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Shape Detection from Raw LiDAR Data with
Subspace Modeling

Jun Wang and Kai Xu

Abstract—LiDAR scanning has become a prevalent technique for digitalizing large-scale outdoor scenes. However, the raw LiDAR
data often contain imperfections, e.g., missing large regions, anisotropy of sampling density, and contamination of noise and outliers,
which are the major obstacles that hinder its more ambitious and higher level applications in digital city modeling. Observing that 3D
urban scenes can be locally described with several low dimensional subspaces, we propose to locally classify the neighborhoods of the
scans to model the substructures of the scenes. The key enabler is the adaptive kernel-scale scoring, filtering and clustering of
substructures, making it possible to recover the local structures at all points simultaneously, even in the presence of severe data
imperfections. Integrating the local analyses leads to robust shape detection from raw LiDAR data. On this basis, we develop several
urban scene applications and verify them on a number of LiDAR scans with various complexities and styles, which demonstrates the
effectiveness and robustness of our methods.

Index Terms—Urban Building, Raw LiDAR Scan, Modeling, Reconstruction, Substructure Modeling
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1 INTRODUCTION

R ECENT advances in light detection and ranging (Li-
DAR) technology greatly facilitate the acquisition of 3D

point data of large-scale environments, benefiting a variety
of applications such as digital city modeling [16]. However,
the major drawback of LiDAR scanning is that the captured
point data often suffer from low quality due to occlusion,
motion, multiple reflections, etc. (see Figure 1 on the left),
hindering its applications in many high level processing
tasks.

For example, structure-aware modeling of 3D build-
ings [20] is preconditioned on structural analysis of the
input, e.g., the identification of meaningful components and
their mutual relations. The latter is extremely challenging
with raw LiDAR data input. Some works rely on structural
priors, e.g., symmetry [37] or grid structure [28] to recover
the underlying structures. Nevertheless, the success of these
approaches still relies on the robust detection of repetitive
structures, which is also quite challenging on low-quality
point cloud data. Therefore, robust processing and analysis
of raw LiDAR data is a crucial problem.

We are interested in LiDAR scans of urban scenes
which are mainly comprised
of buildings/architectures.
The surface geometry of a
3D building is generally
composed of planes,
cylinders and other primitive
surfaces [2]. Given a point on
the surface of a building, its
local structure is composed of
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either a single surface patch (p1 in the inserted figure) or
multiple surface patches (e.g., p2 is at the intersection of
two patches and p3 is at the intersection of multiple).

In this paper, we propose to model the local structure
around a point as a union of substructures, each of which
corresponds to a surface patch. The local structure recovery
for the point is then formulated as substructure classification
of its neighborhood. Robustly estimating the local structures
at all points naturally leads to the robust recovery of mean-
ingful decomposition of the input scans, which will in turn
facilitate the accurate processing of the point cloud, such as
shape detection and reconstruction.

However, local substructure classification on raw LiDAR
data is exceedingly challenging due to the following special
characteristics of these data.

Density anisotropy. The density of LiDAR data depends
on the measuring distance and the slope angle between the
scanning direction and the scanned surface of the object [35].
The longer the distance or the bigger the slope, the sparser
the scan data (see Figure 1 on the left: 1 ). However, most
existing data classification or clustering methods are built
upon the assumption that the data are distributed uniformly
on subspaces (i.e., substructures) [9]. This is because the
evaluation of a substructure is based on counting the inliers
of the substructure, making it heavily dependent on the
density of the point cloud [10]. Our method takes into ac-
count not only the composition of the substructure (i.e., the
inliers of the substructure), but also the size of the underlying
manifold surface measured in a sampling-independent fashion.
This combination makes our clustering method particularly
insensitive to the variation of density distribution (see Fig-
ure 1 on the right).

Noise and outliers. The raw LiDAR data are inevitably
contaminated with severe noise and outliers (see Figure 1
one the left: 2 ). Most current substructure estimation meth-
ods are developed based upon singular value decomposi-
tion (SVD), principle component analysis (PCA), or their
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Fig. 1. A large-scale urban scene is automatically and efficiently reconstructed with patches from defect-laden, raw LiDAR point clouds using our
method without user intervention. Zoom-in views demonstrate the typical characteristics of raw LiDAR data, i.e., density anisotropy, noise and
outliers, and occlusions, while our approach is still capable of modeling them with good geometric fidelity to the input scene.

variants [40], [41]. These techniques are based on the least
squares approach, and are, therefore, sensitive to outliers
and noise [7]. We, for the first time, apply the kernel
density technique to estimate the noise scale for the 3D
point cloud, based on which the inliers belonging to each
substructure are distinguished from outliers. Furthermore,
the noise within inliers to the substructure is truncated
with the residual ranking technique. As a result, only the
inliers, excluding noise, are used to characterize the substructures,
making the clustering of the substructure, and hence the
discovery of local structures, especially resilient to noise (see
Figure 1 on the right: 2 ).

Unknown number of substructures. For LiDAR data
processing applications, the number of local substructures
is required to determine accurately for each point. How-
ever, for a random point of a LiDAR scan, the number of
substructures constituting its local structure is unknown in
advance (see Figure 1 on the left: 3 ). Previous methods
(e.g., RANSAC and related approaches) usually adopt a se-
quential “finding-and-removing” procedure (i.e., interleav-
ing between parameters fitting for finding a substructure
and inliers removal for consequent substructure discovery),
where the number of substructures has to be prescribed. To
solve this problem, we propose an effective mechanism by
combining data-driven entropy thresholding and medoid
shift clustering, which automatically removes weak substruc-
tures and clusters similar significant substructures to obtain
unique representative substructures.

Contributions. We propose the first subspace modeling
framework for shape detection and reconstruction from raw
LiDAR data. Our substructure classification approach is
inspired by the recent work on multi-structure fitting in
computer vision [29]. However, we make two substantial
changes against their method in order to adapt it for meeting
the specific challenges in handling raw LiDAR data:

• To deal with anisotropic density, we devise a new
density-invariant weighting metric to measure the
significance of substructures in handling non-uniform
sparse data.

• To extract geometrically similar yet distinct substruc-
tures from raw LiDAR scans, we need not only dis-
criminate outliers but also differentiate inliers from

different substructures. To this end, we propose a
new metric based on the permutation of the residual
preferences of surrounding points to a substructure,
which can robustly detect different substructures,
regardless of how geometrically close they are, from
severely corrupted point data. As a consequence, the
number of substructures can be precisely determined,
even in the presence of heavy noise and outliers from
our method.

