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a b s t r a c t

3D shape features play a crucial role in graphics applications, such as 3D shape matching, recognition,
and retrieval. Various 3D shape descriptors have been developed over the last two decades; however,
existing descriptors are handcrafted features that are labor-intensively designed and cannot extract
discriminative information for a large set of data. In this paper, we propose a rapid 3D feature learning

advantages of the convolutional neuron network, auto-encoder, and extreme learning machine (ELM).
This method performs better and faster than other methods. In addition, we define a novel architecture
based on CAE-ELM. The architecture accepts two types of 3D shape representation, namely, voxel data
and signed distance field data (SDF), as inputs to extract the global and local features of 3D shapes. Voxel
data describe structural information, whereas SDF data contain details on 3D shapes. Moreover, the
proposed CAE-ELM can be used in practical graphics applications, such as 3D shape completion.
Experiments show that the features extracted by CAE-ELM are superior to existing hand-crafted features
and other deep learning methods or ELM models. Moreover, the classification accuracy of the proposed
architecture is superior to that of other methods on ModelNet10 (91.4%) and ModelNet40 (84.35%). The
training process also runs faster than existing deep learning methods by approximately two orders of
magnitude.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

3D shape feature extraction is a vital issue covered in the high-
level understanding of 3D shapes. Extensive efforts have been
exerted to solve this important problem with the aid of recent
advances on deep learning techniques. Existing feature extraction
approaches based on deep learning can be broadly categorized as
semi-automatic and fully-automatic methods.

In semi-automatic methods such as [1,2], researchers first
extract several popular hand-crafted features from input 3D
shapes and then utilize deep learning methods to combine these
features further. This category of methods relies strongly on the
adopted human-designed features. The extraction of these fea-
tures consumes much time; hence, these methods cannot handle
large-scale 3D datasets.

Numerous fully automatic deep learning methods have been
proposed recently, such as convolutional deep belief network
(CDBN) [3], auto-encoder (AE) [4], deep Boltzmann machines [5],
convolutional neuron network (CNN) [6], and stacked local con-
volutional AE [7] approaches. These techniques are utilized to
learn 3D features given the feature learning capability of these
methods. In addition, these methods were first proposed for 2D
image classification tasks.

3D shapes with reasonable resolutions have the same dimen-
sions as high-resolution images. Thus, training deep networks on
large-scale 3D datasets is time consuming. Furthermore, mastering
this category of feature learning methods consumes time because
of the black-box property of the deep learning method. Most of
these deep learning methods convert 3D shapes into 2D repre-
sentations for input [7–9]; thus, much of the 3D geometry infor-
mation of 3D shapes is lost. Several works [3,10] attempt to apply
3D cubes, such as the volumetric representations of 3D shapes, as
inputs. However, the training processes of these works are time
consuming because of the additional dimension of input data.
Therefore, the input resolution of these methods is limited.

To overcome the shortcomings of the existing methods, we
propose a novel 3D shape feature extraction method called con-
volutional AE extreme learning machine (CAE-ELM) in this paper.
This approach combines the advantages of CNN, AE, and extreme
learning machine (ELM). AE is a typical unsupervised learning
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algorithm that can extract good features without supervised labels.
However, the AE network is fully connected; thus, additional para-
meters must be learned. CNN restricts the connections between the
hidden layer and the input layer through locally connected net-
works. Nevertheless, this network is an extensive computational
method that is used with 3D shape datasets because of its con-
volutional operation. To reduce computational complexity, ELM [11]
is often considered for its high efficiency and effectiveness.

Additionally, different input representations exert varied
effects. For example, voxel data describe the structural information
of 3D shapes because these data are expressed only as 0 and 1,
which indicate that the voxel is outside and inside the mesh sur-
face, respectively. Signed distance field (SDF) data are represented
as a grid sampling of the minimum distance to the surface of an
object that is represented as a polygonal model. The convention of
applying negative and positive values within and outside the
object, respectively, is frequently applied; thus, additional 3D
shape details can be derived. To extract the global and local fea-
tures collectively, we define a novel architecture that accepts both
voxel and SDF as inputs. By combining these two types of data, our
architecture can classify 3D shapes effectively.

