M622780),
973 Program (2015CB352501), Guangdong Science and Technol-
ogy Program (2015A030312015), Shenzhen Innovation Program
(KQJSCX20170727101233642, JCYJ20151015151249564), ISF-NSFC
Joint Research Program (2217/15, 2472/17), and NSERC (293127).

APPENDIX

Downloads for our high-resolution aerial videos:
http://vcc.szu.edu.cn/drone1/download/

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

Creating and Chaining Camera Moves for Quadrotor Videography • 88:13

REFERENCES
Helmut Alt and EmoWelzl. 1988. Visibility graphs and obstacle-avoiding shortest paths.

Mathematical Methods of Operations Research 32, 3 (1988), 145–164.
Olov Andersson, Mariusz Wzorek, and Patrick Doherty. 2017. Deep Learning Quad-

copter Control via Risk-Aware Active Learning. In Proc. AAAI Conf. on Artificial
Intelligence, Vol. 5. 3812–3818.

Carlos Gran Andújar, Pere Pau Alcocer Vázquez, and Marta González Fairén. 2004.
Way-Finder: Guided Tours Through Complex Walkthrough Models. Computer
Graphics Forum (Proc. of Eurographics) 23, 3 (2004), 499–508.

William H. Bares, Somying Thainimit, and Scott McDermott. 2000. A Model for
Constraint-based Camera Planning. In Smart Graphics AAAI Spring Symposium.
84–91.

Jim Blinn. 1988. Where am I? What am I looking at? IEEE Computer Graphics and
Applications 8, 4 (1988), 76–81.

Luca Chittaro, Roberto Ranon, and Lucio Ieronutti. 2003. Guiding Visitors of Web3D
Worlds ThroughAutomatically Generated Tours. In Proc. Conf. on 3DWeb Technology.
27–38.

Marc Christie and Patrick Olivier. 2009. Camera control in computer graphics: models,
techniques and applications. In ACM SIGGRAPH ASIA 2009 Courses.

Marc Christie, Patrick Olivier, and Jean-Marie Normand. 2008. Camera control in
computer graphics. Computer Graphics Forum 27, 8 (2008), 2197–2218.

T. J. Diaz. 2015. Lights, drone... action. IEEE Spectrum 52, 7 (2015), 36–41.
Steven M Drucker and David Zeltzer. 1994. Intelligent camera control in a virtual

environment. In Proc. of Graphics Interface. 190–190.
Oliver Dunkley, Jakob Engel, Jürgen Sturm, and Daniel Cremers. 2014. Visual-Inertial

Navigation for a Camera-Equipped 25g Nano-Quadrotor. In Aerial Open Source
Robotics Workshop.

Niklas Elmqvist, M. Eduard Tudoreanu, and Philippas Tsigas. 2007. Tour generation for
exploration of 3D virtual environments. In Proc. ACM symposium on Virtual reality
software and technology. 207–210.

Jiankun Fan. 2014. Optimal path planning and control of quadrotor unmanned aerial
vehicle for area coverage. Ph.D. Dissertation. The University of Toledo.

Julien Fleureau, Quentin Galvane, Francois-Louis Tariolle, and Philippe Guillotel. 2016.
Generic Drone Control Platform for Autonomous Capture of Cinema Scenes. In Proc.
Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian
Use. 35–40.

Quentin Galvane, Marc Christie, Rémi Ronfard, Chen-Kim Lim, and Marie-Paule Cani.
2013. Steering behaviors for autonomous cameras. In Proc. Motion on Games. 93–102.

Quentin Galvane, Julien Fleureau, Francois-Louis Tariolle, and Philippe Guillotel. 2016.
Automated Cinematography with Unmanned Aerial Vehicles. In Proc. Eurographics
Workshop on Intelligent Cinematography and Editing. 23–30.

Christoph Gebhardt, Benjamin Hepp, Tobias Nägeli, Stefan Stevšić, and Otmar Hilliges.
2016. Airways: Optimization-Based Planning of Quadrotor Trajectories According
to High-Level User Goals. In Proc. CHI Conf. on Human Factors in Computing Systems.
2508–2519.

Nicolas Halper, Ralf Helbing, and Thomas Strothotte. 2001. A Camera Engine for
Computer Games: Managing the Trade-Off Between Constraint Satisfaction and
Frame Coherence. Computer Graphics Forum (Proc. of Eurographics) 20 (2001),
174–183. Issue 3.

Li-Wei He, Michael F Cohen, and David H Salesin. 1996. The virtual cinematographer: a
paradigm for automatic real-time camera control and directing. In Proc. of SIGGRAPH.
217–224.

Keld Helsgaun. 2015. Solving the equality generalized traveling salesman problem using
the Lin–Kernighan–Helsgaun algorithm. Mathematical Programming Computation
7, 3 (2015), 269–287.

