
Eurographics Symposium on Geometry Processing 2018
T. Ju and A. Vaxman
(Guest Editors)

Volume 37 (2018), Number 5

Constructing 3D CSG Models from 3D Raw Point Clouds

Q. Wu1, K. Xu2 and J. Wang†1

1 Nanjing University of Aeronautics and Astronautics, China
2National University of Defense Technology, China

Abstract
The Constructive Solid Geometry (CSG) tree, encoding the generative process of an object by a recursive compositional struc-
ture of bounded primitives, constitutes an important structural representation of 3D objects. Therefore, automatically recovering
such a compositional structure from the raw point cloud of an object represents a high-level reverse engineering problem, find-
ing applications from structure and functionality analysis to creative redesign. We propose an effective method to construct CSG
models and trees directly over raw point clouds. Specifically, a large number of hypothetical bounded primitive candidates are
first extracted from raw scans, followed by a carefully designed pruning strategy. We then choose to approximate the target CSG
model by the combination of a subset of these candidates with corresponding Boolean operations using a binary optimization
technique, from which the corresponding CSG tree can be derived. Our method attempts to consider the minimal description
length concept in the point cloud analysis setting, where the objective function is designed to minimize the construction error
and complexity simultaneously. We demonstrate the effectiveness and robustness of our method with extensive experiments on
real scan data with various complexities and styles.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Shape Modeling—Procedural model-
ing

1. Introduction

Constructing 3D models from raw point clouds is one of the most
fundamental tasks in computer aided design and computer graphic-
s. The ultimate goals encompass three aspects: reproduction, qual-
ity control, and redesign and modification applications [LMM04].
Typically, different goals require different degrees of recovering.
For the third aspect, some high-level design information embedded
in the data points, such as the geometric structures and the logic of
construction, is desired, which is the focus of our work. More pre-
cisely, to support a higher level of interaction with constructions,
we claim to parameterize the compositional structures of models
and synchronously record the entire logics of the constructions.

The CSG scheme based on bounded primitives is an effective pa-
rameterized representation, in which each model possesses a CSG
tree structure with solid primitives as the leaves and operations as
the internal nodes of the tree. The CSG tree records the non-trivial
collection of generative processes and describes the advanced ob-
ject structures well. Existing researches [RV85, SV91, Sha01, LF-
P14] study CSG construction from Boundary representations (B-
reps) of 3D models, which is essentially a representation conver-
sion problem. Different from these works, our work aims to con-
struct CSG models directly from raw 3D point clouds (see Fig-
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Figure 1: CSG constructions for various raw point clouds.

ure 1). In many real scenarios, there are no digital CAD models
for targets, but only physical objects. Reconstructing digital mod-
els from 3D point cloud data is hence practically useful. This poses
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a number of challenges. First, raw point clouds capturing object
surfaces are unstructured without well-defined topology, thus in-
ferring geometrically interpretable explanations of shapes in terms
of primitives, is exceedingly difficult. Our method approaches the
problem by first constructing surface patches as an intermediate
representation, based on the method in [LWC∗11]. Surface patch
representation is a more suited entity, on which geometric prop-
erties and constraints can be reliably imposed. We then devise a
robust algorithm to derive all potential primitives for subsequent
CSG construction based on these surface patches. Second, the or-
ders of primitives and their Boolean operations matter during CS-
G construction. From this aspect, we propose a solution with two
successive constructions to avoid the adverse effect of orders and
employ some techniques to optimize the solution. An optimal sub-
set of primitives with corresponding Boolean operations is finally
provided to achieve a faithful construction. Third, a challenge is
that we would like to model a scan, without relying on a vast num-
ber of primitives. Inspired by the smallest grammar for processing
a string of characters [CLL∗05], we incorporate the minimal de-
scription length concept into our CSG construction framework, and
thereby design the objective function for CSG construction by bal-
ancing the construction accuracy and complexity simultaneously.
This, however, does not immediately lead to the most compact rep-
resentation, since [FP16] can provide a compact representation for
raw scans as well and there is no discrimination between the two
representations in terms of compactness.

Specifically, the proposed method consists of the CSG primi-
tive generation and the CSG model construction. In the generation
stage, a number of CSG bounded primitive hypotheses are extract-
ed from raw point clouds. These CSG primitives typically include
cuboids, cylinders, cones, spheres and tori. The number of initial
hypotheses could be huge, ranging from a few hundred for the
simpler shapes to several thousand for the more complex shapes,
which consequently poses high complexity on the following CS-
G construction. To address this issue, several effective criteria are
carefully designed to filter out incorrect and redundant hypotheses.
Subsequently, the algorithm is developed to determine an optimal
subset of primitive candidates with corresponding Boolean opera-
tions for the final construction. These Boolean operators typically
include union (

⋃
), intersection (

⋂
) and difference (−). The union

operation is commutative and associative, and hence the order of
operands does not affect the result. The order of the difference and
intersection operations can also be ignored, when the start operand
is determined previously, e.g., (A−B

⋂
C) is equal to (A

⋂
C−B).

Therefore, it’s possible to complete a CSG construction without
paying much attention to the orders. In our CSG construction, we
separate union operation from other two Boolean operations, inter-
section and difference, which results in a bottom-up construction
solution with two successive phases. Intersection and difference are
the Boolean operations used in the first phase, while union can only
be adopted in the second phase. In each phase, we convert the prim-
itive selection problem to a combination optimization and employ a
binary optimization technique to solve it. With this separation and
conversion, we can achieve a faithful CSG construction efficiently
and meantime the CSG tree derived from the whole procedure rep-
resents the original design intent well. This work can be regarded as
a “deep” inverse engineering of hypostatizing real objects into CS-

G representations. We hope our work makes a step forward along
this line of research, and would inspire more follow-up researches.

Overall, the main contributions of our work are:

1. We design an effective CSG construction framework directly
over raw point clouds. The generated CSG models and CSG
trees can be beneficial for structure and functionality analysis
applications as well as creative redesign.

2. We propose a CSG bounded primitive generation and filtering
approach, which extracts potential primitives from raw point
clouds for final CSG construction.