Overall, our main contributions are three-fold:

1) We propose a robust density-invariant scoring tech-
nique to measure the significance of substructures,
which is insensitive to the variation of density dis-
tribution.

2) We design an effective substructure similarity met-
ric based on the discriminative preference feature,
empowering our method to discriminate the un-
known number of subtle yet distinct substructures.

3) Based on the recovered local substructures, we
develop robust primitive modeling, surface recon-
struction applications and achieve favorable results
from defect-laden, raw LiDAR data.

1.1 Related work

Shape detection and reconstruction. Surface reconstruc-
tion and modeling of indoor objects has made substantial
progress in the past two decades. We refer the reader to
the comprehensive survey on recent surface reconstruction
techniques [3]. In this paper, we mainly focus on outdoor
scenes. Recently, urban scene reconstruction has attracted
increasing attention in computer graphics [21]. For instance,
based on the well-known fitting technique, RANSAC, Schn-
abel et al. [25] proposed an automatic method to detect basic
shapes from unorganized point data of outdoor buildings by
decomposing the point cloud into several primitive shapes.
Similarly, Lin et al. [19] designed a complete system for
scene reconstruction from 3D point clouds of residential
scenes captured by mobile scanners. These RANSAC-based
approaches are robust to a certain level of outliers and
noise. However, They have difficulty in handling sparse and
incomplete LiDAR data.
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Fig. 2. An overview of our local modeling technique for local structure recovery at a given point marked in red. The extracted substructures are
represented with planar patches.

Recently, Oesau et al. [39] proposed a method for planar
shape detection and regularization from raw point sets.
A number of seeds are sampled uniformly on the input
point set, and shape detection is performed through region
growing, interleaved with regularization through detection
and reinforcement of regular relationships, such as coplanar,
parallel and orthogonal. This method achieves favorable re-
sults from the point data with moderate corruption, which,
however, fails to deal with a relatively high level of outliers
and noise.

Substructure modeling. The purpose of substructure
modeling (also referred to as subspace modeling) is to find a
multi-substructure representation that best fits a set of data
sampled from a high-dimensional space. In recent years,
several related methods have been proposed and adopted
to solve various problems for computer vision application-
s [24]. Elhamifar et al. [9] presented a method based on
sparse representation to cluster data drawn from multi-
ple low-dimensional substructures embedded in a high-
dimensional space using `1 optimization, which is fairly
sensitive to outliers and noise.

In computer graphics, Decoret et al. [8] presented a plane
identification method for billboard clouds using a modified
Hough transform scheme. It is computationally expensive
due to the nature of Hough Transform. Cohen-Steiner et
al. [5] proposed a variational framework to approximate
surfaces with planes, extended to more elaborate shape
elements by Wu and Kobbelt [15]. Their goal is to seek a
number of primitives to approximately represent the input
geometry. These two methods are designed based on the
connectivity relationship of input data; meanwhile, least
squares fitting is used extensively so that they are sensitive
to outliers. Fleishman et al. [11] utilized a statistics method,
namely forward-search paradigm [13], to classify regions
of a point-set to multiple outlier-free smooth sub-regions
in a “fitting and removing” manner. Since the number
of substructures is unknown in advance, the termination
condition of the “fitting and removing” procedure has to
be ad-hoc pre-defined. In contrast, our method is able to
automatically determine the number of substructures.

2 ROBUST SUBSTRUCTURE MODELING

2.1 Algorithm Overview

According to the differential geometry of surfaces, the local
geometry of any point on a 3D model is formed by its
underlying surface patches. On this basis, we propose a

robust algorithm to classify the local neighborhood of each
point into point subsets each of which comes from a single
surface patch, as illustrated in Figure 2. For each point and
its local neighborhood, we generate a set of initial surface
patches through random sampling strategy, and then filter
out false positives to retain significant surface patches. We
then classify all of the remaining surface patches into group-
s and extract the representative surface patch from each
group. As a result, all surface patches can be obtained for
the input LiDAR points.

As observed, the geometries of the urban buildings
are generally composed of planes; hence we consider the
surface patch here as linear geometry. Note that it can be
extended to any parametric surface, if required. We first give
the problem formulation w.r.t. local substructure modeling.

Problem formulation. Given a point p and its neigh-
boring point set N(p) = {p1, p2, ..., pn}, we assume that
N(p) is distributed on a union of unknown surface patches
θ1 ∪ θ2 ∪ · · · ∪ θL; that is, there are L surface patches of <3.
Discretely, we have the point set N(p) ∈ <3 consisting of n
points in <3, which may be partitioned as:

N(p) = χ0 ∪ χ1 ∪ · · · ∪ χL (1)

where χ0 stands for possible outliers; and for each l ≥ 1,
χl is a set of Nl points chosen from θl, which could contain
noise. The task is now simply stated as follows: without any
prior knowledge regarding the number of surface patches,
we are to recover all underlying patches from the local
neighborhood.

2.2 Significant Patch Determination
Given a point p and its neighboring point set N(p) =
{p1, p2, ..., pn}, we are able to generate a set of initial surface
patches Θ = {θ1, θ2, ..., θm} in the manner of RANSAC [10].
Each patch is fitted over a randomly chosen minimal subset
of size κ, where κ is the minimum number of data required
to instantiate the geometric primitive of interest. For exam-
ple, κ = 3 for estimating the parameters of a plane.

Patch scoring. Having the initial patch set, it is important
to effectively score each patch to measure the “goodness”
of the patch. Ideally, if a patch only contains inliers com-
ing from a single structure, the score of the patch should
be as high as possible; otherwise, it should be close to
zero. Given an arbitrary patch θ and a set of n points
P = {p1, p2, ..., pn}, the residual set r(θ) = {r1, r2, ..., rn}
can be obtained from all points of P to θ. According to
the non-parametric kernel density estimate techniques [26],
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the variable bandwidth kernel density estimate at r can be
defined as:

fθ(x) :=
1

n

n∑
i=1

1

h(θ)
K
(
x− ri
h(θ)

)
(2)

where h(θ) and K(·) are the bandwidth and the Epanech-
nikov kernel, which can be estimated by the technique [26].
On this basis, Wang et al. [29] weighted the patch using
the density estimate at the origin (O), while suppressing
patches that produce large scale estimates, i.e.,:

w :=
fθ(O)

σ(θ)
(3)

where σ(θ) is the scale estimate [29]. For calculating fθ(O)
and σ(θ), please refer to Wang et al. [29]. We notice that
this scoring scheme is basically a summation over the inlier
points, which is quite sensitive to the sampling density of
points.

