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Learning Positive-Incentive Point Sampling in
Neural Implicit Fields for Object Pose Estimation
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Abstract—Learning neural implicit fields of 3D shapes is a rapidly emerging field that enables shape representation at arbitrary
resolutions. Due to the flexibility, neural implicit fields have succeeded in many research areas, including shape reconstruction, novel
view image synthesis, and more recently, object pose estimation. Neural implicit fields enable learning dense correspondences
between the camera space and the object’s canonical space – including unobserved regions in camera space – significantly boosting
object pose estimation performance in challenging scenarios like highly occluded objects and novel shapes. Despite progress,
predicting canonical coordinates for unobserved camera-space regions remains challenging due to the lack of direct observational
signals. This necessitates heavy reliance on the model’s generalization ability, resulting in high uncertainty. Consequently, densely
sampling points across the entire camera space may yield inaccurate estimations that hinder the learning process and compromise
performance. To alleviate this problem, we propose a method combining an SO(3)-equivariant convolutional implicit network and a
positive-incentive point sampling (PIPS) strategy. The SO(3)-equivariant convolutional implicit network estimates point-level attributes
with SO(3)-equivariance at arbitrary query locations, demonstrating superior performance compared to most existing baselines. The
PIPS strategy dynamically determines sampling locations based on the input, thereby boosting the network’s accuracy and training
efficiency. The PIPS strategy is implemented with a PIPS estimation network which generates sparse sample points with distinctive
features capable of determining all object pose DoFs with high certainty. To collect the training data of the PIPS estimation network, we
propose to automatically generate the pseudo ground-truth with a teacher model. Our method outperforms the state-of-the-art on three
pose estimation datasets. It achieves 0.63 in the 5◦2cm metric on NOCS-REAL275, 0.62 in the 5◦5cm metric on ShapeNet-C, and 77.3

in the AR metric on LineMOD-O. Notably, it demonstrates significant improvements in challenging scenarios, such as objects captured
with unseen pose, high occlusion, novel geometry, and severe noise.

Index Terms—Neural Implicit Fields, Point Sampling Strategy, Object Pose Estimation.

✦

1 INTRODUCTION

R ECENT work has made significant progress in learning neural
implicit fields of 3D shapes, enabling compact and expressive

3D representation for shape reconstruction [10], [44], [48] and
image synthesis [27], [46]. By training to predict the SDFs on a
set of sampled points, neural implicit fields are able to generate
the continuous SDFs on untrained locations with good generality,
thanks to the advances of coordinate-based networks and the
strategy of training on densely sampled points which cover the
whole space of interest.

Sharing a similar idea, neural implicit fields have emerged as
a powerful approach for 6D object pose estimation. Specifically,
these methods learn dense correspondences between the camera
space and the object’s canonical space. This capability extends
beyond the input points to infer correspondences even for unob-
served regions in the camera space [1], [18], [52]. Consequently,
compared to conventional methods that directly predict poses,
neural implicit fields achieve significantly higher accuracy and
robustness, particularly in challenging scenarios involving heavy
occlusion or novel object shapes.

Despite the advantages, the whole space dense sampling is
a non-optimal strategy for pose estimation. There are two main
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reasons. First, the whole space dense sampling would incur hard
training samples for which the network is difficult to learn, such as
the sampling points from unobserved camera-space regions, due
to their indistinctive features. This necessitates heavy reliance on
the model’s generalization ability, resulting in high uncertainty.
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Fig. 1: We propose PIPS, a data-driven approach to dynamically
determine where to sample to boost the network training, achiev-
ing better performance with training on fewer sampling points,
compared to (a) the random sampling baseline. PIPS consists of
two components: (b) positive-incentive point sampling with high
estimation certainty (PIPS-C) and (c) positive-incentive point
sampling with high geometric stability (PIPS-S).
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(a) (b)

Fig. 2: (a) Point-wise canonical coordinate estimation on as few
as three points (in red) is sufficient for determining all the 6-
DoFs of object pose. (b) Extra voters with inaccurate point-level
estimations (in blue) would degrade the performance.

As a result, employing data mining to select informative, distin-
guishing, and learnable training samples is necessary. Second,
unlike shape reconstruction which requires all the point-wise
estimations to be as accurate as possible, pose estimation only
requires accurate point-wise estimation on a limited number of
locations. As shown in Figure 2, canonical coordinate estimation
on as few as three points is sufficient for determining all the DoFs
of object pose. Extra voters with inaccurate point-level estimations
might degrade the overall performance.