The proposed CAE-ELM can also be used in practical graphics
applications, such as in 3D shape completion. Optical acquisition
devices often generate incomplete 3D shape data because of
occlusion and unfavorable surface reflectance properties. These
incomplete 3D shapes are challenging to repair; to fix incomplete
data, we compare the features of broken and complete shapes
before the CAE-ELM classifier as well as obtain the broken loca-
tions and values. Although the completion results are imperfect,
CAE-ELM serves as a new approach to solve this problem.

The contributions of our approach are summarized as follows:

(1) CAE-ELM: We propose a new ELM-based designed network
that performs well and learns quickly. To the best of our
knowledge, our proposed model is the first to combine the
advantages of CNN, AE, and ELM to learn the features of 3D
shapes. This method has been used in practical graphics
applications. We provide the source code1 so that researchers
can master it in a short time.

(2) Increased classification accuracy: The classification accuracy of
the designed architecture is higher than that of other methods
[10,12,13,9] on ModelNet10 (91.41%) and ModelNet40
(84.35%).

(3) 3D shape completion: CAE-ELM can repair a broken 3D shape
by using the features before the classifier.

(4) Rapid 3D shape feature extraction: Our method runs faster than
existing deep learning methods by approximately two orders
of magnitude, thus facilitating large-scale 3D shape analysis.

The experiment results show that the features learned by CAE-
ELM significantly outperform hand-crafted features and other deep
learning methods in terms of 3D shape classification. CAE-ELM can
also repair the broken locations of 3D shapes with learned features
for 3D shape completion. Furthermore, our method is efficient and
easy-to-implement; thus, it is practical for real 3D applications.
2. Related work

2.1. 3D shape descriptors

3D shape descriptors play a crucial role in graphics applications
such as 3D shape matching, recognition, and retrieval [14–17].
1 https://github.com/yqwang2006/CAE-ELM
A variety of 3D shape descriptors have been developed during
the last two decades [18,13,19,15]. Existing 3D descriptors are
hand-crafted features which are labor-intensively designed and
are unable to extract discriminative information from the data.
Instead, we learn shape features from 3D shapes using auto-
matically feature learning method.

2.2. 3D feature learning via deep learning

Researchers have successfully built deep models, such as con-
volutional neural network (CNN) [20], deep autoencoder networks
[21], deep belief nets (DBN) [22] and extreme learning machine
(ELM) [23] and etc., to automatically extract features with the
superior discriminatory power for 2D image and shape repre-
sentation in computer vision and machine learning [24]. A few
very recent works attempt to learn 3D shape features via deep
learning methods.

Zhang et al. [25] use ELM to determine an optimal fabrication in
3D printing considering a perceptual model. Wu et al. [3] use
voxelization of 3D meshes as network's input and adopt 3D deep
belief nets (DBN) [22] as their networks. Their work obtains good
results on a subset of Princeton ModelNet [3]. However, their
method is timing consuming and discards the pooling operations
in CDBN, which makes their network fail to handle shape rotation
invariance. As a result, they have to manually align all the input
meshes into the same direction, in order to avoid uncertainty in
extracting their features. Zhu et al. [4] use autoencoder to learn a
3D shape feature based on the depth images. However, they treat
2.5D depth images as traditional 2D images and can only get the
global feature, which make their method have to combine with
hand-crafted 2D image features (SIFT) to finish the 3D shape
classification task. Xie et al. [9] propose Multi-View Deep Extreme
Learning Machine (MVD-ELM) which adopts the multi-view depth
image representation can achieve fast and quality projective fea-
ture learning for 3D shapes. However, as mentioned before, using
2.5D depth images as the input of network will lose 3D geometry
and structure information of 3D shapes, and further influences the
classification accuracy. Our method can handle large scale of 3D
shapes with large rotation and geometry invariance through using
voxel and SDF representations of 3D shapes. Moreover, due to the
efficiency of ELM, our method runs faster than existing deep
learning methods by approximately two orders of magnitude.