Observing that the significance of a patch should link to
the size of its underlying surface, and such an area should
be measured independently of point sampling, we thereby
introduce a sampling-independent area-based measure into the
kernel density metric, to better reveal significant patches in
a density-invariant fashion.

The intuition of our scoring scheme is to favor patches
with a larger area. To achieve density-invariance, we ap-
proximate area by the summation of edge lengths in the
kNN graph constructed from P . Specifically, given a patch
θ, we collect its inlier set containing points with the 15%
smallest residuals against θ, which forms multiple connect-
ed components in the kNN graph. The score of θ is defined
over the maximal connected component, denoted by χ, as:

w(θ) :=
fθ(O)

σ(θ)
·
√
|χ| ·

∑
ei∈E

|ei| (4)

where |χ| is the number of points in χ, E is the set of
edges in χ, |ei| is the length of edge ei. From the definition,
our score incorporates both the measure of inliers and the
size of the underlying surface. The bigger the size of the
underlying surface, the higher the score. Apparently, the
size of surface is independent on the sampling density of
points on the surface. Therefore, our metric is insensitive
to the variation of sampling density distribution. Figure 3
presents the insensitivity of our scoring metric to sampling
sparsity. 2000 points are randomly sampled from a plane
and a certain level of Gaussian noise (σ = 0.02) is added.
By down-sampling the sampled points, we evaluate the
insensitivity of our scoring metric to sampling density. For
each down-sampled point set, we generate a number of
plane hypotheses. Among them, the best hypothesis with
the highest score is obtained. On this basis, we plot the
highest score in terms of the corresponding sampling ratio.
From the result, we can see our scoring metric is insensitive
to sampling density.

Patch filtering. Since the initial patch set Θ is generated
through random sampling, Θ inevitably contains a num-
ber of “weak” surface patches which diverge considerably
from the underlying surfaces within the local neighborhood.
Therefore, we need to differentiate these weak patches (i.e.,
false positives) from those fairly close to the underlying

Fig. 3. Insensitivity to sampling sparsity. As the down-sampling ratio
increases, the corresponding score degrades gradually. Even though
the down-sampling ratio becomes fairly high, the score is still relatively
significant.

surfaces, referred to as significant patches. Based on the
scores obtained above, which well measure the closeness
of the generated patches to the underlying surfaces, we are
able to set a cut-off value to filter out the weak patches.
However, it is non-trivial to obtain this magic cut-off value.
Hence, we employ a data-driven thresholding method to auto-
matically discriminate significant patches from weak ones,
inspired by the Maximum Entropy Thresholding in image
processing [36].

Suppose we have built a histogram of patches with
respect to their scores. Our task is to find an optimal thresh-
old to divide the histogram into two parts, corresponding
to significant and weak patches, respectively. This can be
achieved by maximizing the total amount of information
provided in the two parts of the histogram. Please refer
to Appendix A for determination of the optimal threshold.
Having the optimal threshold ŵ, the patch with the score
higher than ŵ is regarded as a significant patch; otherwise,
it is a weak one. Accordingly, we are able to automatically
filter out weak patches and retain all of the significant
patches.

2.3 Representative Patch Extraction

For each point, its significant patches are retained, which
comprise groups representing the local underlying substruc-
tures. To extract the underlying substructures, we cluster the
significant patches into prominent groups and then select
for each group a representative patch. It is observed that
the preferences of inliers from the same structure towards a
set of patches are correlated. Based on this observation, we
define the preferences of inliers to patches as permutations,
and seek clusters among the permutations such that the sig-
nificant patches can be clustered into a series of prominent
groups.

Patch preference permutations. Given a point p and
its neighboring point set N(p) = {p1, p2, · · · , pn}, Θs =
{θ1, θ2, · · · , θl} is the set of significant patches obtained
from Section 2.2. For each patch θi, the surface of which is
represented by Si, the residuals of N(p) to Si are computed
and denoted by ri = [ri1, r

i
2, ..., r

i
n]. We sort ri in increasing

order to obtain the following residual list:

r̂i = [riµi
1
, riµi

2
, ..., riµi

n
] (5)
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Fig. 4. Line fitting comparisons. There are four, five and six lines from the first to the fourth rows. The number of points is 20, 000 for each case. The
noise and outlier rates are 8% and 90%, respectively. RHT, PbM and JL do not obtain as good results as KF, AWH and ours. Among them, ours
succeeds in fitting all lines correctly.

such that ri
µi
1
≤ ri

µi
2
≤ ... ≤ riµi

n
. The sorting r̂i essentially

ranks the n points according to the preference of Si, i.e. θi;
the higher a point is ranked the more likely it is an inlier to
θi.

Accordingly, the preference permutation of N(p) to
patch θi is defined as:

π(θi) = [µi1, µ
i
2, · · · , µin] (6)

For all patches Θs = {θ1, θ2, · · · , θl}, we have the permuta-
tions:

R(Θs) = {π(θ1),π(θ2), · · · ,π(θl)} (7)

Significant patch clustering. After obtaining the pref-
erence permutations R(Θs), we are to seek clusters over
R(Θs) based on the rationale that the preferences tend to
cluster based on their structure membership. To this end, we
model the preference permutations using the mixture model
of parts. Since there is no priori regarding the number of
parts, we adopt the medoid shift algorithm [27] to conduct
non-parametric cluster seeking over the set of permutations.
To simplify the exposition, we present the detailed clus-
tering algorithm over permutations in Appendix B. Once
the set of clusters are detected, the significant patches are
accordingly clustered into a series of prominent groups,
each of which consists of similar patches sampled from the
same substructure.

Representative patch selection. With the clustered
groups G =

{
g1,g2, · · · ,gu

}
, we choose the first patch

θi1 of each group gi =
{
θi1, θ

i
2, · · · , θio

}
as a representative

patch, i.e., the one with the highest score, to represent
the group. As a result, the local neighborhood of a point
p is clustered into the set of u representative patches,
S(p) =

{
θ1

1, θ
2
1, · · · , θu1

}
.

2.4 Experiments

We evaluate the performance of our proposed modeling
method in line, plane fitting with an emphasis on local

multi-structure recovery from a variety of synthetic and real
raw data, which is accomplished by comprehensively com-
paring our method with the related approaches from Toldo
et al. [30] (JL), Meer et al. [31] (PbM), Kultanen et al. [32]
(RHT), Chin et al. [33] (KF) and Wang et al. [29] (AWH).
When running these methods, we adjust their respective
parameters carefully to guarantee that the approaches of
JL, PbM, RHT, KF and AWH output the correct structure
number, which is automatically obtained by our method.