3. We formulate the CSG construction as an energy minimization
problem and come up with a bottom-up solution, which results
in a CSG tree representing the original design intent well.

1.1. Related Works

An extensive number of works on model construction directly from
scanned point clouds are developed. In this section, we focus on
the most closely related works to ours, in particular those regard-
ing constraint-based construction, feature-based construction, tree-
based construction and the CSG conversion problem.

Constraint-based construction. The pioneering works of [W-
FAR98, WFRA99] present frameworks for the integration of geo-
metric relationships in object reconstruction. The basic idea is to
minimize a function containing a least-squares term and a penalty
term associated with the constraints. These methods use a complex
formulation of the constraint function, which heavily relies on the
convexity of the constraint space. Fisher et al. [Fis04] and Thrun
et al. [TW05] took advantage of prior knowledge of models, place-
ment constraints, or extracted features, like principal directions, for
construction. Their work demonstrates the effectiveness of domain
knowledge of standard shapes and relationships for architectural
construction, parameter estimation, and data completion using non-
local relations. Rabbani et al. [RvdH04] constructed models with
the constraint from point clouds, which is based on a library of
CAD models. However, constructing CAD models for all objects
in the real world is impractical. Given a list of fitted primitives with
corresponding point sets, Li et al. [LWC∗11] presented the surface
construction to recover relations among both local and distant parts
of man-made objects. However, their method cannot guarantee to
extract a compact set of surface patch primitives that models an
object, since the dimension constraints are not considered during
the construction from raw point clouds. In addition, the construct-
ed models lack additional semantics and inherent topology. Conse-
quently, they are not available for part-based editing, feature-based
NC tool path generation, and technical data package preparation, in
contrast to objects built using CSG methods.

Feature-based construction. The feature-based strategy is
widely studied to carry out model construction for industrial prod-
ucts [YLC∗08, DRD10, BFL∗10, NSZ∗10]. Ye et al. [YLC∗08] in-
troduced the construction of feature-based parametric models from
scanned data, which makes design and knowledge reuse possible
for 3D digital design. However, the method considers only the sur-
face patch features rather than compositional solid features. Becca-
ri et al. [BFL∗10] designed a reverse engineering method for fast
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Figure 2: Method overview. Starting from an imperfect point cloud of a mechanical part, we first construct its surface model, based on
which, we then extract a great deal of geometrically interpretable shape primitives (the first row). With these primitives, we proceed to the
CSG construction, with a bottom-up solution obeying the order from the subtree to the entire tree construction (the second row). Primitives
with the ∗ mark in this figure or the following figures are recognized as the roots or the start primitives.

and interactive acquisition and construction of a digital 3D mod-
el representing an existing physical object. This method takes as
input the curve network of contours of the 3D model rather than
the scanned point cloud, which inevitably ignores a slice of de-
tailed features. Nan et al. [NSZ∗10] designed an interactive tool,
SmartBoxes, for reconstruction directly over point clouds, which
assembles detailed 3D primitives by utilizing the global regularity
of models and simultaneously requires a moderate amount of us-
er intervention. Our method presents a volume representation with
various CSG primitive features for input data automatically, which
can be directly used for structure and functionality analysis.

Tree-based construction. To support a higher level of interac-
tion with constructed objects, Silva et al. [SFV∗05] pioneered the
recovery of construction trees from input point clouds, which uti-
lizes parsimony to control the tree size. In spite of this, the sizes
of the generated trees are large, making the application limited to
simple data sets. Fayolle et al. [FPK∗08] took a list of fitted prim-
itives and the corresponding point set as inputs to evolve a linear
tree for real mechanical parts. Their method is illustrated by the fit-
ting of template parameterized models to point clouds, rather than
some fundamental primitives in our method. These templates with
a slice of parameters are arduously adjusted to fit the data. The
recent work [SGL∗17] presents a neural architecture that takes as
input a 2D or 3D shape and outputs a CSG parse tree that gener-
ates the shape. However, the generated CSG parse tree is linear,
which means their method is difficult to be applied to some CS-
G models with several subtree structures. In addition, during the
constructions of some CSG models, a few additional primitives are
needed, which are hard to be detected in their current method. Fay-
olle et al. [FP16] employed an evolutionary approach to extract a
construction FRep tree from a point cloud. By the fixed maximum
allowed depth, the extracted tree is limited in size, which signifi-
cantly improves its reusability. However, as mentioned in the pa-

per, the tree may contain redundant information resulting from the
usage of genetic programming and the recovered object may lose
a slice of details (e.g., cylinders with small radii). Comparatively,
we recover CSG bounded primitive features from the input scans
and simultaneously explore the generative processes to build CSG
trees. The CSG trees are designed to be as short as possible, with-
out much redundant information. In addition, small details once
detected could scarcely be ignored during our construction.

CSG conversion. Many efforts have been dedicated to the C-
SG conversion problem [RV85, SV91, SV93, BC04]. Buchele et
al. [BR01] examined the conversion between Binary Space Parti-
tion (BSP) trees and half-space CSG trees. The two representations
can both provide hierarchical constructions. However, constructing
either representation directly from raw scans is still a challenge.
For example, these representations may require some additional
half-spaces or primitives not available from the surface informa-
tion or from the segmentation of the input scans. In addition, the
partition surface in a BSP tree or the half-space in a half-space C-
SG tree may contribute to the construction of different parts of the
final model, which makes it unclear how useful the recovered tree
is for further modification and editing. One of the attractive fea-
tures of the bounded primitive CSG representation is its ability to
represent a large number of complex objects, by applying Boolean
operations to a few simple geometric primitives. The role of each
bounded primitive is definite, which can facilitate the applications,
such as editing and redesign. Therefore, the bounded primitive C-
SG representation is adopted in our research for raw point clouds.
Shapiro et al. [SV93] converted natural quadric B-reps in Parasol-
id to efficient CSG representations in PADL-2 effectively. Sever-
al separating half-spaces should be constructed for the conversion,
which is based on the boundary information of B-reps. McCad is a
well-known geometry conversion tool developed at KIT to enable
the automatic conversion of CAD models into half-space CSG. Lu
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et al. [LFP14] improved the decomposition part and demonstrated
greater stability and more enhanced efficiency than the original M-
cCad conversion process. Compared to the conversions above, our
problem is more challenging due to the unstructured inputs, raw
point clouds. It may be natural to consider our CSG construction
problem by first constructing B-reps from point clouds and then
employing the conversions above to achieve the CSG construction.
However, inferring high-level information, such as boundary, topol-
ogy, bounded composition etc., directly from point clouds to con-
struct B-reps remains a challenging problem in geometry process-
ing. Surface patches as an intermediate representation in our algo-
rithm are constructed without considering global dimension con-
straints and do not possess any connection relations. Thus, the B-
rep→ CSG conversion techniques cannot be used in our research.