Wei-Hsien Hsu, Yubo Zhang, and Kwan-Liu Ma. 2013. A Multi-Criteria Approach to
Camera Motion Design for Volume Data Animation. IEEE Trans. Visualization &
Computer Graphics 19, 12 (2013), 2792–2801.

Niels Joubert, L. E. Jane, Dan B. Goldman, Floraine Berthouzoz, Mike Roberts, James A.
Landay, and Pat Hanrahan. 2016. Towards a Drone Cinematographer: Guiding
Quadrotor Cameras using Visual Composition Principles. ArXiv e-prints (Oct. 2016).
arXiv:cs.GR/1610.01691

Niels Joubert, Mike Roberts, Anh Truong, Floraine Berthouzoz, and Pat Hanrahan. 2015.
An interactive tool for designing quadrotor camera shots. ACM Trans. on Graphics
(Proc. of SIGGRAPH Asia) 34, 6 (2015), 238:1–238:11.

Tsai-Yen Li and Chung-Chiang Cheng. 2008. Real-Time Camera Planning for Navigation
in Virtual Environments. In Smart Graphics. Lecture Notes in Computer Science,
Vol. 5166. Springer Berlin Heidelberg.

Christophe Lino and Marc Christie. 2015. Intuitive and efficient camera control with the
toric space. ACM Trans. on Graphics (Proc. of SIGGRAPH) 34, 4 (2015), 82:1–82:12.

Christophe Lino, Marc Christie, Fabrice Lamarche, Guy Schofield, and Patrick Olivier.
2010. A Real-time Cinematography System for Interactive 3D Environments. In
Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation. 139–148.

Daniel Mellinger and Vijay Kumar. 2011. Minimum snap trajectory generation and
control for quadrotors. In Proc. IEEE Int. Conf. on Robotics & Automation. 2520–2525.

A. Messina et al. 2017. Multidrone media production requirements. Technical Report.
University of Bristol.

Tobias Nägeli, Lukas Meier, Alexander Domahidi, Javier Alonso-Mora, and Otmar
Hilliges. 2017. Real-time Planning for Automated Multi-view Drone Cinematogra-
phy. ACM Trans. on Graphics (Proc. of SIGGRAPH) 36, 4 (2017), 132:1–132:10.

Dennis Nieuwenhuisen and Mark H. Overmars. 2004. Motion Planning for Camera
Movements. In Proc. IEEE Int. Conf. on Robotics & Automation, Vol. 4. 3870–3876.

Thomas Oskam, Robert W Sumner, Nils Thuerey, and Markus Gross. 2009. Vis-
ibility transition planning for dynamic camera control. In Proc. ACM SIG-
GRAPH/Eurographics Symp. on Computer Animation. 55–65.

Roberto Ranon and Tommaso Urli. 2014. Improving the Efficiency of Viewpoint Com-
position. IEEE Trans. Visualization & Computer Graphics 20, 5 (2014), 795–807.

Charles Richter, Adam Bry, and Nicholas Roy. 2016. Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments. Robotics Research
114 (2016), 649–666.

Mike Roberts and Pat Hanrahan. 2016. Generating Dynamically Feasible Trajectories
for Quadrotor Cameras. ACM Trans. on Graphics (Proc. of SIGGRAPH) 35, 4 (2016),
61:1–61:11.

Brian Salomon, Maxim Garber, Ming Lin, and Dinesh Manocha. 2003. Interactive
navigation in complex environments using path planning. In Proc. Sym. on Interactive
3D Graphics. 41–50.

Ekrem Serin, Serdar Hasan Adali, and Selim Balcisoy. 2012. Automatic path generation
for terrain navigation. Computers & Graphics 36, 8 (2012), 1013–1024.

Dmitry Sokolov and Dimitri Plemenos. 2008. Virtual world explorations by using
topological and semantic knowledge. The Visual Computer 24, 3 (2008), 173–185.

Pere-Pau Vázquez, Miquel Feixas, Mateu Sbert, andWolfgang Heidrich. 2001. Viewpoint
Selection using Viewpoint Entropy. In Proc. of Vision Modeling and Visualization
Conference, Vol. 1. 273–280.

Georgios N. Yannakakis and John Hallam. 2011. Rating vs. Preference: a comparative
study of self-reporting. In Proc. Int. Conf. on Affective Computing and Intelligent
Interaction. 437–446.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 88. Publication date: August 2018.

http://arxiv.org/abs/cs.GR/1610.01691

	Abstract
	1 Introduction
	2 Related work
	2.1 Virtual Camera Control
	2.2 Scene Navigation and Exploration
	2.3 Aerial Cinematography and Trajectory Planning

	3 Overview
	4 Creating Local Camera Moves
	4.1 Landmark-Centric View Quality Field
	4.2 Field-Guided Local Camera Moves

	5 Chaining Camera Moves
	5.1 Constructing Transition Trajectories
	5.2 Global Trajectory Planning

	6 Results and evaluation
	6.1 Drone System
	6.2 Aerial Videos
	6.3 User Study

	7 Conclusion and future work
	References