2.3. Extreme learning machines

Extreme learning machines (ELM) was proposed for general-
ized single-hidden layer feedforward neural network (SLFNs)
[11,26,27] where the hidden layer need not be neuron alike. Unlike
other neural networks with back propagation (BP) [28], the hidden
nodes in ELM are randomly generated, as long as the activation
functions of the neurons are nonlinear piecewise continuous. The
weights between the hidden layer and the output layer have
analytical solution and can be calculated using a formula. There
are two phases in training process of ELM: feature mapping and
output weights solving.

ELM feature mapping: Given input data xARD, the output
function of ELM for generalized SLFNs is

f ðxÞ ¼
XL
i ¼ 1

βihiðxÞ ¼ hðxÞβ; ð1Þ

where hðxÞ ¼ ½h1ðxÞ;⋯;hLðxÞ� is the output vector of the hidden
layer and β¼ ½β1;⋯;βL�T denotes the output weights between the
hidden layer (L nodes) and the output layer (m nodes). The pro-
cedure of getting h is called ELM feature mapping which maps the
input data from RD to the feature space RL. In real applications, h
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can be described as

hiðxÞ ¼ gðai; bi; xÞ; aiARD; biAR; ð2Þ
where gða; b;xÞ is an activation function satisfying ELM universal
approximation capability theorems [29]. In fact, any nonlinear
piecewise continuous functions (e.g. Sigmoid, Gaussian, etc.) can
be used as activation function h. In ELM, the parameters of h are
randomly generated based on a continuous probability
distribution.

ELM output weights solving: In the second phase, given a
training sample set ðxi; tiÞni ¼ 1 with ti ¼ ½0;⋯;0;1j;0;⋯;0m�T the
class indicator of xi, ELM aims to minimize both the training error
and the Frobenius norm of output weights. This objective function,
for both binary and multi-class classification tasks, can be
expressed as follows:

min
β;ξ

ω
2

Xn
i ¼ 1

JξJ22þ
1
2
JβJ2F ; s:t: βhðxiÞ ¼ ti�ξi; 8A1;2;…;n; ð3Þ

where n is the number of samples, and ξi denotes the training
errors of the i-th sample, ω is a regularization parameter which
trades off the norm of output weights and training errors, and J �
J2F denotes the Frobenius norm.

The optimization problem in Eq. (3) can be efficiently solved.
Specifically, according to the Woodbury identity [30], the optimal
β can be analytically obtained as

β⋆ ¼
HTHþ IL

ω

� ��1

HTT if Lrk

HT HHT þIn
ω

� ��1

T otherwise

8>>>><
>>>>:

ð4Þ

where In and IL are identity matrices, and H is the hidden layer
output matrix (randomized matrix) which is defined in Eq. (5):

H¼
hðx1Þ
⋮

hðxnÞ

2
64

3
75¼

h1ðx1Þ ⋯ hLðx1Þ
⋮ ⋱ ⋮

h1ðxnÞ … hLðxnÞ

2
64

3
75 ð5Þ

2.4. ELM variants

Though achieving great success on both theoretical and prac-
tical aspects, basic ELM can not efficiently handle large-scale
learning tasks due to the limitation of memory and the intensive
computational cost of the inverse of large matrices. To reduce the
runtime memory, many variants, including online sequential ELM
(OS-ELM) [31] and incremental ELM (I-ELM) [32], have been pro-
posed. OS-ELM can reduce the requirement of runtime memory
because the model is trained based on each chunk. I-ELM can solve
memory problem by training a basic network with some hidden
nodes and then adding hidden node to the existing network one
by one. To relief the computational cost incurred by these opera-
tions, many variants, including partitioned-ELM [33] and parallel-
ELM [34], have been proposed. Recently, a variant of OS-ELM
named parallel OS-ELM (POS-ELM) [35] and parallel regularized
ELM (PR-ELM) [36] are proposed to reduce training time and
memory requirement simultaneously.