2. Overview

In this section, we provide a brief overview of our method. The
proposed approach takes as input the raw scans of real models
acquired by 3D scanning devices, represented as unorganized 3D
point clouds. Our goal is to automatically construct 3D CSG mod-
els and to simultaneously recover the associated CSG expression
trees. This construction problem can be formulated as follows.

Problem Statement. Let P be the input data. We encode the
model to be constructed as a context-free tree: T =�ipri�

∗ Pr∗,
where pri is a CSG primitive, �i is the Boolean operator for pri,
Pr∗ and �∗ denote the remaining primitives and Boolean opera-
tors, respectively. The construction is intended to be geometrically
faithful to the input data, while the number of required primitives
should be as small as possible, namely, the CSG tree should be as
short as possible. On this basis, we formulate the process as:

min
T ∑

i
wi ∑

j
dist2(p(i)j ,pri)+λ |{pri}| (1)

where p(i)j ∈ P is the j-th point related to the CSG primitive pri;

dist(p(i)j ,pri) measures the Euclidean distance from the point p(i)j
to its CSG primitive pri; |{pri}| stands for the number of required
primitives to form the final model; wi is the reciprocal of the num-
ber of points belonging to pri; λ is the weight to balance the faith-
fulness of the construction and the complexity of the final tree. Fig-
ure 2 presents the overview of our proposed framework, which con-
sists of two main stages.

CSG Primitive Generation. Taking as input the raw scan of
an object, the robust fitting technique is first applied to extract the
surface patches, among which the globally mutual relations are
enforced. On this basis, all possible CSG bounded primitives are
constructed automatically in Section 3, denoted as Pr, function-
ing as fundamental candidates for our CSG construction algorithm.
Specifically, we generate cuboid hypotheses from the fitted planar
patches, and devise several effective filters to prune the false hy-
potheses. For the quadratic primitives, the fitted patches well repre-
sent their shapes, which are constructed directly. Furthermore, for
each fitted quadratic patch, we construct an additional primitive to
expand our candidate set for more faithful CSG construction.

CSG Model Construction. Our framework aims to capture the
design intents from the raw scans together with the CSG primitive

Figure 3: 2D CSG primitive generation process. Given the 2D
point cloud, we first fit lines and arcs under the global constraints
in [LWC∗11] (left). On this basis, many 2D CSG primitives, such
as rectangles and circles, can be constructed (middle). We design
some criteria to filter out unreasonable and redundant primitives
and finally get the CSG primitive candidates (right).

candidates Pr, and then hypostatizes them in some CSG models
and CSG trees. We proceed with the CSG model construction by
obeying the order of CSG tree recovery from the subtrees to the en-
tirety in Section 4. We propose to generate subtree candidates for
the final CSG model based on a binary optimization approach. The
objective function is designed to minimize the primitive truncation
error and the complexity of the subtree simultaneously. After com-
bining these subtree structures with original primitive candidates,
we choose to approximate the target scan by the assembly of an
optimal subset of these candidates. Eventually, we can obtain the
modelM which best describes the underlining geometry of the in-
put point set. As the construction process is recorded, the CSG tree
T is readily obtained for further model editing and redesign.

3. CSG Primitive Generation

In this section, we discuss how to generate the CSG bounded prim-
itives from the input point cloud, which are used later for the con-
struction of the final CSG model. Given the input data, we exploit
the robust fitting technique [LWC∗11] to construct the elemen-
t surfaces. The element surfaces consist of the planar, cylindrical,
conical, spherical and toroidal patches. Based on these fitted sur-
face patches, we generate their corresponding CSG bounded prim-
itives. Note that there can be many alternative ways to fit patches,
such as [GG04] or [SWK07]. In our research, we employ Glob-
Fit [LWC∗11], where the patches are constrained by some global
relations, including orientation, placement and equality alignments.
Figure 3 presents the 2D CSG primitive generation process.

3.1. Cuboid Generation

We generate cuboid hypotheses from the fitted planar patches,
which is based on the mutual relationships among the orientation
directions of a cuboid. Planar patches can be combined to construct
cuboid hypotheses, only if their normal orientations are orthogo-
nal or parallel in pairs. Therefore, we first group planar patches.
Each group represents a kind of cuboid hypothesis, of which the
six face normal vectors are considered as its symbol. In such a
case, the scale of cuboid generation is restricted in one group. We
then propose to construct cuboid hypotheses in each group based
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Figure 4: Graph-based grouping of a 3D model. (a) The input point
cloud; (b) All fitted patches; (c) Graph construction and decompo-
sition. The graph is participated into three groups including one
triangle loop, one edge, and one single node. The table in the sec-
ond row presents the grouping result of planar patches. Each row
of the table represents a group and the patches in the group are
distributed along six directions, namely, the group symbol.

on a permutation and combination technique, which appropriate-
ly eliminates the uncertainty in cuboid construction. Considering
the combinations with no discrimination in the treating of chosen
patches, the number of initial cuboid hypotheses could be huge,
which consequently poses high solution complexity on the follow-
ing CSG construction. Therefore, we design three criteria to filter
out unreasonable and redundant hypotheses.