2.4.1 Synthetic data
We test the six approaches on line fitting using four sets
of synthetic data in Figure 4, and present the quantitative
results in Figure 5 and Table 1. In Figure 4, the lines in
the data of each row are arranged to produce challenging
configurations for line fitting. The lines in each row contain
a certain number I of inliers, contaminated with Gaussian
noise of standard deviation σ. A total of G points of gross
outliers are randomly added within the range of the data,
i.e., [(0, 1), (0, 1)]. From the comparisons, RHT, PbM and JL
basically do not obtain as good results as KF, AWH and ours.
Among them, only ours succeeds in fitting all lines correctly.

Quantitative evaluation. We perform quantitative e-
valuations on these approaches by comparing their corre-
sponding fitting errors. First, we find the correspondence
between the estimated lines and the ground-truth lines.
Let L = {l1, ..., lN} and L̂ = {̂l1, ..., l̂N} respectively be
the corresponding sets of the ground-truth lines and the
estimated lines, and I = {il1, ..., ilN} and Î = {îl1, ..., îlN}
respectively the inlier sets of the ground-truth lines and the
estimated lines, we then compute the fitting error between
L and L̂ as:

error =

√√√√∑N
i=1

(
dist2(ili, l̂i) + dist2(îli, li)

)
N

(8)

where dist(·, ·) measures the geometric distance between
the inliers to the line. Table 1 shows the fitting errors of
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Fig. 5. Fitting errors from six compared approaches on the “six-line” dataset in Figure 4. Different levels of noise, outliers and down-sampling are
applied to the point data. From the histograms, our method is capable of tolerating a reasonably high level of noise, outliers and data sparsity.

TABLE 1
The fitting errors of synthetic data in Figure 4.

Data RHT PbM JL KF AWH Ours
Four-line 0.56 0.98 1.84 1.56 0.46 0.38
Five-line 1.23 2.12 4.52 1.62 1.57 0.39
Six-line 4.36 3.03 3.69 1.86 2.84 0.43

synthetic data in Figure 4.
Based on the quantitative metric, we test the perfor-

mance of the methods under the influence of different levels
of outliers, noise as well as data sub-sampling, and show
the comparison results in Figure 5 with respect to the Six-
line data in Figure 4. For the noise case, we fix G at 20000
and vary σ from 0 to 0.1 in steps of 0.01. For the outlier
case, we fix G at 20000 and σ at 0.05. For the sparsity
case, we fix σ at 0.05 and vary G from 2000 to 20000.
For each case, we generate 20000 hypotheses randomly,
and compute the respective fitting errors from all compared
methods, as shown in Figure 5. From the plots, JL does not
obtain as good results as the others, and AWH basically
achieves better results than PbM, RHT, KF. Comparatively,
our method exhibits robustness to tolerate different levels
of outliers, noise and data sparsity, and yields the most
accurate fitting results among the competing approaches.

2.4.2 Real data

We further evaluate the effectiveness of these approaches on
3D real scan datasets in Figure 6, which contain a certain
level of noise, outliers and missing regions. The scenes
consist of many planar structures, and we test how many
planes can be detected from each approach. For the corner-
box scene, there are 19 planes within the raw point cloud,
which is fairly noisy. PbM, KF, AWH and ours generate
relatively better results than RHT and JL. The box-desk
scene contains 15 planes and the data are quite sparse on
some parts. Among all these methods, only ours extracts
all of planar structures correctly. In terms of the roof scene,
it includes 26 planes on the building roofs, together with
several trees around the buildings, which are outliers to
the planar structures of our interest. From the results, AWH
and KF obtain more correct planes than RHT, PbM and JL.
In contrast, ours achieves more accurate results than AWH
and KF. The computational time of six approaches on plane
fitting experiments in Figure 6 is presented in Table 2.

TABLE 2
The computational time of plane fitting in Figure 6 (in seconds).

Points RHT PbM JL KF AWH Ours
45,236 3.6 13.6 281.3 2483.1 12.3 11.2
2,954 0.6 2.1 21.2 182.6 1.6 1.8

742,896 63.2 253.2 5372.3 43523.9 156.2 143.9

3 URBAN SCENE APPLICATIONS

Based on the proposed substructure modeling algorithm, we
develop several urban scene applications, such as surface re-
construction and primitive modeling, and achieve favorable
results from defect-laden, raw LiDAR data.

3.1 Primitive Modeling

Since the neighborhood of any one point can be represented
by its underlying substructures, we characterize each point
with its representative patches. On this basis, the global clus-
tering is performed by grouping spatially adjacent, similar
points in terms of their representative patches. Subsequent-
ly, we execute surface fitting over all clusters to generate the
3D model of the building.

Greedy clustering. We group “similar” points to form
a set of clusters, so that each cluster can be modeled by
surface fitting. To this end, we measure the similarity of
points based on their representative surface patches re-
covered from Section 2.3. Intuitively, two points p and q
will share many similar representative surface patches, if
they are inliers from the same structure. According to this
observation, we define the following function to measure
the similarity between p and q:

sim(p, q) :=
|S(p) ∩S(q)|

max(|S(p)|, |S(q)|)
(9)

where |S(p) ∩S(q)| seeks the number of similar elements
shared by S(p) and S(q). From the definition, if two points
are potentially from the same underlying structure, their
representative patch subsets have many similar elements
and, therefore, their similarity is high. Otherwise, the sim-
ilarity is low. Based on the similarity metric, we perform
point cloud clustering greedily using the region growing
strategy. More advanced techniques, such as graph cuts, can
also be employed, with our similarity measure incorporated.

Specifically, we first randomly choose an un-clustered
point as a seed. Starting with the seed point, we grow
the region by progressively adding un-clustered, adjacent
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Fig. 6. Plane fitting comparisons on 3D raw point data captured from real scenes. The raw point clouds contain some noise, outliers and even
missing regions. RHT, PbM, JL and KF do not extract as many planes as AWH and ours. For the first two rows, our method succeeds in fitting all
planes, while AWH misses some of them. Ours fails to fit two planes for the last case due to significantly missing data.

points to the seed. The similarity values between the newly
added points and the seed point should be greater than a
given threshold δ. The region growing process terminates
when no more point can be added into the region, which
results in a cluster. This procedure repeats iteratively until
all points have been clustered.

Surface fitting. After performing greedy clustering, we
proceed to model each cluster with plane via least squares
fitting. Since all points in one cluster have a similar repre-
sentative patch, we fit each cluster with a planar surface in
the least squares sense. We then project the points to the
fitted plane and compute the aligned bounding rectangle of
the projection points on the plane. As a result, the bounding
polygons of all clusters comprise the final model. Optionally,
we can refine the model by adjusting the boundaries of the
polygons interactively similar to O-Snap [2].