To tackle this problem, in this paper, we study the problem of
how to generate sample points that would boost network training.
We first provide the definition and the empirical analysis of the
positive-incentive point sampling (PIPS) strategy. Specifically,
we define PIPS as generating sparse sample points with distinc-
tive features capable of determining all object pose DoFs with high
certainty. To implement this idea and achieve robust performance,
we propose to learn a neural implicit field using SO(3)-equivariant
convolutions, trained with sample points generated by a PIPS
estimation network.

The SO(3)-equivariant convolutional implicit network is a
backbone that aggregates SO(3)-equivariant features from the
input points and estimates point-level attributes at any query loca-
tions. To achieve this, the direction-independent point convolution
kernels based on the vector neurons [11] are developed, making
the operation of 3D convolution SO(3)-equivariant. By integrating
the SO(3)-equivariant convolutions with a recent implicit neural
network [65], the method outperforms most existing works of
object pose estimation with implicit functions.

To generate sample points to train the above network, we
propose a PIPS estimation network, a simple yet effective data-
driven approach to dynamically determine where to sample to
boost network training. The PIPS estimation network consists of
two components: positive-incentive point sampling with high esti-
mation certainty (PIPS-C) and positive-incentive point sampling
with high geometric stability (PIPS-S). The PIPS-C estimation
component contains a point cloud-based encoder and a volumetric
grid-based decoder. It learns to generate sample points with high
estimation certainty. As a result, training the SO(3)-equivariant
convolutional implicit network on the PIPS-C sample points
would bring sufficient information gain (Figure 1b). Using all
the PIPS-C sample points is neither efficient nor necessary. To
solve this problem, the PIPS-S estimation component further
selects the sparse and geometrically stable subsets from the above
sample points (Figure 1c). The PIPS-S estimation component
is implemented with an attentional gating module trained by the
Gumbel-Softmax trick. A stability loss function and a sparsity
loss function are applied to optimize the sample points with high
geometric stability while keeping the sample points sparse. As
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Fig. 3: The quantitative comparisons of the proposed PIPS-C
and PIPS-S to the baseline of random sampling. We see our
method reduce the number of sample points and the training time
while achieving better performance in object pose estimation. The
experiment is conducted on the NOCS-REAL275 dataset.

reported in Figure 3, the proposed PIPS greatly reduces the
number of sample points and the training time while achieving
better performance in pose estimation.

The PIPS estimation network is trained in a knowledge
distillation manner, where a sophisticated teacher model is first
trained to generate the pseudo ground-truth and a student model
(i.e. the PIPS estimation network) is then optimized to mimic the
teacher model. Interestingly, we found that using a small set of
pseudo ground-truth is sufficient for the PIPS estimation network
to generate meaningful and repeatable positive incentive points.

Experiments demonstrate that the proposed method outper-
forms the state-of-the-art on three datasets of pose estimation. It
achieves 0.63 in the 5◦2cm metric on NOCS-REAL275, 0.62 in
the 5◦5cm metric on ShapeNet-C, and 77.3 in the AR metric on
LineMOD-O. It has better performances in various challenging
scenarios, such as objects captured with unseen pose, high oc-
clusion, novel geometry, and severe noise. Moreover, we provide
in-depth qualitative analyses of the learned sampling strategy. We
also demonstrate the cross-task generality of the learned sampling
strategy by applying the trained PIPS estimation network to
other tasks with neural implicit fields, such as implicit shape
reconstruction.

In summary, we make the following contributions:
• We propose the idea of detecting positive-incentive sample

points for neural implicit fields, that improve the accuracy
and training efficiency.

• We propose an SO(3)-equivariant convolutional implicit net-
work to estimate point-level attributes, achieving better per-
formance compared to most existing implicit neural fields in
pose estimation.

• We develop the PIPS estimation network, including a
PIPS-C estimation component and a PIPS-S estimation
component, to generate sample points with high estimation
certainty and high geometric stability, respectively.

• Our method achieves state-of-the-art performance on three
datasets of pose estimation. In particular, it performs well in
various challenging scenarios.

