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Part 1. Statistic on model components for all categories of ShapeNetCore (57452 

models in 57 categories). 
 

Category 
ID 

# Models 
(Multi-comp.) 

# Avg. Comp. 
(Multi-comp.) 

# Models 
(Single-comp.) 

# Models 
(Total) 

# Avg. Comp. 
(All) 

2691156 4028 107.83 17 4045 107.39 

2747177 326 32.28 17 343 30.73 

2773838 83 22.55 0 83 22.55 

2801938 103 32.18 10 113 29.42 

2808440 789 14.36 68 857 13.3 

2818832 251 33.76 3 254 33.38 

2828884 1747 42.04 69 1816 40.48 

2834778 59 1020.44 0 59 1020.44 

2843684 67 11.6 6 73 10.73 

2858304 1118 89.11 19 1137 87.64 

2871439 414 33.9 52 466 30.23 

2876657 431 6.55 67 498 5.81 

2880940 130 11.54 56 186 8.37 

2924116 939 121.6 0 939 121.6 

2933112 1533 34.32 39 1572 33.5 

2942699 112 24.66 1 113 24.45 

2946921 98 7.89 10 108 7.25 

2954340 55 20.31 1 56 19.96 

2958343 7497 370.92 0 7497 370.92 

2992529 521 29.54 6 527 29.22 

3001627 6432 27.33 346 6778 25.99 

3046257 647 32.51 8 655 32.12 

3085013 65 122.12 0 65 122.12 

3207941 92 34.09 1 93 33.73 

3211117 1090 20 5 1095 19.91 

3261776 72 15.99 1 73 15.78 

3325088 734 23.17 10 744 22.87 

3337140 287 45.54 11 298 43.89 

3467517 796 71.24 1 797 71.16 

3513137 159 13.23 3 162 13.01 



3593526 502 41.14 95 597 34.75 

3624134 408 8.2 16 424 7.93 

3636649 2293 26.43 25 2318 26.16 

3642806 456 56.35 4 460 55.87 

3691459 1592 26.13 26 1618 25.73 

3710193 91 21.7 3 94 21.04 

3759954 66 11.92 1 67 11.76 

3761084 152 39.17 0 152 39.17 

3790512 337 156.8 0 337 156.8 

3797390 199 5.02 15 214 4.74 

3928116 239 70.99 0 239 70.99 

3938244 70 3.36 26 96 2.72 

3948459 300 20.66 7 307 20.21 

3991062 537 357.82 65 602 319.29 

4004475 161 24.07 5 166 23.37 

4074963 66 40.2 1 67 39.61 

4090263 2347 32.56 26 2373 32.21 

4099429 85 70.95 0 85 70.95 

4225987 149 34.46 3 152 33.8 

4256520 3100 22.2 73 3173 21.71 

4330267 217 38.51 1 218 38.33 

4379243 8143 18.21 366 8509 17.47 

4401088 1042 27.62 10 1052 27.37 

4460130 130 75.47 3 133 73.79 

4468005 389 151.53 0 389 151.53 

4530566 1911 101.44 28 1939 99.99 

4554684 166 35.06 3 169 34.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part 2. An overview of our Multi-Component Labeling (MCL) benchmark dataset 

(eight object categories and two scene categories). 
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Part 3. Statistics on components for Multi-Component Labeling (MCL) benchmark 

dataset. 

 



Part 4. Statistics on semantic part size for Multi-Component Labeling (MCL) 

benchmark dataset. 

 

 



Part 5. Baseline method – CNN-based hypothesis generation – network 

architecture. 

 

 

 

Figure 1. CNN-Based Hypothesis Generation Network. The network takes a complete 

shape as input. Then multi-scale boxes are applied to produce candidate regions on 

different scales and align corresponding feature maps. Classification and Refinement 

branches are responsible for classifying and refining candidate regions respectively. In 

which, classification branch outputs a discrete probability distribute for each candidate 

region over K+1 categories. Refinement branch takes each component in current proposal 

as input, and outputs a probability distribute over two categories (is adopted by current 

proposal vs. not). The architecture is trained end-to-end with a multi-task loss. 