3.2 Surface Reconstruction

The moving least squares (MLS) technique has been used
as a powerful tool to reconstruct surface from point data. It
is known that the traditional MLS is incapable of preserv-
ing sharp features [1]. To address this issue, we devise a
new projection operator which projects each point onto the
surface patches obtained from Section 2.3. As a result, sur-
face reconstruction is faithfully achieved from point clouds,
while sharp features are well preserved.

Given a point p, let S(p) = {θ1, θ2, · · · , θu} be the
representative patch set within its neighborhood, obtained
from Section 2.3. According to the type of p, we use the
following projection scheme to update its position. 1) Non-
feature point: (u = 1): the closest point of p on θ1 is simply
considered as the new position of p. 2) Feature point: (u > 1):
we project p to all representative patches to obtain its new
position. For the latter case, we design a comprehensive
projection scheme as elaborated below.

For simplicity, let us illustrate our projection scheme in
2D. Given a point p, let θ1, θ2 be its two substructures.

Suppose c1, c2 are the centroids of the point sets corre-
sponding to θ1, θ2, v1, v2 are the projection vectors of c1,
c2 onto θ2, θ1, and v3, v4 are the projection vectors of p onto
θ2, θ1, respectively. According to the relations between the
projection vectors, p can be classified into four quadrants as:

p ∈


Q-I if (v1 · v3 ≤ 0 and v2 · v4 ≤ 0)
Q-II if (v1 · v3 > 0 and v2 · v4 < 0)
Q-III if (v1 · v3 ≥ 0 and v2 · v4 ≥ 0)
Q-IV otherwise.

(10)

On this basis, if p lies in Quadrant I or III, we project it onto
the intersection of θ1 and θ2. If it lies in Quadrant II or IV,
we directly project it onto θ1 or θ2, respectively.

For each point, we apply the robust projection operator
described above to project it onto representative patch-
es. Subsequently, based on the MLS reconstruction tech-
nique [1], the piecewise smooth surfaces can be faithfully
generated from point data, while original sharp features are
well preserved.

4 EXPERIMENTAL RESULTS

This section provides experimental results on a variety
of raw LiDAR scans from urban scenes to validate the
performance of our proposed algorithms, including urban
facade reconstruction and modeling. As shown, raw LiDAR
data always suffer from defection, such as noise corruption,
occlusions and non-uniform density distribution, which
are directly processed and automatically modeled by our
method without intervention.

4.1 Effects of Algorithm Stages
Our reconstruction and modeling algorithms are built upon
the proposed subspace modeling technique, which consist-
s of two key stages, i.e., significant patch determination
and representative patch extraction. On the one hand, we
propose a robust density-invariant patch scoring technique
to determinate significant patches, which has a stronger
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Fig. 7. Illustration of how each kernel algorithm stage affects the result. The method in the paper is cascaded with two stages, which essentially are
driven by our proposed techniques, i.e., the density-invariant scoring strategy (denoted by IS) and the substructure similarity measuring scheme
(SM). The corresponding state-of-the-art techniques to ours are the kernel density scoring [29] (KS) and the Jaccard distance metric [29], [30] (JM),
respectively. Only our combination succeeds in handling data sparsity and distinguishing geometrically similar-yet-distinct structures. By comparing
different technique combinations, we can see that ours outperforms the others, as highlighted in the zoom-in views.

capability of tolerating the variation of density distribution
of point clouds, compared to the most recent algorithm
which is the kernel density scoring strategy [29]. On the
other hand, we design an effective substructure similari-
ty metric to extract representative patches by leveraging
a discriminative permutation-based preference feature. In
contrast to a previous, well-known metric, like Jaccard dis-
tance [29], [30], ours is more sensitive to the geometrically
similar yet distinct substructures. To verify the effectiveness
of our method, we compare the modeling results with
different technique combinations of ours and the most re-
lated work [29], [30]. For ease of description, we denote
our density-invariant scoring by IS, and the kernel density
scoring [29] by KS; our substructure similarity metric by
SM, and the Jaccard distance metric [29], [30] by JM.

Figure 7 shows the modeling results on the raw LiDAR
data of building roofs from the technique combinations, i.e.,
KS+SM, IS+JM, KS+JM and IS+SM. Due to the special
characteristics of roofs, the points on some roofs are fairly
sparse. Meanwhile, the dihedral angles of some adjacent
roof patches are quite obtuse and the adjacent patches are
almost co-planar, as highlighted in Figure 7. As analyzed
in Section 2.2, KS is sensitive to density distribution. Con-
sequently, the patches of roofs with sparse points fail to be
extracted as shown in the middle column of Figure 7. The
metric [29], [30] based on JM is insensitive to the inconsider-
able difference between geometrically similar substructures.
As a consequence, some roof patches, the normal vectors
of which are quite close, are not detected, and a couple
of adjacent roof patches are merged by mistake (see the
results from JM). Comparatively, by using our proposed
techniques, i.e., IS+SM, all roof patches are extracted suc-
cessfully even in the presence of data imperfection.

4.2 Comparisons on Raw LiDAR Data

To further evaluate the performance of our algorithms, we
compare our modeling results on raw LiDAR point cloud-
s to an advanced, RANSAC-based method [25], discrete
labeling based Pearl [14], constrained data fitting based
Globfit [18] and regular arrangements of planes based
RAPter [38]. Most of the raw LiDAR point clouds used in
our paper are scanned by our long-range, 3D laser scanner
(Leica ScanStation P20), and the others are taken directly
from [38]. The comparisons are comprehensively performed

in terms of the characteristics of raw LiDAR data, i.e., noise,
outliers, density anisotropy, occlusions and large-scale. In
particular, we use the available implementations of those
modeling algorithms from RAPter [38]. Additionally, we
also compare our reconstruction method with the state-of-
the-arts, including the algorithms from Ohtake et al. [22],
Lafarge et al. [17], Oztireli et al. [23].

4.2.1 Noise

We evaluate the effectiveness on the raw LiDAR scan of
a building facade corrupted by severe noise in Figure 8.
The main structure is extracted correctly from all methods
except RANSAC, which over-fits big planar patches over
the facade structures. Most of small structures on the facade
are severely missing from Pearl and RAPter, while they are
successfully extracted by Globfit and ours. As seen, Globfit
generates a number planar artifacts due to noise, which do
not exist in our result. Our method leverages the kernel
density estimation method to calculate the noise scale of
the point data, and thus the noise within structure inliers
is truncated with the residual ranking strategy. Therefore,
our method is able to produce relatively better results in the
presence of noisy point data.