2 RELATED WORK

Neural Implicit Representation of 3D Shapes. Many existing
works have investigated implicitly representing 3D shapes with
continuous and memory-efficient implicit fields that map (x,y,z)
coordinates to signed distance fields [45], [48] or occupancy
functions [10], [44], implemented by neural networks. These
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neural implicit fields of 3D shapes allow high-quality surface
representation with any resolution, facilitating the application of
them in shape reconstruction. Combined with advanced network
architectures [15], [51], [61] and training schemes [7], [22],
neural implicit fields are not limited to single objects with simple
geometry but also could scale to large-scale complicated scenes.
In addition to representing geometry, recent works have explored
encoding appearance with neural implicit fields [3], [4], [46],
[76], achieving state-of-the-art visual quality of novel view image
synthesis. Despite the progress, representing 3D shapes with
neural implicit fields usually requires training on densely sampled
points, some of which are less informative and would increase the
computational cost and lead to less accurate estimation.
Neural Implicit Fields for Pose Estimation. While most of the
research in neural implicit fields focuses on shape reconstruction
and view synthesis, some other methods adopt implicit fields for
object pose estimation [1], [52]. A conventional and straightfor-
ward solution is to reconstruct the object surface and estimate
its pose simultaneously [6], [32], [49], [70] so that the two tasks
could boost each other. For example, ShAPO [20] jointly predicts
object shape, pose, and size in a single-shot network. DISP6D [70]
disentangles the latent representation of shape and pose into two
sub-spaces, improving the scalability and generality. With the
mechanism of representing complex 3D geometry from a set of
RGB images, Neural Radiance Fields (NeRF) is also applicable to
optimize the object pose w.r.t a singe-view image. For example,
iNeRF [74] uses gradient descent to minimize the residual between
pixels rendered from a pre-trained NeRF and pixels in an observed
image. NeRF-Pose [31] first reconstructs the object from multiple
views in the form of a neural implicit representation and then
regresses the object pose by predicting pixel-wise 2D-3D corre-
spondences between images and the reconstructed model. Unlike
the traditional correspondence-based methods which predict 3D
object coordinates merely at observed pixels in the input image,
Huang et al. [18] predicts canonical coordinates at any sampled 3D
in the camera frustum, generating continuous neural implicit fields
of canonical coordinates for instance-level pose estimation. Wan et
al. [18] extend the idea of dense per-point estimation to category-
level pose estimation by proposing a semantically-aware canonical
space and a transformer-based feature propagation module. Our
method is inspired by the previous works of dense per-point
estimation. However, it generates positive-incentive sample points
with a learning-based method which could improve the training
efficiency of the implicit neural networks.
Point Sampling Strategy in Neural Implicit Fields. Training
neural implicit fields for 3D shapes is challenging and time-
consuming as it requires large sample counts to cover the region
both inside and outside the surface, especially for 3D shapes with
complex geometry. Various sampling strategies have been adopted
in neural implicit fields to achieve better training efficiency. For 3D
reconstruction, uniform sampling and near-surface sampling that
selects a certain number of points in the boundary space or near the
underlying surface, are widely used in a large number of previous
works. Some works adopt a combination of them to achieve
balanced training [56]. Xu et al. [72] propose a farthest point
sampling algorithm resulting in a fast network. Several adaptive
point sampling strategies are developed to find the hard training
points, allowing faster convergence and accurate representation of
geometry details [23], [73], [75]. There are also a bunch of works
that focus on developing sophisticated point sampling on NeRFs.
Mildenhall et al. [46] utilize a hierarchical sampling procedure

by training an extra coarse network, allowing efficient network
training. Li et al. [33] and Sun et al. [60] discretize the scene
into voxels and compute the importance of each voxel to the
rendered image. Therefore, the method can skip the invalid areas
and avoid unnecessary computation. Training neural implicit fields
to directly sample in an end-to-end manner is another direction [4],
[29], [39], [53]. These methods require additional time to train
the sampling network and would not generalize well in unseen
scenarios. Our method is relevant to those methods. However, it
is designed specifically for pose estimation from a novel prospect
and can be generalized in other relevant tasks.
Equivariant Network for Point Cloud Analysis. The equiv-
ariance property is crucial for point cloud analysis. Various ap-
proaches were proposed to address this problem. A straightforward
way is to estimate the orientation from the input so that the equiv-
ariance can be obtained. There are a bunch of existing works in this
direction, including object orientation estimation [16], [50], [66]
and local patch orientation estimation [54], [55], [71]. Recently,
convolutions with steerable kernel bases have emerged [2], [43],
[68], [69], using additional storage and specialized operations to
guarantee equivariance for common network layers. For example,
3D Steerable CNNs adopt the convolution with steerable kernel
bases [69]. This convolution results in a rotation of the features
in the feature space, inheriting equivariance from input points
to output features. Vector-based neural network is another direc-
tion [11], [24], [58]. For example, vector neurons [11] extend the
1D scalars to 3D vectors, enabling the mapping of SO(3) actions to
the feature space. Our method adopts the idea of vector neurons.
However, we make extensions to make it applicable for the 3D
graph convolution layers, greatly broadening its application scope.

3 METHOD

3.1 Definition

As discussed in the introduction, densely sampling points across
the entire camera space often leads to inaccurate estimations
that can hinder the learning process and compromise overall
performance. This issue arises primarily due to the presence
of points with indistinctive or less-informative features, which
provide unreliable signals.