Planar patch grouping. Let Pl = {pli}
n
i=1 be the set of all pla-

nar patches fitted from the input data and N = {ni}n
i=1 the cor-

responding normal vectors. Pl is classified into several sets, i.e.,
S = {s j}m

j=1, based on the similarity of corresponding normal vec-
tors. The Euclidean distance between the normals of any two patch-
es in one set should be zero, since the global relations have been
applied during surface patch fitting. For each set, the first normal
vector is considered as its orientation vector. Accordingly, we con-
struct a graph G, in which each node stands for one set s ∈ S. For
each pair of nodes, the edge is constructed provided that the angle
between the corresponding pair of orientation vectors is equal to π

2 .
The graph is broken down obeying the ordering from triangle loop-
s to isolated edges to scattered nodes. Each separated component
represents one group. Figure 4 presents the grouping process. The
graph in (c) is partitioned into three groups, which contain three
nodes, two nodes and one node respectively.

Cuboid hypothesis generation. For each group c, we first de-
termine its symbol (nx,ny,nz,−nx,−ny,−nz) as follows:

(nx,ny,nz) =


(vsi ,vs j ,vsk ) if c = {si,s j,sk};
(vsi ,vs j ,vsi ×vs j ) if c = {si,s j};
(vsi ,v∗,vsi ×v∗) if c = {si}.

(2)

where vsi , vs j and vsk are the orientation vectors of the nodes si,
s j and sk in c, respectively. For c = {si}, the minimum bounding
rectangle of a patch in si is computed and we define the direction
vector of the longer edge of the rectangle as v∗.

Figure 5: Hypothesis filtering based on three different criteria. (1)
We present the right oriented case in (a); two patches extracted
from (b) as shown in (c) can generate a cuboid with the incorrect
orientation (d). (2) The cuboid in (c) constructed by two patches in
(b) extracted from (a) is rejected, since one of the related patches
cannot be explained by the final cuboid. (3) The cuboid constructed
by six patches (left) is similar to the cuboid constructed by two
patches (right) and thus just one of the two is kept. All hypotheses
with the light blue backgrounds are rejected.

Subsequently, we generate the cuboid hypotheses in each group
based on planar patches. Given a group c, let Pl′ = {pli}

tn
i=1 be

the set of the associated planar patches, N′ = {ni}tni=1 the corre-
sponding normal vectors of patches, which are distributed along its
symbol (see the second row of Figure 4). Suppose that the num-
ber of patches (from now on just called “selections”) along six
directions (its symbol) are n1, n2, . . ., n6, respectively. Apparent-
ly, tn = ∑

6
i=1 ni. We increase the number of selections for the i-th

direction by 1, namely, (ni +1), where “1” means no patch is cho-
sen from this direction. By randomly choosing one selection from
each direction, we are able to construct the bounding box, which is
considered as a cuboid hypothesis. Therefore, by enumerating the
combinations of chosen selections, the number of cuboid hypothe-
sesHC generated can be theoretically defined as:

|HC|=
6

∏
i=1

(ni +1)+ tn (3)

As known, given a group of chosen patches, a number of bound-
ing boxes (namely, the cuboid hypothesis) can be generated with
distinct orientations. In our context, we enforce the unique bound-
ing box to be aligned to the group symbol. In particular, when there
is only one planar patch chosen, the height of the bounding box is
set as a certain value (usually the maximum length of the select-
ed planar patch) and the opposite bounding box is simultaneously
constructed for this special case, which is why we add tn in Equa-
tion (3). In this manner, for each group, the corresponding cuboid
hypotheses are generated accordingly.

Cuboid hypothesis filtering. We design three criteria to filter
out unreasonable and redundant hypotheses. All retained primitives
are collected into plPr. The filtering is discussed below:

• For a valid cuboid, let ctr1, ctr2 be the centers of two adjacent
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patches f1, f2 and n1, n2 their corresponding normals respective-
ly. Then, n1 · (ctr2− ctr1) < 0 and n2 · (ctr1− ctr2) < 0 hold.
Therefore, for each pair of patches, the vectors formed by their
centers are built followed by computing the angles between the
center vectors and the respective normals. If any one angle is less
than π

2 , the hypothesis would be rejected. See Figure 5(1).
• The cuboid hypothesis should be well explained by the chosen

planar patches, which means that the points of all patches should
be close to the hypothesis. Accordingly, we check the distances
from the points of patches to the generated cuboid. If the average
distance is larger than the minimum length of a voxel calculated
in Section 4, the hypothesis is rejected. See Figure 5(2).
• There are a number of redundant cuboid hypotheses. A new hy-

pothesis should be rejected when a subset of its planar patches
has already constructed a cuboid, or its planar patches belong to
a subset of another cuboid’s planar patches. See Figure 5(3).

The primitive hypothesis filtering process is not equal to the redun-
dancy elimination in the work of [RV88], which is designed on the
basis of existing CSG models. They employed the Boolean oper-
ation information between any two primitives to accelerate redun-
dancy elimination. However, there is no explicit Boolean operation
information between two original primitives in our filtering phase
and thus the redundancy elimination cannot be used in our method.

3.2. Other Primitives Generation

Quadratic primitives. For the cylinder, cone, sphere and torus,
the fitted patches represent their shapes well. Therefore, it is more
straightforward to generate the corresponding bounded quadratic
primitives than the cuboid from planar patches as discussed above.

Additional primitives. Furthermore, the primitives detected
above are not always sufficient to describe the object with a con-
structive approach. It is sometimes necessary to introduce addi-
tional primitives that have no direct relationship with fitted patches.
The idea of introducing these primitives in order to describe an ob-
ject by a CSG expression was introduced by the work of [SV91], in
which we observe that the demand for additional primitives in 2D
space just depends on quadratic curves. Inspired by this work, for
each fitted quadratic patch except for one special case, we construc-
t its minimum oriented bounding boxes. For a quarter of cylinder
surface (the special case), its maximum bounding box should be
constructed. These are all marked as additional primitives for our
CSG construction. Figure 6 demonstrates the generation of quadrat-
ic primitives as well as corresponding additional primitives.