4.2.2 Outliers

In Figure 9, we illustrate how our algorithm detects planar
primitives from raw LiDAR point data contaminated by
heavy outliers. There are several trees around the scanned
building, and thus the corresponding points are acquired
within the raw LiDAR scan. The main structures are basi-
cally obtained from RANSAC, Pearl and RAPter, while a
number of false positives (patches) are yielded at the same
time due to severe outliers. Globfit only extracts several
significant planar patches, while most of structures are
missing. RAPter obtains many planes; however, a few of
them are placed incorrectly around the areas with outliers.
By incorporating the contamination scale in our hypothesis
weighting metric, the outliers can be distinguished from the
inliers of structures and hence only the inliers excluding
noise and outliers are used to fit the structures. As a result,
our method succeeds in obtaining most of planar structures
from the outlier-laden, raw LiDAR data, though several
small structures are still missing.
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Fig. 8. Comparison to the other methods on raw LiDAR data with severe noise. All methods basically extract the main planar structure. In terms
of recovering small structures, RANSAC, Pearl and RAPter do not obtain as good results as Globfit and ours. Note that we restrict all fitted planar
patches to be either horizonal or vertical.

Fig. 9. Comparison to the other methods on raw LiDAR data with heavy outliers. Outliers severely ruin RANSAC and Pearl, and consequently a
number of incorrect planar patches are generated. Globfit produces numerous fragmental artifacts. RAPter obtains a number of planes, while some
of them are placed incorrectly around the areas with outliers. Comparatively, most of the main structures are retained correctly with ours.

4.2.3 Density anisotropy
We assess the capability of our method to deal with density
anisotropy of raw LiDAR data in Figure 10. Since the experi-
mental data are captured with the long-range laser scanner,
the scans always contain many ill-sampled regions, where
the density distributions are non-uniform and anisotropic.
All methods extract main planar structures except Globfit.
Meanwhile, RANSAC produces a large amount of fake
planar patches, and Pearl also generates a certain number of
false positives. Globfit over-fits small planar structures on
the building facades, while significant patches are missing.
Most of big planar structures are yielded from the result of
RAPter, where a number of small planes are missing. Thanks
to our density-invariant substructure selection technique,
we are able to extract dominant structures from facades, as
well as reasonably small structures.

4.2.4 Occlusions
In Figure 11, we demonstrate how our approach is ex-
ploited to process raw LiDAR data with missing regions
due to occlusions during scanning. The building consists
of horizontal and vertical planar structures, which are s-
canned by using the long-range laser scanner, resulting in
large occluded regions. The main directions are detected
by all methods. RANSAC fails to extract almost all smaller
structures and some dominant vertical planes. Pearl obtains
most of the vertical planes, while meanwhile producing
many false positives, i.e, slanted planes. Globfit succeeds
in generating a certain number of small structures (see the
vertical ones on the left-side surface of the facade); however,
some big vertical planes are missing. Most of important
planes are successfully generated from our result, where
small structures are partially obtained. RAPter obtains the
dominant planar structures as well as small planes, while a
few artifacts are also generated.

4.2.5 Non-planar surfaces
Figure 12 demonstrates that our method is also able to deal
with non-planar surfaces within raw LiDAR point data. There

are a cylinder and a cone above the church roof. Specifically,
we take the “fitting-and-removing” strategy to detect planar
patches first, and extract cylindrical and conical surfaces
subsequently. Note that we require to set the surface types
manually during modeling. Compared to the other method-
s, only ours can obtain the non-planar shapes from the point
data.

4.2.6 Large-scale
We evaluate the computational efficiency of our method
against large-scale, raw LiDAR point data in Figure 13.
The acquired area is about 1.5 square kilometers and the
scanning is performed by a Velodyne LiDAR sensor (HDL-
32E) mounted on a drone. The number of scanned points
is over 300 million. We could not run the other methods
on such a large scale scene due to performance reasons.
There are more than 100 planar patches and we are able to
extract almost all of them successfully in a relatively efficient
manner. From the fusion view in Figure 13(c), we can see
that the reconstructed planar patches have good geometric
fidelity to the raw LiDAR point cloud. The quantitative
details are presented later.

4.2.7 Mesh reconstruction
Figure 14 shows a comparison of reconstruction results on a
raw LiDAR scan from four methods: Ohtake et al.’s [22],
Lafarge et al.’s [17], Oztireli et al.’s [23] and ours. Our
result is generated by utilizing our MLS projection scheme
followed by applying the reconstruction method in [1]. The
latter three methods outperform Ohtake et al.’s [22] in terms
of feature preservation. Our method recovers more details
than Lafarge et al.’s [17], and exhibits superiority over
Oztireli et al.’s [23] on the reconstruction of sparse points.

4.3 Quantitative Evaluations
The results shown above have visually demonstrated the
superiority of our algorithm in terms of effectiveness on
large-scale, defect-laden, raw LiDAR point data. We provide
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Fig. 10. Comparison to the other methods on raw LiDAR data with density anisotropy. All methods reconstruct dominant planar structures, except
Globfit. The relatively smaller structures, like windows, are successfully obtained from our method, which, however, are missing from the others.

Fig. 11. Comparison to the other methods on raw LiDAR data with occluded regions. Pearl yields more false positives than the others. Globfit,
RAPter and ours obtain more small structures than RANSAC. A few small planar structures are missing from Globfit and ours, which are obtained
from RAPter.

Fig. 12. Comparison to the other methods on raw LiDAR data with non-planar shapes. In contrast, only ours obtains the cylinder and the cone
successfully from the point cloud.

Fig. 14. Comparison of surface reconstruction on raw LiDAR data from Ohtake et al. [22], Oztireli et al. [23], Lafarge et al. [17] and ours. The point
clouds are corrupted with a high level of noise and outliers. The methods of Oztireli et al. [23] and Lafarge et al. [17], as well as ours, obtain better
results than Ohtake et al.’s [22]. Our method outperforms all of the other three on detail preservation.

some quantitative comparisons in Table 3, and also further
investigate its robustness to different levels of noise, outliers
and sparsity in Figure 15.

4.3.1 Quantitative metrics
Coverage. We design a coverage metric (i.e., percentage of
inlier points associated with modeled structures) to measure
the completeness of modeling results against the ground
truth. Let P be the input raw point set andM the respective
modeling result, the modeling coverage metric is defined as:

coverage =
|{p|∀p ∈ P, s.t . ‖p−M‖ < ε}|

|P|
× 100% (11)

where ‖p−M‖ is the Euclidean distance between p andM;
|·| is the set cardinality; ε is a small distance threshold which
is fixed at 0.036 in our experiments.