To tackle this challenge, we introduce positive-incentive point
sampling (PIPS), a strategic sampling approach designed to
selectively identify points that actively contribute to and facilitate
effective network training. PIPS refers to a process that predicts
sample points that would positively incentivize the learning pro-
cess and the overall performance of implicit neural networks.

Specifically, the sample points of PIPS are required to satisfy
three key criteria: 1) Distinctive features: Each sample point
must exhibit distinctive and discriminative features that enable
high-certainty estimation of its canonical coordinate; 2) Sparsity:
The sample points should be sparse to maintain computational
efficiency and avoid unnecessary redundancy; 3) Inter-point com-
plementarity: The set of sample points should collectively provide
sufficient information to constrain all DoFs of the object’s pose.

3.2 Overview

Our method consists of two crucial modules: the SO(3)-
equivariant convolutional implicit network and the PIPS es-
timation network. The SO(3)-equivariant convolutional implicit
network is a backbone that estimates point-wise object canonical
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Fig. 4: Overview of the proposed method. First, an SO(3)-equivariant convolutional implicit network with dense point sampling (the
teacher model) is optimized to generate the pseudo ground-truth. Second, the PIPS-C and PIPS-S estimation networks (the student
model) are trained based on the generated pseudo ground-truth. Third, an SO(3)-equivariant convolutional implicit network is trained
with the sample points estimated by the PIPS estimation network.
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Fig. 5: (a) By rotating the 3D graph convolution kernel via a
regular icosahedron rotation group, we generate a set of convo-
lutional kernels. (b) Point cloud convolutions with the rotated
convolutional kernels make the generated features SO(3)-invariant.
By generating vector neurons by the SO(3)-invariant point feature
and multiplying the vector neurons with the rotation matrix Ra

corresponding to the qa ∈ Q with the highest activation, the
feature becomes SO(3)-equivariant.

coordinates at any query location based on the input points.
The PIPS estimation network includes two main components:
PIPS-C and PIPS-S, which are two successive modules that
boost the training of the SO(3)-equivariant convolutional implicit
network. Specifically, PIPS-C generates sample points with
high estimation certainty. After that, PIPS-S further selects the
sparse and geometrically stable subset from the sample points of
PIPS-C, resulting in a more parsimonious pointset. An overview
of the method is illustrated in Figure 4.

3.3 SO(3)-Equivariant Convolutional Implicit Network

While previous non-equivariant neural networks could produce
satisfactory point-level predictions, their training typically re-
quired data augmentation to ensure the training data represented a
sufficiently diverse range of poses over the SO(3) group. SO(3)-
equivariant neural networks reduce the model complexity, accel-
erating the training process and leading to more robust predic-
tions. Recently, various methods have been developed to provide
SO(3)-equivariance to basic neural network layers, but few can
incorporate sophisticated layers, such as 3D convolution layers. To
facilitate an effective feature extraction for 3D convolution layers,
we propose an SO(3)-equivariant 3D graph convolution layer.

Implementing 3D convolution with SO(3)-equivariance
presents several challenges. First, 3D convolutions aggregate in-
formation from local neighborhoods, as the relative positions and
orientations of neighboring points change under rotation. The
characteristic inherently breaks SO(3)-equivariance. Second, im-
plementing 3D convolution with continuous SO(3)-equivariance
requires substantial memory and computation cost. The proposed
SO(3)-equivariant 3D graph convolution is a kernel-based ap-
proach that allows us to compute the convolution with a limited
number of rotations, maintaining a balance between representation
ability and computational cost.

3.3.1 SO(3)-equivariant 3D graph convolution layer

The SO(3)-equivariant 3D graph convolution layer takes a point
cloud P as input and generates the per-point convolutional SO(3)-
equivariant features. To achieve this, we adopt the idea of vector
neurons [11] that extend each 1D scalar neuron in the network
to a 3D vector. The vanilla vector neurons allow direct mapping
of rotations on several basic layer types, including the linear
layer, the pooling layers, and the normalization layers. To enforce
SO(3)-equivariance in point cloud convolution while maintaining
a balance between performance and computational overhead, we
extend the vector neurons to make them applicable to the 3D graph
convolution layers [38].