Hierarchical ELM variants: Recently, ELM is also extended to
multi-layer structures, i.e. multi-layer ELM (ML-ELM) [23], hier-
archical ELM [37], and hierarchical local receptive fields ELM (H-
LRF-ELM) [38].

Similar to deep networks, ML-ELM [23] performs layer-by-layer
unsupervised learning. In contrast to deep networks, ML-ELM does
not require fine-tuning using back propagation (BP) which will
reduce the computational cost in training process. H-ELM [37] is a
new ELM-based hierarchical learning framework for multi-layer
perception. H-ELM uses unsupervised multi-layer encoding for
feature extraction. Unlike the greedy layer-wise training of deep
learning, the layers of H-ELM are trained in a forward manner.
Therefore, it has better learning efficiency than the deep learning
methods. LRF-ELM was first proposed by Huang et al. [38]. In this
model, the connections between the input and hidden nodes are
sparse and bounded by corresponding local receptive fields (LRF).
LRF-ELM learns the local structures and generates more mean-
ingful representations at the hidden layer when dealing with
image processing and similar tasks. LRF-ELM can be extended to
multi-layer architecture called hierarchical LRF-ELM (H-LRF-ELM).
The layers of H-LRF-ELM can be divided into two parts, namely, the
feature extractor and the ELM classifier. After all, ELM-based
multi-layer networks seem to provide better performance and
efficiency than other deep networks.
3. Convolutional auto-encoder ELM for 3D feature learning

In this section, the model (CAE-ELM) for extracting features
from 3D shapes is formulated and described in detail.

3.1. Convolutional auto-encoder ELM

CAE-ELM combines convolutional ELM and ELM AE according
to the ELM learning framework, as shown in Fig. 1. This network is
designed under two considerations. First, the local shared weight
mechanism in convolutional networks enables our method to
handle 3D shape rotation invariance properly and accelerates
training time considerably. Second, the method effectively repre-
sents AE objects; thus, CAE-ELM extracts highly useful 3D features
for numerous applications in computer graphics.

The CAE-ELM training procedure can be described in three
phases: (1) convolutional feature map generation, where CAE-ELM
generates convolutional kernels randomly and obtains convolu-
tional feature maps with input data and random kernels. Then, the
pooling operation is performed on these maps to maintain rota-
tion invariance. (2) AE feature extraction, where we first generate
random AE weights. Subsequently, the output weights of ELM AEs
are computed and the input weights finally replaced with output
weights. (3) ELM classifier, where all features generated by AEs are
combined into a vector. This vector is expressed as the Hfinal

matrix, and the βfinal is computed.
The CAE-ELM structure is similar for 2D images and 3D shapes.

When the input data are 2D images, CAE-ELM uses the image
matrix as an input and the convolution and pooling processes as
2D operations. If the input data are 3D shapes, CAE-ELM computes
the voxel and SDF data of 3D meshes and then sends these cubes
to the input layer. All operations are thus performed in 3D space.
The other CAE-ELM details for 2D are similar to that for 3D. For
convenient presentation, we focus only on CAE-ELM imple-
mentation given 3D data.

Input representation: Given a set of 3D shapes, we generate two
representation types for each shape: voxel data and SDF data. In
each voxel datum, a 3D mesh is represented as a binary tensor:
1 and 0 indicate that the voxel is inside and outside the mesh
surface, respectively. SDF is represented as a grid sampling of the
minimum distance to the surface of an object that is represented
as a polygonal model. The convention of applying negative and
positive values inside and outside the object is typically applied.
Moreover, SDFs are popular in computer graphics and related
fields. Fig. 2 shows these two representations.

To facilitate effective feature learning, all training shapes are
uniformly scaled into the unit box. Given the rotation-invariant
nature of CAE-ELM, the shapes need not be oriented consistently,
especially when the training set is large.



Voxel data or SDF data

Feature map 1

Feature map K

Pooling map 1

Pooling map K

ELM classifier

Auto-Encoder 1
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Fig. 1. The network structure of our proposed CAE-ELM.

