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1. Introduction
This supplemental material contains six parts:

 Section 2 provides an overview and detailed statistics
of the Shape2Motion benchmark dataset.

* Section 3 gives more details on the annotation tool
used to label our benchmark data.

* Section 4 provides the details on training data genera-
tion and augmentation.

¢ Section 5 shows the baseline network.

* Section 6 gives a few representative failure cases along
with discussions.

» Section 7 shows more results of mobility analysis on
the Shape2Motion benchmark.

2. Shape2Motion benchmark dataset

Table 1 reports the detailed statistics of the benchmark
dataset. An overview of the benchmark dataset (45 cate-
gories) are given in Figure 7, 8, 9, 10, and 11.

3. Annotation tool

The interactive annotation tool consists of two pars, one
for motion part annotation and one for motion attribute an-
notation. For a given 3D model, our annotation process is
split into two stages: 1) Motion parts annotation (Figure |
(a)); 2) Motion attribute annotation (Figure 1(b)).

For motion part annotation (Figure 1 (a)), we first load a
3D model file and extract all components from the model.
All components are shown in the component list (red). The
user can select all components belonging to one motion part
from the main viewer or from the components list.

In the second stage, the user picks a motion part from
the motion part list (red) and annotates its motion attribute
(Figure 1 (b)). As shown in the motion attribute annotation
region (green), motion attribute annotation is composed of
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Figure 1: GUI for our mobility annotation tool. The tool
consists of two parts, one for motion part annotation (a) and
one for motion attribute annotation (b).

two parts: motion parameters and motion type. For motion
parameters annotation, we offer two modes for the conve-
nience of interactive annotation: 1) two-point mode and 2)
point+face mode. For motion type annotation, the user can
simply choose one of the motion types.

To facilitate the user to visually verify the correctness of
a annotated mobility, we develop an animation-based mo-
tion verification function. This is achieved by animating
the annotated motion part with the corresponding motion
attributes prescribed by the user, as shown in the motion



Category Name Bicycle | Folding Chair | Motorbike | Rocking Chair | Swivel Chair |  Vehicle Bottle Bucket Cabinet
# Models 63 21 107 19 21 101 56 14 30

# Motion Parts 256 42 321 19 42 1101 66 16 108
# Avg. Motion Parts | 4.06 2 3 1 2 10.9 1.18 1.14 3.6
#R/T/R+T 256/0/0 42/0/0 321/0/0 19/0/0 21/21/0 1101/0/0 3/0/63 16/0/0 | 46/62/0
Category Name Cannon Carton Clock Door Doorknob | Electric fan | Excavator | Faucet Glasses
# Models 102 8 58 29 63 64 39 162 43

# Motion Parts 348 18 126 69 182 85 286 251 86

# Avg. Motion Parts | 3.41 2.25 2.17 2.38 2.89 1.33 7.33 1.55 2
#R/T/R+T 348/0/0 16/2/0 126/0/0 68/1/0 182/0/0 85/0/0 286/0/0 |251/0/0| 86/0/0
Category Name Globe Handcart | Helicopter Kettle Lamp Laptop Lighter Oven Pen
# Models 29 121 104 61 68 86 37 42 52

# Motion Parts 32 453 202 66 175 86 66 43 53

# Avg. Motion Parts | 1.1 3.74 1.94 1.08 2.57 1 1.78 1.02 1.02
#R/T/R+T 32/0/0 453/0/0 202/0/0 17/49/0 175/0/0 86/0/0 47/19/0 | 43/0/0 0/53/0
Category Name Plane | Refrigerator | Revolver Scissors Screwdriver | Seesaw | Skateboard | Stapler Swing
# Models 143 81 25 26 70 23 79 33 36

# Motion Parts 651 150 71 52 70 23 324 65 59

# Avg. Motion Parts | 4.55 1.85 2.84 2 1 1 4.1 1.97 1.64
#R/T/R+T 651/0/0 | 131/19/0 71/0/0 52/0/0 70/0/0 23/0/0 324/0/0 | 65/0/0 59/0/0
Category Name Knife Tank Toilet Valve Washer Watch Windmill | Window | Wine Bottle
# Models 17 107 64 36 62 6 78 14 17

# Motion Parts 93 268 103 36 62 15 78 27 17

# Avg. Motion Parts | 5.47 4.95 1.61 1 1 2.5 1 1.93 1
#R/T/R+T 93/0/0 268/0/0 103/0/0 36/0/0 62/0/0 15/0/0 78/0/0 | 17/10/0| 0/17/0

Table 1: Statistics of the Shape2Motion benchmark.