The process of the proposed SO(3)-equivariant 3D graph
convolution is shown in Figure 5. Suppose the feature of each
point pn in P is f(pn) ∈ RC×3. The receptive field of pn is ΠM

n .
M is the number of points in the receptive field. The learnable 3D
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Fig. 6: Architecture of the SO(3)-equivariant convolutional implicit network. Left: Multiple SO(3)-equivariant 3D graph convolution
layers and point downsampling layers are adopted to aggregate multiple-scale point features. The RGB features are extracted by
DINOv2. Right: The aggregate features are propagated to any 3D sample point via feature propagation layers, estimating the point-wise
object canonical coordinate.

convolution kernel KU = {k0, k1, k2, ..., kU} composes of one
center point and U support points. k0 = (0, 0, 0) is the center
point. ku (u ∈ {1, 2, ..., U}) are the support points in the kernel.
The 3D graph convolution is:

Conv(ΠM
n ,KU ) = ⟨f(pn), w(k0)⟩+Θ, (1)

where w(k0) ∈ RC×3 is the weight matrix of k0. ⟨, ⟩ is the feature
distance. Θ measures the similarity between ΠM

n and the support
points in KU . Specifically, ⟨, ⟩ is the sum of the inner-product
operation of each 1D neuron in f(pn) and w(k0). Θ is computed
as:

Θ = max
q∈Q

U∑
u=1

max
m∈(1,M)

sim(pm, kqu). (2)

Q is a rotation group. We implement it with the regular icosahe-
dron rotation group. kqu is the support point rotated by q ∈ Q. pm
(m ∈ {1, 2, ...,M}) is point in the receptive field ΠM

n . sim(·) is
the similarity between the feature of pm and the weight of kqu:

sim(pm, kqu) = ⟨f(pm), w(kqu)⟩
⟨dm,n, k

q
u⟩

∥dm,n∥ · ∥kqu∥
, (3)

where dm,n denotes the direction from point pn to point pm.
Note that ku (u ∈ {1, 2, ..., U}), w(k0), and w(ku) (u ∈
{1, 2, ..., U}) are learnable elements which are optimized during
network training.

As Equation 2 selects the rotation qactivation ∈ Q with the
highest activation, the operation in Equation 1 is SO(3)-invariant.
To further make the 3D graph convolution SO(3)-equivariant,
we generate a 3D vector neuron by duplicating the output of
Equation 1. We then multiply the 3D vector neuron with the
rotation matrix Ractivation corresponding to the rotation qactivation,
which encodes the directional information into the output.

3.3.2 Network architecture for pose estimation
The architecture of the SO(3)-equivariant convolutional implicit
network is shown in Figure 6. To train a network to output point-
wise object canonical coordinates from which the object pose
could be estimated, we apply multiple SO(3)-equivariant 3D graph
convolution layers to aggregate multiple-scale point features.
To be specific, the network contains five SO(3)-equivariant 3D
graph convolution layers and two point downsampling layers. To
leverage the information in the input RGB image, we crop the

image to make it only contain the target object and feed it into
the DINOv2 [47] to extract the RGB features. The downsampled
point cloud is projected onto the RGB feature maps to fetch its
RGB features with a bilinear interpolation. The point features, as
well as the RGB features, are concatenated to predict the point-
wise object canonical coordinates of the input points. Moreover,
to facilitate the object canonical coordinate estimation at any 3D
sample points, we adopt the feature propagation layers in [65] to
estimate features at query locations. Note that, all the 1D scaler
neurons in the feature propagation layers are represented as 3D
vectors to guarantee SO(3)-equivariance. The propagated features
are then converted to SO(3)-invariant features with the invariant
layer in [11] and used to predict the object’s canonical coordinates
with an MLP. The network is trained on the sample points with the
mean squared error loss function. The object pose is then estimated
with the method in [67].

3.4 PIPS Estimation Network
Having introduced the SO(3)-equivariant convolutional implicit
network, we then describe the PIPS estimation network that
generates sampling points to positively incentivize the training of
it. The PIPS estimation network is trained in a knowledge distil-
lation manner, where a sophisticated teacher model is first trained
to generate the pseudo ground-truths and the PIPS estimation
network is then optimized to learn from those. In the following,
we first describe the process of generating the pseudo ground-
truth and then elaborate on the network architecture of the PIPS
estimation network.

3.4.1 Generating pseudo ground-truth
Manually annotating the positive-incentive sampled points is in-
feasible due to the infinite potential sample locations and the lack
of explicit labeling rules. Hence, we propose to achieve this by
optimizing a neural network that automatically generates those
points. The neural network (i.e. the teacher model) is implemented
with the SO(3)-equivariant convolutional implicit network with an
extra point-wise uncertainty estimation mechanism. Specifically,
we adopt the dense sampling strategy which trains the teacher
model on random locations Φ spread near the input point cloud.
For each ϕ ∈ R3 in Φ, we not only estimate its object canonical
coordinate but also add an output head to estimate a Gaussian
distribution (xϕ, σϕ) to represent the uncertainty, where xϕ ∈ R3
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Fig. 7: The network architecture of the PIPS estimation network. The network takes a point cloud as input, embeds it into a high-
dimensional feature space with an encoder, and generates the PIPS-C sample points with a decoder. A gating unit and a Gumbel-
Softmax module are applied to generate the PIPS-S sample points. Multiple loss functions are adopted to train the network.