Fig. 2. The voxel points cloud and SDF zero-value iso-surface.
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Convolutional feature map generation: Let us see the first phase
of CAE-ELM. For each input 3D shape, we first voxelize it or
compute its SDF data, and then generate k1 feature maps (with
resolution of d� d� d) produced by different randomly generated
weights. Thus there are k1 different d� d� d feature maps in this
layer. Specifically, a weight matrix W1 is randomly generated:

W1 �Rc1�c1�c1�k1 ; ð6Þ
where the local connect size is c1 � c1 � c1. The weight to the k-th
feature map is denoted as

w1;k �Rc1�c1�c1 ; k¼ 1;⋯; k1: ð7Þ
For an input 3D shape x, the node ði; j; lÞ of the k-th feature map

is computed as

li;j;l;k ¼
Xc1
p ¼ 1

Xc1
q ¼ 1

Xc1
t ¼ 1

xiþp�1;jþq�1;lþ t�1w
1;k
p;q;t ; k¼ 1;…; k1: ð8Þ

The feature maps in deeper layers can be computed similarly.
Pooling: The pooling operation is designed to handle shape
variance, like in CNN [39]. We choose average pooling in the
network as it can well preserve the shape information.

Let us see the first layer again. Denote s1 as the pooling size.
Thus the pooling map is of size d=s1 � d=s1 � d=s1. Thus the node
ðα;β; γÞ of the k-th pooling map is computed as

hα;β;γ;k ¼ Poolingðli;j;l;kÞ;
iA ½α�s1;αþs1�; jA ½β�s1;βþs1�; lA ½γ�s1; γþs1�; ð9Þ

where Pooling is the average pooling operation.
Similarly, the pooling maps in deeper layers can be computed.
Auto-Encoder feature extraction: Given the number of feature

maps after pooling is K, we need K auto-encoders to extract fea-
tures, respectively. In the following, we only describe the k-th
auto-encoder corresponding to the k-th feature map. Note that
there is only one hidden layer in our auto-encoder layer.

Assume the number of hidden nodes in the auto-encoder is L,
the output of the hidden layer of auto-encoder would be described
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as

Hk ¼ gðak � pkþbÞ; aTkak ¼ I; bTkbk ¼ 1; ð10Þ
where ak ¼ ½ak1;⋯; akL� and bk ¼ ½bk1;⋯; bkL� are the random input
weights and bias between input layer and hidden layer respec-
tively, and pk is the k-th pooling map and the input data of the k-th
auto-encoder. The output weights of the k-th auto-encoder βk can
be computed by Eq. (11):

βk ¼ HT
kHkþ

1
ω
I

� ��1

HT
kXk; ð11Þ

where Xk ¼ ½Pk1;⋯; PkN � is the output of the pooling phase, and 1
=ω is the normalization parameters. Then the k-th auto-encoder
will get the features by using βk and Xk as follows:

Hfinal�k ¼ ðβkÞTXk; ð12Þ
where Hfinal�k is the extracted feature by the k-th auto-encoder.

ELM classifier: The last layer of CAE-ELM is a ELM classifier. In
this phase, CAE-ELM combines the output features of K auto-
encoders which is shown in Eq. (13):

HTotal ¼ ½Hfinal�1;…;Hfinal� K � ð13Þ
where HTotal is the combined features. Let AN is the number of
hidden nodes of auto-encoders and N is the number of training
samples. The classify layer is in full connection with the output
layer, so the full connected layer matrix HTotal �RN�ðKnAN Þ. Then the
output weights β are analytically calculated as Eq. (14):

β¼
HT

TotalHTotalþ
1
ω

I
� ��1

HT
TotalT; NZKnAN ;

HT
Total HTotalH

T
Totalþ

1
ω

I
� ��1

T; otherwise:

8>>>><
>>>>:

ð14Þ

where T is the labels of the input 3D shapes.
Testing procedure of CAE-ELM : During the testing process, the

test data are subjected to the same procedure. Consequently, fea-
ture maps H of the testing data can be obtained. The output label
value can be obtained by computing the max values of HβT .