RMSE. We choose the root-mean-square error (RMSE)
metric to measure the geometric fidelity of modeling results
to the input data. Suppose the reconstructed model M
comprises n primitive patches, i.e.,M = {Ei}ni=1. For each
patch Ei, the associated point subset is denoted by Pi, in
which each point is closer to Ei than any other patches. The
modeling error metric is then defined as:

RMSE =

√√√√∑n
i=1

∑
∀p∈Pi

‖p− Ei‖2∑n
i=1 |Pi|

(12)

where ‖p− Ei‖ is the Euclidean distance between p and Ei;
|Pi| is the number of points within Pi.

Complexity. We introduce the complexity metric to mea-
sure the degrees of freedom of the reconstructed planar
shapes. Specifically, we perform normal vector clustering
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Fig. 13. Comparison to the other methods on large-scale, raw LiDAR da-
ta. (a) The input raw LiDAR data; (b) The reconstructed planar patches;
(c) The fusion view of the point data and the reconstructed model. The
number of points is over 300 million and there are more than 100 planar
patches generated from our method within several hours.

over all obtained planes by applying 3D Hough Transform
on a unit sphere. By uniformly dividing the unit sphere into
a certain number of cells, we are able to get all of the clusters
each of which contains at least one normal vector vote.
In our implementation, the angles along two orthogonal
directions are both set at 3 degrees for each cell. As a result,
we regard the number of normal clusters as the complexity
metric. From the definitions, high complexity refers to low
regularity and vice-versa. We scale all experimental data
uniformly within an unit sphere before modeling and then
compute the above quantitative metrics.

4.3.2 Robustness
Ground truth. We manually design a building model in
Trimble Sketchup and perform virtual scanning on it to gener-
ate 3D points. Note that our virtual scanning simulates the
working mechanism of real laser scanning and, therefore,
the scanned dataset is distributed non-uniformly. Specifical-
ly, a virtual scanner is set in front of the building model at a
given distance. The laser ray starting from the scanner casts
outwards and the casting angle changes uniformly along the
vertical and horizontal directions. Once the ray touches the
building model, we record the intersection point. In such
a way, we are able to store all scanned point data at the
given station. For the whole building, we generally execute
scanning at 3 different stations around the building model,
and perform registration to align the point data into the
same coordinate system. As a result, the entire point data
is obtained for the building model. The synthetic noise is
made by a zero-mean Gaussian function proportional to the
diagonal length of the bounding box of the input data, and
the outliers are generated randomly in the bounding box.
The synthetic point cloud provides us with a ground truth,
because we can distinguish between the original points
and the added noise and outliers. As a result, we are able
to quantitatively analyze the modeling results against the
ground truth.

Our method is capable of handling a high level of noise,
outliers and sparsity, as illustrated in Figure 15. As the cor-
ruption intensifies, the modeling accuracy degrades grace-
fully. Even though 50% of the outliers, 6% of the noise are
added, the window structures are still recovered correctly
and the accuracy remains relatively high. Similar results can
be achieved by down-sampling 75% of the original points.

TABLE 3
Quantitative benchmark shows the reconstruction accuracy, coverage

and complexity comparisons on the experimental data sets from
RANSAC, Pearl, Globfit and our method.

Data sets Methods Quantitative metrics
RMSE Coverage Complexity

Figure 7

RANSAC 0.48 72% 1.00
Pearl 0.49 74% 0.95
Globfit 0.56 67% 0.21
RAPter 0.61 69% 0.22
Ours 0.42 85% 0.25

Figure 8

RANSAC 0.28 85% 1.00
Pearl 0.31 75% 0.54
Globfit 0.29 83% 0.26
RAPter 0.27 79% 0.25
Ours 0.25 90% 0.20

Figure 9

RANSAC 1.42 83% 1.00
Pearl 1.56 77% 0.97
Globfit 1.82 57% 0.16
RAPter 1.76 81% 0.18
Ours 1.66 88% 0.21

Figure 10

RANSAC 0.15 87% 1.00
Pearl 0.16 80% 0.98
Globfit 0.22 52% 0.18
RAPter 0.23 78% 0.21
Ours 0.18 89% 0.15

Figure 11

RANSAC 0.24 76% 0.31
Pearl 0.27 78% 1.00
Globfit 0.31 81% 0.12
RAPter 0.28 88% 0.16
Ours 0.25 86% 0.19

Figure 12

RANSAC 0.16 79% 0.75
Pearl 0.25 76% 0.76
Globfit 0.19 82% 1.00
RAPter 0.24 83% 0.80
Ours 0.12 88% 0.64

While data imperfection increases significantly, our method
tends to be unstable.

4.4 Parameters and Performance

Two parameters are required in our substructure modeling
method: 1) the size of the nearest neighbor n; 2) the ratio
of outliers η to determine the number of initial patches in
Section 2.2. The choice of n depends on the density of the
data. If the data are dense, choosing a high value of n would
be better; otherwise, some features could be blurred. After
increasing n to a relatively high value (e.g. 60), the change of
n has a very limited impact on the processing results. Hence,
we set n = 60 for all experiments. The ratio of outliers η
is used to determine the sample number m in Section 2.
η is usually unknown, so we set the sample number m
instead. A number of experiments with different levels of
densities show that the results are insensitive to the choice
of m, in which m = 200 generally produces satisfactory
results. In terms of our applications, the similarity threshold
δ between two points needs to be set for greedy clustering.
We empirically fix δ at 0.82 for all experiments, which
generally produce favorable results.

We have implemented our algorithm in C++ and all
experiments are performed on a PC with a 2.4 GHz CPU
and 4.0 GB of RAM. Note that our implementation does not
take advantage of the very parallelizable nature of some
of the stages and doing so could increase the efficiency.
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Fig. 15. Robustness to noise, outliers and sampling sparsity. The ground truth is generated by virtual scanning on a manually designed building.
We evaluate our method while increasingly adding synthetic noise, outliers, and down-sampling points. With an increasing amount of noise, outliers
and down-sampling, the reconstruction accuracy and coverage degrades gradually, and the complexity also increases slowly. When the level of
defection increases significantly high, the method tends to be unstable. Overall, our algorithm is able to handle a reasonably high level of noise,
outliers and data sparsity. k is the complexity of the ground truth.

TABLE 4
Timing of our method on experimental LiDAR point clouds (in minutes).