and σϕ ∈ R. The network could be trained with a point-level
adversarial loss function:

LADV =
1

σ2
ϕ

∥xϕ − x̂ϕ∥2 + log σ2
ϕ, (4)

where x̂ϕ is the ground-truth object canonical coordinate. The
intuition of the loss function is to encourage accurate object canon-
ical coordinate estimation when the point feature is certain [26]. In
such cases, the point is positive-incentive since it would bring suf-
ficient information gain by training on it. Otherwise, it encourages
high variance σϕ, implying that it is not positive-incentive.

Despite the ability of the above loss function to filter the less
informative sample points, we found the point-level uncertainty
estimation should be more fine-grained. As such, the variance
σϕ should be anisotropic, i.e. contains uncertainties along each
direction.

In our method, instead of estimating a scalar variance σ, the
network predicts a scaling matrix S ∈ R3×3 and a quaternion
q that represents a rotation R ∈ R3×3. The rotated covari-
ance matrix is represented as Σϕ = RSSTRT. Considering the
anisotropic variance, the point-level adversarial loss function could
be computed by the Kullback-Leibler divergence for multivariate
Gaussian distributions [13]:

LADV =(xϕ − x̂ϕ)
T
Σ−1

ϕ (xϕ − x̂ϕ)

+ ln |Σϕ|+ tr
(
Σ−1

ϕ

)
,

(5)

where tr(·) is the trace of the matrix.
We train the teacher model until convergence. For each object,

we label the points with tr(SST)<ω as positive, and vice versa.
ω is the threshold. To facilitate the training of PIPS estimation
network, the generated labels by the teacher model at random
sample points Φ are converted into the labels of the volumetric
grids. The label of any center point in the voxels is computed by
voting considering all the sample points in this voxel.

We dub the generated labels pseudo ground-truth, as they
are generated by an auxiliary task, cannot be rigorously defined,
and might be inaccurate. Nevertheless, we found the generated
samples are not only geometrically meaningful but also can boost
the performance. Please refer to the experiment section for the
quantitative and qualitative comparisons.

3.4.2 Network architecture
As shown in Figure 7, the PIPS estimation network takes the
point cloud P as well as the corresponding RGB image as
input and outputs positive-incentive sample points. We divide the
network into two sequential components PIPS-C and PIPS-S

that generate sample points with high estimation certainty and
sample points with high geometric stability, respectively.
PIPS-C estimation. The PIPS-C estimation component takes P
as input, embeds it into a high-dimensional feature space Rd with
a point cloud based encoder, and generates sample points with a
volumetric grid based decoder. Each voxel in the output volumetric
grid contains a label indicating whether it is a valid positive-
incentive sample point. We adopt 3D-GCN [38] as the encoder
and the convolutional occupancy networks as the decoder [51]. In
the 3D-GCN, to leverage the color information in the input RGB
image, we crop the image to make it only contain the target object
and feed it into the DINOv2 [47] to extract the RGB features. The
downsampled point cloud is projected onto the RGB feature maps
to fetch its RGB features. The output volumetric grid V shares
the same center as P and includes h3 voxels. We set the side
length of V as double of the diagonal length of the target object,
for instance-level pose estimation, and double of the diagonal
length of the categorical mean shape [62], for category-level pose
estimation, respectively.

The following loss function is applied to optimize the network:

LPIPS-C =
∑
v∈V

LCE(ov, ôv), (6)

where LCE(·) is the cross-entropy loss. ov ∈ {0, 1} is the
estimated label of voxel v. ov = 1 indicates the center of the
voxel is a positive-incentive sample point, and vice versa. ôv is
the pseudo ground-truth, which is pre-generated in Section 3.4.1.
We denote the sample points generated by PIPS-C estimation
component as PPIPS-C.

PIPS-S estimation. The PIPS-C estimation component gen-
erates sample points with high estimation certainty and would
boost the training of the SO(3)-equivariant convolutional implicit
network. Nevertheless, it is unnecessary to use all of them. To
further generate parsimonious sample points, we propose the
PIPS-S estimation component.