3.2. Our architecture

We designed an architecture that can accept two types of 3D
shape representation as inputs. The architecture depicted in Fig. 3
includes two parallel CAE-ELM layers to extract voxel data and SDF
data features. Finally, these two features are combined into one
feature vector for classification tasks. Voxel and SDF data are two
types of 3D shape representation; thus, each data type has
advantages and disadvantages. For example, voxel data only is
expressed only as 0 and 1 in the cube when deriving the structure
information of 3D shapes. In the process, many 3D shape details
may be lost. By contrast, SDF data describe the SDF of 3D shapes in
additional detail but with fewer global characteristics than voxel
Voxel data

Convolutional 
Layer Pooling ELM-AE ELM

SDF data

Fig. 3. The network architecture of our proposed CAE-ELM for 3D shape.
data can. Our architecture uses both voxel and SDF data as inputs;
this approach adopts the advantages of voxel data while over-
coming the limitations of SDF data.

3.3. Visualization mechanism

3D shape visualization: To clarify CAE-ELM performance, we
must interpret the neuron activation mechanism in the network.
We visualize the features learned by CAE-ELM to enhance the
interpretation. The convolutional kernels used in our networks are
randomly generated; thus, we weigh K feature maps with the
optimized output weights β (Eq. (14)) to produce K activation
maps. These activations are then mapped back from the output
layer to the original 3D mesh through inverse convolution and
pooling operations that are similar to those presented in [40].

Formally, we denote Ho as the matrix of the pooling layer fea-
tures of a 3D mesh. The learned feature β can be visualized
through the following operations:

invConvðunpoolingðβHoÞÞ; ð15Þ
where invConv and unpooling indicate the inverse convolution and
inverse average pooling operations, respectively. Given an input
3D voxel datum x and a convolution kernel w, the convolution
operation is expressed as y¼ xnw. The inverse convolution is then
defined as x0 ¼ ynflipðwÞ, where flip corresponds to left–right and
top–down flipping over the kernel along its second and third
dimensions. unpooling is determined by returning the average
value into each pixel within the pool region. As shown in Fig. 4, the
activations are mapped on the input meshes through color coding.
Interestingly, the maximally activated regions constitute one fixed
part in one class. For example, the maximum activations of cup
class occur on the bottoms of cups, and the activation of a person
class is observed in the shoulders. Our CAE-ELM networks are
trained discriminatively with shape classification tasks; these
features essentially imply the discriminative regions of the input
models in terms of shape class characterization.

2D image visualization: As mentioned previously, CAE-ELM can
also accept 2D images as inputs. For convenient presentation, we
visualize only the convolutional feature maps and the output AE
weights. Specifically, we visualize the features of output AE
weights by selecting the top m with the maximum neuron acti-
vations (output feature values). In Fig. 5, we show the feature
maps and output weights of the AE phase implemented on the
MNIST and Norb datasets.
4. Experiments

In this section, we demonstrate the performance of CAE-ELM
and explore its applicability. First, the classification accuracy and
training time of this method are determined with 3D shape
datasets. Subsequently, the performance on 2D images is descri-
bed. Finally, we apply the features extracted by CAE-ELM to repair
broken 3D shapes. We implemented this method in MATLAB
2014b, which runs on a computer with an Intel(R) Xeon E5-2650
2.0 GHz CPU and 64 GB RAM.

4.1. 3D shape classification

Dataset: To verify the representation capability of the shape
features learned by CAE-ELM, we train our network on a large
collection of 3D shapes with significant intra-class variation.
Princeton ModelNet is a recently released online shape dataset
[10] that contains 127,915 CAD models in 662 categories; we run
our algorithm on its two subsets: ModelNet10 and ModelNet40
(Table 1). The models in ModelNet10 are all manually adjusted



Fig. 4. Color-coded visualization of neuron activations on the input mesh.

MNIST

Norb

Feature maps Output weights of AE

Fig. 5. Feature maps and output weights of CAE-ELM implemented on MNIST
and Norb.

Table 1
Statistics of ModelNet10 and ModelNet40.