For these generated quadratic primitives and additional primi-
tives, we discard redundant ones (e.g., cylinders with similar ra-
dius, orientations and positions are filtered to keep one of them).
An additional primitive that is equal to the minimum bounding box
of corresponding quadratic primitive should be removed as well.
All remaining primitives are collected into a set, denoted as quPr.

4. CSG model construction

We detail our framework for CSG modelM construction as well
as CSG tree T recovery, based on the primitive candidate set
Pr = plPr

⋃
quPr from Section 3. Our algorithm is designed to

Figure 6: Quadratic primitive and additional primitive generation.
(1) A general case: for a quadratic patch (a), its bounded quadratic
primitive (b) and its minimum bounding box (c) are constructed
to facilitate the subsequent construction. (2) A special case: for a
quarter of cylinder surface (a), its quadratic primitive (b) and its
maximum bounding box (c) are constructed, respectively.

Figure 7: Candidate set expansion. For an additional primitive ex-
tracted from (a), we first take out its quadratic primitive and then
two indirect candidates can be derived based on difference and in-
tersection operations respectively between the two primitives (b).

choose an optimal set of CSG primitives and Boolean operators,
representing a global alignment with raw scan. To achieve the goal,
we propose a bottom-up solution consisting of two phases, CSG
subtree construction and CSG tree construction, obeying the gener-
al order for CSG tree recovery from the subtrees to the entity.

4.1. CSG Subtree Construction

Given a set of primitive candidates, we generate all possible subtree
candidates in this stage. Specifically, some primitive candidates are
truncated to form subtrees by using a binary optimization formula-
tion. The function is designed to minimize the truncation error and
the complexity of final subtree simultaneously.

Candidate set expansion. A large subtree consists of several
small components. Two types of components are used here. One is
a primitive directly from Pr; the other is constructed by a Boolean
operation between two primitives from quPr, known as indirect
candidate. In this stage, we aim at preparing this type of candidate.

For each additional primitive apri ∈ quPr derived in Sec-
tion 3.2, we extract its quadratic primitive qupri. Then, t-
wo indirect candidates can be obtained by (apri − qupri) and
(apri

⋂
qupri), respectively. Once all additional primitives are

handled, we add all indirect candidates into the candidate set Pr.
Figure 7 shows an example of the indirect candidate generation.

Subtree root selection. All Boolean operators adopted in the
subtree construction are supposed to be intersection and difference.
In such a case, the order of operations does not affect a construction
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2D point cloud Space partition

(b)(a)

(h)

(d)(c)

(e) (f)

(g)

Figure 8: 2D CSG subtree construction. Given a 2D point cloud (a), we first subdivide the bounding rectangle into a set of grids and each grid
is indexed and labeled internal or external in (b). Grids colored black mean the indexes of these grids are collected into the description set.
For the root primitive pr j in (c), three grid representations for its corresponding description sets are presented (d). An optimal solution for
the root truncation is shown in (e). We demonstrate that it can maintain considerable internal space (f) and meantime diminish the external
space (g). At last, we perform those involving geometry Boolean operations among related primitives to achieve the faithful construction (h).

result, only if the root (start primitive) of the subtree is determined
previously. The root is the primitive to be truncated and hence is
characterized by possessing space out of the input scan. Let P be
the raw scan. We first employ the normal vector distribution to rec-
ognize the internal and external space of P.

We build the minimum bounding box of P, which includes all of
the points in P and also possesses the minimum volume. We sub-
divide the bounding box into a set of voxels in 3D, denoted as V .
The resolution of V should be determined, when both the efficien-
cy and the construction accuracy are considered. Higher resolution
means more computation cost and more sensitivity to noise. Lower
resolution means higher modeling error. Based on a series of ex-
periments, the voxel resolution is fixed to 64× 64× 64, unless ex-
plicitly stated otherwise. The internal or external property of each
voxel is determined by the input data. Specifically, for each voxel,
we calculate its center c, and search its K (e.g., K = 50) nearest
neighboring points NP(c) within P. We count the number na of the
points within NP(c), the normals of which form acute angles with
the vectors from the points to the center c. The voxel is considered
to be outside of P, if na

K > ε; otherwise, it is an inside voxel. The
parameter ε is determined by the quality of input data. ε = 0.8 is
empirically set and validated by numerous experiments. Note that
the boundary voxels are also treated as inside here. In such a way,
all voxels within V are labelled as inside or outside.

For efficiency consideration, in our algorithm, we exploit alge-
braic operations to replace associated geometry operations. For ex-
ample, the geometry Boolean operation between two instances can
be converted to the associated algebraic Boolean operation between
two description sets. For each primitive pri ∈ Pr without an addi-
tional primitive sign, we extract three voxel index sets, V+

pri
, V−pri

and Vpri , as its three description sets. The first records all the in-
side voxel indexes of V which are surely situated in pri, while the
second represents all the outside voxel indexes of V situated in pri
as well. Vpri = V+

pri

⋃
V−pri

collects all voxel indexes of V inside
pri. Thus, the number of inside voxels of V within it, denoted as
|V+

pri
|, and the number of outside voxels of V within it, denoted

as |V−pri
|, can be derived. If the scale of the primitive pri exceeds

V , we record µpri = 1; µpri = 0 otherwise. Primitives with positive
|V+
∗ |, zero-value |V−∗ |, and zero-value µ∗ are directly gathered in a

set PPr, which can directly act on the whole CSG tree construction
and never need to be truncated to form a subtree. Primitives with
positive |V+

∗ |, positive |V−∗ |, and zero-value µ∗, should be truncat-
ed here. We collect these into a subtree root set, denoted as RPr′. S-
ince the ultimate goal of truncation for a primitive is a subtree with-
out outside voxels of V , to avoid redundancy which means the sub-
tree structure is similar to a primitive in PPr, we should update the
subtree root set by RPr = {pri ∈RPr′| ∀prt ∈ PPr, V+

pri
6= Vprt}.