We first mask the feature of the last layer in the PIPS-C
estimation component by assigning 0 to the feature of voxels
with ov = 0. Taking the masked feature as input, the PIPS-S
estimation component adopts two volumetric grid convolution
layers, followed by a ReLU layer, to aggregate the feature FPIPS-C

of PPIPS-C .
A softmax pooling layer is adopted to generate the global

feature which is then concatenated with the feature vector in each
voxel. A gating unit G is then applied, estimating a soft gating
decisions Gsoft which is a mask to indicate their activations:

Gsoft = tanh[G(FPIPS-C) + η], (7)
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(b) Stable pointset(a) Unstable pointset

x
y

Fig. 8: A 2D example of PIPS-S selection. The dots are the
input to the PIPS-S estimation component. The dots with an
ellipse are the selected PIPS-S sample points, where the ellipse
represents its anisotropic variances. (a) The pointset is unstable
w.r.t. the alignment because it has a high variance along the y-axis
direction, meaning that the locations along the y-axis are not well-
constrained. (b) The pointset is stable w.r.t. the alignment since no
DoF shows high variance for the points within the set, indicating
the locations are well-constrained.

where η is the Gumbel noise, we implement the gating unit G
with 1D MLPs.

Then, a Gumbel-Softmax module GSM [21] turns soft deci-
sions Gsoft into hard decisions Ghard ∈ {0, 1}Θ by replacing the
softmax with an argmax during the forward pass and retaining the
softmax during the backward pass [28], [64]:

Ghard = GSM(Gsoft). (8)

The hard decision Ghard is a binary mask that indicates which
points in PPIPS-C are activated. The Gumbel-Softmax module
provides a mechanism that outputs a binary mask in the forward
pass and allows the gradient to be back-propagated. Hence, the
gating attentional unit is end-to-end trainable. We denote the
activated points selected by the gating unit Ghard as PPIPS-S. The
PIPS-S estimation component is trained with the sparsity loss
function LSparsity and the stability loss function LStability:

LPIPS-S = LSparsity + LStability. (9)

The sparsity loss function considers the number of the ac-
tivated points. Suppose #PPIPS-S and #PPIPS-C are the point
number of PPIPS-S and PPIPS-C, respectively. LSparsity is computed
as the KL divergence between the pre-defined empirical sparsity
g = #PPIPS-S

#PPIPS-C
and a target sparsity ρ ∈ [0, 1]:

LSparsity = KL(ρ∥g) = ρlog(
ρ

g
) + (1− ρ)log(

1− ρ

1− g
). (10)

The stability loss function optimizes the distribution of
PPIPS-S from the perspective of geometric stability during point
cloud alignment [14], [57]. In the context of aligning two point
clouds (here, the input point cloud and the object point cloud in
canonical space), the input point cloud is considered geometrically
stable w.r.t. the alignment if all DoFs are well-constrained, mean-
ing that no DoF exhibits high variance. Conversely, the input point
cloud is deemed geometrically unstable w.r.t. the alignment if any
DoF shows high variance.

A 2D example is provided in Figure 8. The dots represent
the input to the PIPS-S estimation module. Dots marked with
ellipses indicate the selected PIPS-S sample points, where each

ellipse illustrates the anisotropic variance of the corresponding
point. In Figure 8(a), the point set is geometrically unstable during
alignment due to high variance along the y-axis. This implies that
the vertical positions are not well-constrained, allowing the point
cloud to slide along that direction. In contrast, the point set in
Figure 8(b) is geometrically stable, as no DoF displays significant
variance across the samples, indicating that all point locations are
sufficiently constrained.

We then describe how to compute the stability in practice. Sup-
pose p ∈ PPIPS-S. xp is the coordinate of p. Σp = RpSpS

T
p R

T
p is

the rotated covariance matrix of p pre-computed in Section 3.4.1.
We compute the stability of pointset PPIPS-S under point-wise
anisotropic uncertainties {Σp} as follows.

When a perturbation transformation [∆R,∆t] is applied to
PPIPS-S, the movement of the pointset ∆EPIPS-S considering the
point-wise anisotropic uncertainties is defined as:

∆EPIPS-S =
∑

p∈PPIPS-S

(∆ET
p ∆Ep), (11)

where ∆Ep is the per-point movement:

∆Ep = S−1
p RT

p (∆Rxp +∆t− xp), (12)

where S−1
p RT

p incorporates directional weighting from the
anisotropic uncertainty: RT

p rotates the displacement into the
principal-axis frame of the covariance, and S−1

p scales each
principal direction by the reciprocal of its standard deviation,
assigning a lower weight to directions with higher uncertainty.

Next, we approximate Equation (11) into the quadratic form:

∆EPIPS-S = [∆r ∆t]TC [∆r ∆t], (13)

where ∆r ∈ R3 denotes the rotation vector associated with
the rotation matrix ∆R ∈ R3×3. C is the covariance matrix
accumulated from xp and Σp. It encodes the increase in the
alignment error when the transformation is moved away from its
optimum [14].