 

 

Inspired by Fast-RCNN, we designed a network architecture (CNN Hypothesis Generation 

Network) to generate proposals by end-to-end, see Figure 1.  

 

For a given 3D CAD shape, we first convert it to the volumetric representation as a 

occupancy grid with resolution 64 *64 *64. The CNN network consists of five 3D 

convolution layers. For all convolution layers, the kernel size is 2*2*2 , and stride is 1, 

with numbers of channels {32,32,32,32,64}, respectively. We also add Batch 

normalization and ReLU layers between convolutional layers.  

 

For each occupancy voxel location, we will predict N candidate proposals. Each of the 

proposals corresponds to one of the N boxes with various sizes. In our case, based on 

statistics of semantic parts sizes in our dataset, we define a set of N=20 boxes. Note that, 

our proposal is not a regular cube region, but the region that related components covered 

in this box.  

 

Then, classification and refinement branches are responsible for classifying and refining 

proposals respectively. For classification branch, each proposal is pooled into a fixed-size 

feature vector by max-pooling, and then mapped to a feature vector by two fully 

connected layers (FCs). This branch outputs a discrete probability distribution (per 

proposal), p=(p0,...,pK), over K+1 categories. Refinement branch takes each component in 



current proposal as input, and outputs a probability distribute, b=(b0, b1), over two 

categories (is adopted by current proposal vs. not). 

 

Each training proposal is labeled with a ground-truth semantic class u, and each 

component in proposal has a binary label v, which represents whether the component 

should be adopted by the proposal. We use a multi-task loss L on each labeled proposal to 

jointly train for classification and refinement: 

( , , , ) ( , ) ( , )cls mask

c h

L p u b v L p u L b v


= +  

Where ( , ) logcls uL p u p= −
 
is cross-entropy loss for label u . And for each component c in 

current proposal h, ( , ) logmask vL b v b= −  is log loss over two categories (is adopted by 

proposal vs. not). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part 6. More results on the CAD models from the INRIA GAMMA database. 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



Part 7. Interactive annotation tool. 

 

First, we directly load the original model file ‘xxx.obj’,  and extract all components 

information from the model by identifying the identification information ‘g ….’ (see Figure 

1), and display it in our interactive tool, as shown in Figure 2.  

 

Then, we create an empty folder called ‘aa-bb’, where the 'aa' represents semantic 

category, such as ‘wheel’. And ‘bb’ means which one, because of each semantic category is 

likely to have more than one semantic part, such as the current vehicle consists of four 

wheels, therefore, ‘bb’ means which wheel, see Figure 3. Meanwhile, move all 

components associated with this semantic part into the current folder, see Figure 4. 

Finally, we Repeat this process for other semantic parts, as shown in Figure 5. 

 

 

 
 

Figure 1．Original model file ‘xxx. obj’ 



 
Figure 2．Load model file into interactive tool 

 

 

 

 

Figure 3．Create an empty folder called ‘aa-bb’ 



 

Figure 4．Move all components associated with this semantic part into the current folder 

 

 

 

 

 

Figure 5．Repeat this process for all the other semantic parts 

 

 



Part 8. Plots for the remaining four semantic categories (with correspondence to 

the figures in paper). 

 

 
Figure 5 in paper．The occupancy ratio of the bounding box of varying number of 

semantic parts over the entire model. The statistics are performed with our benchmark 

dataset. 

 

 

 

 



Figure 8 in paper.  Performance (recall rate over IoU) of part hypothesis generation in 

all object/scene categories. 

 

Figure 12 in paper.  Labeling accuracy (average IoU) vs. number of part hypotheses. 

 

 

 

 

 

Figure 13 in paper.  Recall rate on semantic parts over varying number of part 

hypotheses, when IoU against ground-truth is fixed to 0.5, tested on our benchmark 

dataset. 



 

 

Figure 14 in paper.  Performance (recall rate vs. average IoU) comparisons between 

our hierarchical grouping algorithm and the GMM-based baseline method over all 

object/scene categories. 