Subtree construction. Each root in our algorithm can determine
a subtree. For each root primitive pr j ∈ RPr, we first compute it-
s neighbor set Ψpr j = {prk|Vprk

⋂
Vpr j 6= ∅,prk ∈ Pr}, which is

used as the candidate components for the construction of subtree
subT j. Starting with subT j = pr j, the algorithm chooses from a
number of discrete actions {ai} to grow the subtree. An action con-
sists of intersecting or subtracting a CSG primitive prk ∈Ψpr j with
or from subT j , represented as�iprk, where�i is the Boolean oper-
ator for prk and�i ∈�= {

⋂
, −}. Thus, L j = |�|×|Ψpr j | actions

are derived for subT j , where | · | denotes the cardinality of a set.

The goal is to choose an optimal subset of the actions to gener-
ate a subtree candidate for the CSG tree construction. We formulate
the action selection as a binary optimization, since the sequence of
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Figure 9: CSG tree construction. After combining subtrees with
original primitives, a large candidate set is obtained (a). We first
prune the set to filter out nonsignificant ones (b) and then construct
the final CSG model through a binary optimization (c).

actions does not affect the ultimate subtree. Given L j valid action-
s, let X j denote the binary labels for all the actions and xi ∈ X j
correspond to the binary option of action ai, namely xi ∈ {0,1}.
The solution to a subtree construction is a subset of actions that
minimize the truncation error and the construction complexity si-
multaneously. Our objective function is as shown below:

E(X j) =
1
L j

L j

∑
i=1

xi−α ·
|V+

pr j

⋂
VsubT j |

|V+
pr j

⋃
V−subT j

|
(4)

where subT j = pr j(xiai)
L j
i=1, VsubT j = Vpr j (xi �i Vpri)

L j
i=1,

V−subT j
= VsubT j

⋂
V−pr j

and (·)L j
i=1 is defined to list all different ver-

sions of the variables in the bracket. We define xi�i Vpri as:

xi�i Vpri =

{
�iVpri if xi = 1;⋃
∅ if xi = 0.

(5)

In Equation 4, the first term discourages the number of actions
being chosen, with a lower value representing a lower complexi-
ty of the final subtree; the second term encourages the choice of
actions that diminish the outside voxel index set of pr j to reduce
the denominator, while maintaining its inside voxel index set to
make the numerator as large as possible. α is a weight parameter
that balances the two terms, which is empirically set to 0.9 for all
the examples in this paper. Figure 8(h) presents a solution to trun-
cate the root primitive pr j in (c). We replace geometry Boolean
operation between any two bounded primitives with the algebraic
Boolean operation between corresponding description sets (e). The
result VsubT j should be consistent with the initial space partition
of the root in (b) to achieve a faithful construction. Therefore, it is
required to keep internal space (f) and reduce external space (g).

We minimize the above energy function by using the BDD-based
heuristics method [BCvHY14]. After the energy is minimized, the
variables in X j with value 1 suggest the subset of candidate action-
s that are chosen to approximate the underlining structure of the
subtree. As a result, by performing the above truncation for each
primitive in RPr, we can construct all potential subtree candidates
subT for the final CSG model.

4.2. CSG Tree Construction

The primitive candidate set PPr and the subtree candidate set subT
are combined here to provide candidates for the final CSG tree con-
struction, denoted as C = {Ci}= PPr

⋃
subT . In this stage, the CS-

G tree is constructed by a series of union operations among a subset
of the candidates and thus the ordering of these candidates is non-
significant. On this basis, we can still formulate the construction as
a binary optimization problem.

Candidate set pruning. The number of the candidates is usual-
ly large and it is necessary to filter out those candidates that clearly
do not contribute to the final construction. We observe that a large
portion of the candidates still possess outside voxels of V . These
candidates are not necessary and may affect the modeling accuracy,
when they are chosen as components of final CSG representation,
since only union operator should be used in this stage. This obser-
vation motivates us to identify and remove these candidates. To this
end, for each candidate Ci ∈ C, we compute its outside voxel index
set V−Ci

. |V−Ci
| > 0 means candidate Ci is obviously unwanted and

discarded. Hence, only these candidates consisting of inside voxels
of V , will be taken as input in the later construction step.

CSG tree construction. The goal in this stage is to choose an
optimal subset of the candidates to assemble a compact 3D polyg-
onal model for the product described by the point cloud. Given the
pruned candidate set C, suppose M = |C|, Z represents the binary
labels for all the candidates and zi ∈Z relates to the i-th candidate’s
binary option, our energy function is formulated as follows:

E f inal(Z) =
1
M

M

∑
i=1

zi−β ·
|V+

P
⋂

VM|
|V+

P |
(6)

where VM =
⋃M

i=1 ziVCi and ziVCi is defined as:

ziVCi =

{
VCi if zi = 1;
∅ if zi = 0.

(7)

Similarly, the first term restrains the number of selected candidates,
which is designed to control the complexity of the final CSG mod-
el. The second term favors choosing candidates that result in more
inside voxels of V , which directly determines the construction ac-
curacy. β = 0.9 is empirically set to balance the two terms, and is
validated by numerous experiments. We minimize the above func-
tion to acquire an optimal subset of candidates. At last, the CSG
tree T can be constructed based on the subset of candidates. For
the mechanical part scan in Figure 6(a), Figure 9 depicts the proce-
dures of final CSG construction.

CSG model construction. The set Boolean operations above ex-
actly correspond to geometry Boolean operations. Thus, we per-
form those involving geometry Boolean operations among related
primitives, obeying the order from subtree structures to the entire
tree structure to construct the CSG modelM.

5. Results and Discussions

We evaluate the performance of our method on a variety of raw
point clouds with different complexities and styles.

5.1. Experimental Evaluation

5.1.1. Raw data with various complexities

The evaluation starts with a simple example in Figure 10. Eight
cylinders, two cones, one sphere and three cuboids are selected for
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Figure 10: CSG construction for the spray bottle model. From left
to right: the input point cloud, the optimal primitive candidate sub-
set, and the constructed model.