Dataset Oriented #Models #Training #Testing

ModelNet10 Yes 4899 3991 908

ModelNet40 No 12,311 9843 2468

Table 2
Convolution kernel size (c), number of feature maps (K), pooling size (s), the
number of hidden nodes in auto-encoder (AN), and the normalization parameters
used in auto-encoder (1=ω) used by our implementation.

Dataset K c s AN 1=ω

ModelNet10 60 5� 5� 5 2� 2� 2 200 106

ModelNet40 100 5� 5� 5 2� 2� 2 200 106
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with consistent orientation, whereas those in ModelNet40 are not
oriented. Thus, ModelNet40 can be used to test the rotation
invariance of our network.

Parameter setting: We adopt the CAE-ELM network depicted in
Fig. 3 in our implementation. The regularization weight C¼0.1.
Table 2 summarizes the parameters used on different datasets in
our implementation.
Comparison with alternative classification methods: CAE-ELM
consumes 250 s for training in ModelNet10 and reports 91.4%
classification accuracy. By contrast, CDBN [10] takes 2 days to train
a network and achieves 83.54% classification accuracy while MVD-
ELM [9] requires 674 s and achieves 88.99% classification accuracy.
We also contrast our learned features with two hand-crafted
shape descriptors, that is, the light field descriptor (LFD) [12]
and spherical harmonics (SPH) [13]. We use a linear support vector
machine with the one-versus-all strategy to train classifiers and to
evaluate the classification accuracy on the testing set for LFD and
SPH. Table 3 concludes that CAE-ELM is more accurate than all
other descriptors.

Figs. 6 and 7 display the performance of CAE-ELM on Mod-
elNet10 and ModelNet40 when the number of convolutional



Table 3
Comparing with SVM classifier trained over handcrafted features, with CDBN with volumetric representation, and with MVD-ELM. Note that the CDBN is trained on GPU.

Dataset Hand-crafted Learned features

SPH LFD CDBN MVD-ELM CAE-ELM CAE-ELM CAE-ELM
[13] [12] [10] [9] (voxel) (SDF) (voxelþSDF)

ModelNet10 79.97% 79.87% 83.54% 88.99% 88.66% 88.77% 91.41%
– – 2 days 674 s 151.75 s 317.6 s 250 s

ModelNet40 68.23% 75.47% 77.32% 81.39% 82.66% 80.11% 84.35%
– – 42 days 306.4 s 609 s 610 s 1224 s
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Fig. 6. Performance of CAE-ELM on ModelNet10 and ModelNet40 with varying the number of convolutional kernels. The hidden nodes' number of auto-encoder is 216.
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kernels or the number of hidden nodes of auto-encoder is varied.
It can be concluded from Fig. 6 that the classification accuracy of
the CAE-ELM that accepts two types of 3D shape representation is
higher than that of the CAE-ELM that accepts only a single type of
representation. It can be seen from Fig. 7 that the accuracy curves
remain stable at around 91% (ModelNet10) or 82%(ModelNet40)
when the number of hidden nodes of auto-encoder is increasing.

Rotation invariance of CAE-ELM : To verify the rotation invar-
iance of CAE-ELM, we run this method on ModelNet40, where the
models are not oriented. As with [10], we rotate each model by 30
degree to generate additional model instances in arbitrary poses.
The training and testing sets are arranged to avoid overlapping
models, even for the same model with different poses. This
experiment is executed on a workstation with 128 GB RAM. As
indicated in Table 3, our method requires 1224 s for training and
reports 84.35% classification accuracy, whereas MVD-ELM [9],
CDBN [10], LFD [12], and SPH [13] achieve 81.39%, 77.32%, 75.47%,
and 63.59% accuracy, respectively.

3D shape retrieval: We apply the L2 norm to measure the
similarity in the shapes of each pair of testing samples for 3D
retrieval, as in [10]. To evaluate our retrieval algorithms, we exhibit
the precision–recall curves of CAE-ELM and of three other corre-
sponding methods in Fig. 8. CAE-ELM has higher precision and
recall than the other methods, thus indicating that CAE-ELM also
reports superior retrieval performance.