Figure 2: Training data augmentation. Given a shape (cen-
ter), the shapes lying in 1-ring and 2-ring neighbor are its
geometric variations and motion variations, respectively.

verification region (purple).

With our annotation tool, it takes 80 seconds in average
to annotate a 3D shape for a CS graduate student user. We
also submitted a supplementary video to demonstrate the
complete annotation process with an example model.

4. Training data generation and enhancement

For the Motion Part Proposal Module, the ground truth
similarity matrix can be directly used for training. For the
Motion Axis Proposal Module, we select K anchor points

for each ground truth motion axis from input point cloud,
and we set K=30 in all experiments in this paper. For each
anchor point, the corresponding classification and regres-
sion quantities are calculated according to ground truth mo-
tion axes, and the details are shown in Section 3.2. At the
same time, the number of anchor points is much less than
the number of non-critical points. In training, we adjust the
training weight of anchor points to 50 for the classification
task of anchor points.

For the Proposal Matching Module, we first label mo-
tion part proposals as positive if their 3D IoU scores with
ground truth are larger than 0.5. Then, we evenly sample
the positive proposals for each motion part of the model, to-
tal of 128 motion part proposals in each input model. If the
positive samples are fewer than 128, we pad the mini-batch
with the negative samples with the highest scores that from
the same model.

Given a training dataset with ground-truth mobilities,
we perform data augmentation via generating two kinds of
shape variations. We first generate a number of geomet-
ric variations for each training shape based on the method
described in [1]. Furthermore, based on the ground-truth
mobility in the training shapes, we move the motion parts
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Figure 3: Baseline Network. The network takes a motion part segmentation (mask) as input. The motion part mask is applied
to displacement prediction, orientation regression. The motion type branch is responsible for regressing motion parameters

(anchor point, motion orientation) and motion type.

according to their corresponding motion attributes, result-
ing in a large number of motion variations. Figure 2 shows
two examples of our training data augmentation.

5. Baseline Network

We design a intuitive network architecture to regress mo-
tion attribute for each motion part, see Figure 3. For a given
motion part generated by SGPN [2], the network first ex-
tract features for each point from input model through a
PointNet++ architecture. Then motion part mask is applied
to align corresponding feature map and aggregate point fea-
tures by max pooling. For each task, motion part feature is
mapped to a feature vector by a fully connected layer. The
network produces three output vectors per motion part.

For displacement prediction, we regress the displace-
ment vector between the center (at the origin (0,0, 0)) of
the input model and the ground-truth axis. For orientation
regression, the network estimates a residual vector to the
ground-truth orientation. The loss is defined as:

L= Llype + Lais + Lres, (1)

where Ly, is a softmax classification loss, which is trained
to classify the mobility into one of the three motion types.
L. and Ly take L2 loss between the predicted displace-
ment/orientation and ground-truth.

6. Failure cases

Figure 4 shows two classes representative failure cases of
our method. The ground-truth mobility and the prediction
are given in the left and right. In the first case (Figure 4(a)),
the tiny motion parts (the hands of a watch or a clock)
are completely missing. In the second case (Figure 4(b)),
our method fails in models with severely crossed or nested
structure, such as blade/scabbard, injector, etc. The reason
is that point clouds lose a lot of geometric detail.

L
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Figure 4: Failure cases. (a): The tiny motion parts (the
hands of a watch or a clock) are missing. (b): Our method
fails in models with severely crossed or nested structure,
such as the blade/scabbard and the injector.

7. More results of mobility analysis

Figure 5 and 6 provide more results of mobility analysis
on the diverse collection of shapes from our Shape2Motion
benchmark.
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Figure 5: More results of mobility analysis.



Figure 6: More results of mobility analysis.



Figure 7: Overview of the Shape2Motion benchmark.



Figure 8: Overview of the Shape2Motion benchmark.



Figure 9: Overview of the Shape2Motion benchmark.






Figure 11: Overview of the Shape2Motion benchmark.