Figure 11: CSG construction for a mechanical part. From left to
right: the scan, the primitive candidates, and the CSG model.

the construction of the spray model. Given the point set, our method
constructs the CSG model as demonstrated and evolves the expres-
sion that combines the CSG primitives and Boolean operations, i.e.:

T = Cyl1∪Cone2∪Cone3∪Cyl4∪Cub5∪Cub6∪Cyl7
∪Cyl8∪Cyl9∪Cyl10∪Cyl11∪Cyl12∪ (Cub14∩Sphere13)

(8)

Given the scan with poor quality in Figure 11, due to the ma-
terial color (we were not allowed to paint the model white), on-
ly a limited number of surface patches are extracted by Glob-
Fit [LWC∗11]. With these patches, our method automatically gen-
erates all related bounded primitives and then produces a construc-
tion with our proposed bottom-up solution. The result is faithful to
the input scan, but contrasts with the real model presented in the
image. It is unacceptable since several structures are missing. In
Figure 12, the scene is scanned by a Microsoft Kinect scanner with
significant structured noise and data deficiency. The result of Glob-
Fit [LWC∗11] consists of some surface patches, based on which our
method can infer missing information to some extent and achieve
the compact construction. Figure 13 gives a fairly challenging ex-
ample. The structure of the mechanical part is complex. It contains
a large number of fitting patches, which inevitably increases the s-
cale of CSG primitive candidates. Among the great variety of CSG
primitives, our approach succeeds in constructing the accurate CSG
model as well as the CSG tree.

5.1.2. Comparisons

To further evaluate the performance of our method, we first com-
pare our CSG construction algorithm to some ground truth (GT).
We artificially sample points from CSG models, which are used
as the input to our algorithm. In Figure 14, from left to right, we
present the ground truth and our final CSG construction, respec-
tively. As can be seen, the simple CSG model can be constructed

Figure 12: CSG construction for the noisy scene characterized by
incomplete or corrupted surface patches.

Figure 13: CSG construction for the challenging mechanical part,
of which the structure is fairly complex with a host of primitive
candidates. We succeed in constructing the CSG model.

Figure 14: CSG construction comparison to ground truth (GT).
Based on the same primitives as GT, the CSG model is generated
at our subtree construction phase.

Figure 15: CSG construction comparison to ground truth (GT).
(a) Four primitives with three Boolean operations are exploited to
construct the inwall sections. (b) Without these critical primitives
C and D in (a), our method constructs every inwall section by com-
bining subtree structures #1 and #2.

with different processes based on the same primitives. Figure 15
demonstrates the CSG constructions with different primitives. The
ground truth is provided by an expert user and there are several
differences between the two constructions. We present the inwall
construction difference in Figure 15. As shown, in GT, four inwall
sections are simultaneously built by three Boolean operations a-
mong four primitives. Our construction is more complicated, since
some primitives, such as primitives C and D in (a), cannot be de-
tected in our method. However, based on our extracted primitives,
the CSG model can still be successfully constructed in (b).
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Figure 16: CSG construction comparison to McCad. Given a B-rep
model, the McCad can convert it to a half-space CSG model (left).
We sample the B-rep model and get the points. On this basis, our
method constructs the CSG model and CSG tree (right).

Figure 16 demonstrates the comparison with the B-rep to half-
space CSG conversion process. We choose McCad, a famous ge-
ometry conversion tool to automatically convert CAD models into
half-space CSG representations. The input is a B-rep model and by
the decomposition command, we obtain the CSG model which is
constructed by the combination of six boxes and each box is con-
structed by a series of Boolean operations among its half-spaces.
To compare with our method, we virtually scan the B-rep model
into a point cloud. Taking the point cloud as input, our algorithm
constructs the complete model and recovers the CSG tree simulta-
neously. As shown, our result contains two subtraction operations
among three cuboids, which is more concise than direct B-rep to
half-space CSG conversion. In the B-rep to half-space CSG con-
version, the number of detected half-spaces is invariably more than
the number of surface patches of a B-rep, even if the CSG mini-
mization is considered. We construct bounded primitives based on
surface patches and thus the number of primitives for final repre-
sentation is less than the number of surface patches; in addition, the
CSG minimization is carefully considered in our method.

Figures 17 and 18 both present the comparisons with the latest
extraction method of object construction tree [FP16]. In Figure 17,
two construction results are presented, based on the fitting result
from [FP16]. As can be seen, cylinders with small radii are recog-
nized and fitted, but they are not used in [FP16]. With a higher vox-
el resolution (128× 128× 128), our method constructs the feature
correctly. In Figure 18, the tree of the Fandisk model from [FP16]
is quite large with 85 modeling operations. It contains consider-
able redundant information (e.g., plane 0, plane 25 and cylinder 19
all appear twice in the tree), which makes it unclear how useful
the recovered tree is for further modification and editing. Based on
fitted patches, our algorithm generates all possible bounded primi-
tives and our final CSG tree consists of only 13 primitives (includ-
ing an additional primitive) with 12 Boolean operations, which is
relatively simple and contains no redundant information. Further-
more, their method directly proceeds on the basis of surface patches
with an evolutionary algorithm and the running time for the special
part is long. In contrast, our computation cost can be decreased to
dozens of seconds. The recovered CSG tree consists of bounded
primitives and Boolean operations, which appropriately represents
the design intent of the model and facilitates the downstream appli-
cations, such as creative editing and redesign.

Figure 17: CSG construction comparison to [FP16]. (a) The blend
features are properly identified and fitted. (b)The result of [FP16]
does not correctly construct all these features. (c) Our method
presents the faithful CSG construction.

Figure 18: CSG construction comparison to [FP16]. The tree ex-
tracted by [FP16] consists of 38 surface primitives with 85 model-
ing operations (the top one). Our CSG tree is shown at the bottom,
with just 13 primitives and 12 Boolean operations.

5.2. Quantitative Evaluation

The results shown above have visually demonstrated the superior-
ity, in terms of effectiveness on various types and complexities of
the models. We provide some quantitative evaluations in Table 1.