4.2. CAE-ELM on 2D image

Dataset: To verify the 2D representation capability of the fea-
tures learned by CAE-ELM, we run our algorithm on two classical
image datasets, namely, MNIST and Norb. MNIST is a handwriting
number dataset with 60,000 training samples and 10,000 testing
instances, whereas Norb has 24,300 training sample pairs and
24,300 testing sample pairs. Each image pair generates two pro-
jections of one 3D shape.

Parameter setting: We adopt a single-layer network in 2D CAE-
ELM implementation. Table 4 summarizes the parameters used on
different datasets in our implementation.

Comparison with deep learning classification methods: Our 2D
CAE-ELM requires 1090 s for training and reports 98.87%
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Table 4
Normalized 2D convolution kernel size (c), number of feature maps (K), pooling
size (s), the number of hidden nodes in auto-encoder (AN), and the normalization
parameters used in auto-encoder (1=ω) used by our implementation.

Dataset K c s AN 1=ω

MNIST 100 5�5 2�2 144 106

Norb 80 5�5 2�2 196 106

Table 5
The performance of 2D CAE-ELM compared with deep learning methods.

Dataset DBN SAE SDAE CAE-ELM

MNIST 98.87% 98.6% 98.7% 98.87%
5.7 h 19 h 17 h 1090 s

Norb 92.8% 93.5% 94.4% 94.5%
15104 s 85717 s 53378 s 1208 s
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classification accuracy on the MNIST dataset. By contrast, the deep
belief network, stacked AE, and stacked denoising AE algorithms
take 5.7, 19, and 17 h to train their networks and achieve testing
accuracies of 98.87%, 98.6%, and 98.7%, respectively. Table 5 shows
that CAE-ELM has the shortest training time of all the methods at
the same classification accuracy.

Number of convolutional kernels: The output accuracy of CAE-
ELM is expected to improve with an increase in the number of
feature maps. To demonstrate the effect of view count, we run
CAE-ELM on the MNIST and Norb datasets with different numbers
of feature maps. As shown in Fig. 9, the classification accuracy of
CAE-ELM increases with the number of feature maps.

4.3. 3D Shape completion

In this section, we introduce the 3D shape completion procedure
with CAE-ELM. First, we train a CAE-ELM network using complete
shapes and store the features before the classifier, that is, HTotal. Then,
we utilize broken shapes as the CAE-ELM input and obtain the Hbroken.
Subsequently, we compare Hbroken with all HTotal of training samples
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and then obtain the K (in this experiment, K¼10) along with the
nearest features of Hbroken in HTotal. We compute the average vector of
the K features known as Haverage and obtain deltaH. The difference
between the result of Hbroken and Haverage is calculated. Furthermore,
we believe that the locations that must be repaired in 3D shapes
differ in value from those in the complete shapes; therefore, deltaH
can be used for completion. Finally, we use deltaH to reconstruct the
input data and to obtain the delta shape. Subsequently, we patch the
delta shape onto the broken shape and generate a repaired shape.
Fig. 10 shows the results of our 3D shape completion procedure.
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5. Conclusion

In this paper, we propose a new method called CAE-ELM that
can extract features from 3D shapes. In contrast to existing 3D
shape feature learning methods, our method combines the
advantages of convolution, pooling, and AE processes; moreover,
this technique uses both voxel and SDF data as inputs to improve
performance. In the future, we will examine this approach further
in three directions. First, the CAE-ELM in this work is a single-layer
network. Multi-layer models can extract considerably more high-
level features than single-layer models can; thus, our model
should be developed as a multi-layer model. Second, CAE-ELM can
be applied in other fields; some possible applications include 3D
object recognition in cluttered indoor scenes, 3D scene under-
standing for robot navigation, and 3D object analysis for robot
manipulation. In the robotics setting, online feature learning can
be developed such that the training data may originate from robot
actions. Finally, new methods can be developed for learning
comprehensive 3D features that fully cover the geometry and
structure of input shapes.
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