Data sets Points Time
Figure 1 120,543,196 210.82
Figure 7 12,483,984 23.72
Figure 8 383,636 0.72
Figure 9 3,532,890 6.14
Figure 10 2,987,382 5.21
Figure 11 739,121 1.38
Figure 12 1,229,966 2.69
Figure 13 310,267,839 541.05
Figure 14 569,626 1.49
Figure 15 1,273,987 2.22

Fig. 16. The points on the top faces of the columns are significantly
missing. Consequently, our local classification fails to detect the top
patches.

Table 4 gives the computational timing of our method on
experimental LiDAR point clouds.

4.5 Limitations

When the missing regions are fairly large, our local recovery
could fail and the corresponding pathes are missing conse-
quently, as demonstrated in Figure 16. Our method is able to
deal with parametric surfaces, while incapable of handling
freeform surfaces. As shown in Figure 17, we fail to model
the structures formed by freeform surfaces. Additionally, in
order to deal with multiple types of surface patches, our
framework has to pre-define the surface types in advance.

5 CONCLUSION, DISCUSSION AND FUTURE
WORKS

For raw LiDAR point clouds of urban buildings, we propose
to model the local neighborhood using surface patches. Our
method is based on a robust local classification technique,
which is able to automatically determine the number and

Fig. 17. The building facade with freeform surfaces. The middle part of
the building can be represented by a cylindrical surface approximately
so the corresponding points are clustered into groups. However, the
end parts are not designed by cylindrical surfaces and consequently
the associated points can’t be clustered into groups.

the parameters of underlying surface patches. Compared
with existing methods, our methods achieve better results
on both synthetic and real LiDAR scans.

Priors in point cloud processing. The use of priors,
either geometric [12] or structural [37], for point cloud
reconstruction has been successfully demonstrated by many
studies. The local substructures, being a specific type of
parametric surface patch, can also be seen as local shape
priors. Although integrating these local substructures can
benefit the recovery of a more global structure as we have
demonstrated with clustering and modeling applications,
the substructures are still limited to the connected surface
patch. A more versatile framework should incorporate solid
shape primitives, such as sphere, cuboid, etc., to character-
ize the local structures of a given point with more global
information.

Multiscale subspace analysis. If we pursue larger scale
substructures, the recovered structures would be able to
encompass the delicate structures as shown in Figure 17
and the more global surface patches could be extracted.
Therefore, it would be interesting to exploit neighborhoods
in multiple scales for substructure extraction and to auto-
matically adapt to the underlying geometry.

Support to high-level analysis. We have demonstrated
some results of our method on clustering and feature anal-
ysis. Although it is still preliminary, we have shown the
potential of the idea of local structure recovery in support-
ing structural analysis of raw LiDAR scans. An interesting
future direction is to integrate the local structural analysis
with the high-level analysis, for example, hierarchical anal-
ysis of facades, in a single framework.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

APPENDIX A
OPTIMAL THRESHOLD DETERMINATION

Suppose that Θ = {θ1, θ2, ..., θm} is the initial patch
set obtained through random sampling, and W =
{w1, w2, ..., wm} is the corresponding score set, the mini-
mum and the maximum scores can be searched and denoted
by wmin, wmax, respectively. We scale the scores within the
range of [0, 1] by updating wi = wi−wmin

wmax−wmin
, followed by

dividing the unit range into a certain number of uniform
intervals (e.g., 100). Therefore, we are able to obtain the his-
togram of the scores. On this basis, we define the probability
of wi as:

p(wi) =
f(wi)∑m
i=1 f(wi)

(13)

where f(wi) is the frequency of wi in the histogram. Let w?

be the threshold, the probability mass functions of the weak
and significant patches can be defined as:

Ps(w?) =
∑

0≤wi≤w?

p(wi)

Pw(w?) =
∑

w?<wi≤ max
1≤j≤m

wj

p(wi)
(14)

and the corresponding entropies are formulated as:

Hs(w
?) = − ln

∑
0≤wi≤w?

[
p(wi)

Ps(w?)

]2

Hw(w?) = − ln
∑

w?<wi≤ max
1≤j≤m

wj

[
p(wi)

Pw(w?)

]2
(15)

The total amount of entropy is expressed as H(w?) =
Hs(w

?) + Hw(w?). The threshold can then be determined
by:

ŵ = arg max
w?

H(w?) (16)

We can solve it efficiently by exploring all combinations
here, as the number of combinations is relatively small.

APPENDIX B
CLUSTERING OVER PERMUTATIONS

Given the permutations R(Θs), we model them with the
probabilistic mixture model of t parts, i.e.:

Pr
(
π| {si, ci}ti=1

)
=

t∑
i=1

αi ·M (π|si, ci) (17)

where the αi’s are the mixture weights with 0 ≤ αi ≤ 1
and

∑t
i=1 αi = 1. Each part of the mixture model observes

a Mallows distribution [6]:

M (π|s, c) = exp (−c ·K(π, s)− log Z) (18)

where s is a permutation called the location parameter;
c ∈ R+ is the concentration parameter; Z is a normalization
constant; and K(·, ·) defines the Kendall’s tau distance [34]
on R(Θs), which measures the similarity between patches.

If two patches are from the same structure, the distance
value is small; otherwise, it is large.

Learning the mixture model in Eq. (17) can be conducted
using the EM method [4] that requires to know the number
of parts in advance, which is, however, unknown in our con-
text. To this end, we employ the medoid shift technique [27]
for mode clustering over permutations.

Given the permutations R(Θs) = {π1,π2, · · · ,πl}, ker-
nel density estimation can be used to evaluate its underlying
distribution [26]:

f(π) = c0

l∑
i=1

Φ

(
K (π,πi)

h2

)
(19)

where Φ(·) is a kernel function using the profile notation;
c0 is a positive scalar dependent on l and the bandwidth h.
To initialize the mode-seeking, the mode of each candidate
πi is set as π(0)

i = πi. Each iteration of medoid shift moves
along the direction of highest gradient to one element of
the permutations. The permutation π

(k)
i in the k-th iteration

step is updated as:

π
(k+1)
i = arg min

π∈R(Θs)

l∑
j=1

−K(πj ,π) · Φ′
(
K(πj ,π

(k)
i )

h2

)
(20)

The iteration is repeated until convergence, i.e., |π(k+1)
i −

π
(k)
i | < 10−6, which is guaranteed according to [27].

From Equation (20), we can see the mode yielded from
medoid shift corresponds to the element in the permutations
which best minimizes the function. As a result, for each
πi, the corresponding convergent mode can be found from
R(Θs). Meanwhile, two permutations πi, πj , converge to
the same mode if they are similar. i.e. the Kendall’s tau
distance between them is small. Accordingly, the similar
permutations are grouped into the same cluster.
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