RMSE. We compare our CSG trees with other construction trees
generated by seven users (students and post-docs in our university).
Let P be the input raw point set andM the respective modeling re-
sult. To measure the geometric fidelity of various modeling results
to the input data, the root-mean-square error (RMSE) is employed
here. The CSG model is constructed by a subset of fundamental
primitives combined with the corresponding Boolean operations.
For each primitive pri in the subset, the associated point subset is
denoted by Pi, in which each point is closer to pri than any oth-
er primitive. l denotes the number of primitives in the subset. The
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Table 1: Quantitative evaluation shows the fidelity and the complexity of the construction results generated by seven users and our automatic
algorithm. We report the RMSE/Complexity value in each cell of the table.

Data sets
RMSE(m)/Complexity

Ours U1 U2 U3 U4 U5 U6 U7
Figure 2 0.15/0.88 0.20/0.88 0.18/0.94 0.25/1.0 0.24/1.0 0.16/0.88 0.18/0.94 0.18/0.88
Figure 11 0.24/0.42 0.36/1.0 0.30/1.0 0.25/1.0 0.23/1.0 0.37/1.0 0.32/1.0 0.31/1.0
Figure 13 0.37/0.87 0.39/1.0 0.45/0.95 0.39/0.96 0.42/1.0 0.41/0.96 0.48/0.96 0.49/1.0
Figure 18 0.35/0.85 0.36/1.0 0.40/0.85 0.38/0.85 0.35/1.0 0.42/1.0 0.42/0.85 0.38/1.0

modeling error metric is then defined as:

RMSE =

√√√√∑
l
i=1 ∑∀p∈Pi

dist2(p,pri)

∑
l
i=1 |Pi|

(9)

where dist(p,pri) is the Euclidean distance between p and pri; |Pi|
is the number of points within Pi.

Complexity. For a certain input P(i), we have eight construction
schemes (one is from our algorithm and the others are from seven
users). We record the number of primitives for each scheme, denot-
ed as N j

P(i)
, where j = 1,2, · · · ,8. To evaluate the k-th (1 ≤ k ≤ 8)

scheme, we define the Complexity function as:

Complexity(P(i)) =
Nk

P(i)

max{N j
P(i)
}8

j=1

(10)

Table 1 presents the comparison results of the eight differen-
t schemes in terms of RMSE and Complexity. We can observe that
our method always yields models with high fidelity and the sim-
plest construction process over user-generated schemes.

5.3. Performance

Timing. We have implemented the proposed method in this work in
C++, which is executed on a PC with a i7,3.40GHz processor and
16GB RAM. In the algorithm, given the fitted surface patches with
associated point sets and normal sets, the computational cost of C-
SG primitive generation is negligible. For the CSG model construc-
tion process, we first formulate the construction into two successive
combination optimization problems and then accelerate the search-
ing by employing the binary optimization technique. On the other
hand, we substitute simple algebraic Boolean operations for expen-
sive geometry Boolean operations during the optimization which
further decreases the running time. Table 2 gives the computational
timings of our method on test data. The efficiency of our algorithm
depends on the following factors: the voxel resolution during the
partition of input points, the complexity of the model, the type and
the number of candidate primitives. Experiments with a higher vox-
el resolution (128×128×128), such as Figures 15 and 17, require
more computations. Simple shapes, such as Figures 10 and 14, can
be constructed quickly, since the scales of primitive candidates are
small and quadratic primitives are the dominant components during
the constructions, which are easier to be generated and truncated.
For complex shapes, such as Figures 13 and 15, a larger number
of subtree candidates are built during the CSG subtree construc-

Table 2: Timings of our CSG modeling algorithm on inputs of var-
ious complexities (in seconds).

Data sets Points Planar Quadratic Time
patches patches

Figure 2 52,824 20 8 47.6
Figure 9 105,223 20 15 86.4
Figure 10 436,569 9 11 26.3
Figure 11 66,005 36 5 51.7
Figure 13 529,006 24 39 94.3
Figure 14 99,982 6 4 19.5
Figure 15 700,067 39 45 136.9
Figure 17 55,808 14 16 82.1
Figure 18 120,826 7 7 32.4

Figure 19: Pierced CSG model construction over artificial data.
We sample points from a CSG model in (a) and present the fitting re-
sult in (b). The recovered object in (c) cannot reproduce the pierced
feature, since there are no fitted patches supporting the construc-
tion of two critical primitives A and E in (d).

tion phase. The scales of the corresponding trees are comparatively
larger, and therefore the evaluation time is relatively longer.

Limitations. There are quite a few limitations to the current al-
gorithm. The quality of patch primitives provided by the algorith-
m [LWC∗11] affects our construction. Figure 12 demonstrates that
our framework can infer missing information to some extent; how-
ever, the dimensional information is false due to these incomplete
or corrupted surface patches. In addition, the orientation of surface
patches is exceedingly paramount in our algorithm. With a wrong
patch orientation, several solid primitives may be constructed im-
properly and thus we may obtain an unfavorable construction. Fi-
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nally, the algorithm is unable to deal with non-CSG models, like
those with free-form surfaces, and some chambers pierced by com-
plicated patterns. In Figure 19, the fitted patches are not enough to
support the recovery of pierced patterns and thus our method fails
the CSG construction. To derive these significant primitives (e.g.,
primitives A and E) will be a topic of further investigations.

6. Conclusions

In this research, we present a novel CSG construction framework.
The volumetric representation and the corresponding expression
tree are critical for engineering applications, like structure and
functionality analysis and redesign. Starting with a raw scan, our
algorithm automatically generates all attainable bounded primitive
candidates. With these primitives, we propose the bottom-up solu-
tion to construct a CSG model and a CSG tree, considering both
the construction accuracy and complexity. We demonstrate that the
constructed models are geometrically consistent with the input da-
ta, and the optimal CSG trees can be reliably extracted.

It is promising to regard the results from our modeling system
as a starting point for further model modification and editing. On
this basis, a number of applications can be beneficial from our CSG
construction framework. Since our modeling system heavily relies
on primitive fitting, to seek more robust CSG primitive generation
scheme would be an interesting direction of our future work.
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