The relation between the rotation vector ∆r and the rotation
matrix ∆R can be expressed by expanding ∆R via the Taylor
series:

∆R = I +∆r∧ +
(∆r∧)2

2!
+

(∆r∧)3

3!
+ · · · , (14)

where ∆r∧ is the skew-symmetric matrix representation of ∆r.
Retaining only the first-order term in (14) and substituting into
(12) gives:

∆Ep ≈ S−1
p RT

p

[
(I +∆r∧)xp − xp +∆t

]
= S−1

p RT
p

[
∆r∧xp +∆t

]
= S−1

p RT
p

[
− x∧

p∆r +∆t
]

=
[
− S−1

p RT
p x

∧
p S−1

p RT
p

] [∆r
∆t

]
,

(15)

where we used the property (∆r)∧xp = −x∧
p∆r.
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Substituting the above Equation (12) of ∆Ep into Equa-
tion (11) yields the quadratic form in Equation (13), where the
matrix C ∈ R6×6 is given by:

C = C1C2, (16)

C1 =

[
x∧
1R1S

−1
1 · · · x∧

kRkS
−1
k

R1S
−1
1 · · · RkS

−1
k

]
, (17)

C2 =

−S−1
1 RT

1 x
∧
1 S−1

1 RT
1

...
...

−S−1
k RT

k x
∧
k S−1

k RT
k

 , (18)

where the sign change in C1 follows from the skew-symmetric
property

(
x∧
p

)T
= −x∧

p . Here, x1, . . . , xk are the coordinates of
the points in PPIPS-S, and x∧ denotes the skew-symmetric matrix
associated with x.

The larger the pointset movement ∆EPIPS-S increase, the
greater the stability, since the error landscape will have a deep,
well-defined minimum. On the other hand, if there are perturbation
transformations that only lead to a small increase in pointset
movement, the pointset will be unstable concerning one or more
DoFs of the perturbation transformation.

The eigenvectors of C could reflect the pointset stability. If
all eigenvalues of C are large, any transformation away from
the minimum will result in a relatively large increase in pointset
movement. Let λ1, ..., λ6 be the eigenvalues of matrix C . To make
the pointset stable, all the eigenvalues should be large. As a result,
the stability loss function penalizes small eigenvalues:

LStability =

6∑
i=1

e−λi . (19)

An empirical explanation of the above two loss functions is
to find sample points with high confidence that are sufficient
to determine all the DoFs of the object pose while keeping the
number of sample points small. It is worth mentioning while
there might be multiple potential outputs that will lead to the
two loss functions being small, we only require the network to
output one of them. In practice, we found that using a small set of
pseudo ground-truth is sufficient for the PIPS estimation network
to generate meaningful and repeatable positively incentive points.
The reason might be that different shapes share similar geometric
patterns. The learned sampling strategy is generalizable across
various objects.

3.5 Training and Inference

The training of the proposed method contains three stages, as
shown in Figure 4. First, an SO(3)-equivariant convolutional im-
plicit network with dense point sampling (i.e. the teacher model) is
optimized to generate the pseudo ground-truth. Second, the PIPS
estimation network (i.e. the student model) is trained based on the
generated pseudo ground-truth. Third, another SO(3)-equivariant
convolutional implicit network is trained with the sample points
generated by the PIPS estimation network.

Despite the relatively high computational cost during the
pseudo ground-truth generation procedure, this process is op-
timized before the neural implicit field with SO(3)-equivariant
convolutions is trained. Moreover, an interesting phenomenon we
observe is that a small number of pseudo ground-truth is sufficient
for the PIPS estimation network, showing that the trained SO(3)-
equivariant convolutional implicit network is effective and has

good cross-instance and cross-category generalities. Once the
pseudo ground-truth is generated, the PIPS estimation network
could be efficiently trained, facilitating the efficient training of
downstream networks, e.g. the SO(3)-equivariant convolutional
implicit network.

During inference, given an input point cloud, our method gen-
erates the positive-incentive sample points by the PIPS estimation
network and predicts the per-point canonical coordinate on those
points. The object pose is then computed from the estimated
canonical coordinates by a modified Umeyama algorithm [63]
considering the anisotropic uncertainty.

3.6 Implementation details
We implement our method with PyTorch. The networks are trained
with the Adam optimizer on a single A100 GPU. The learning
rate is 10−3. For category-level pose estimation, we train separate
networks for each category. For the instance-level pose estimation,
we train separate networks for each instance. The training of
the generating pseudo ground-truth, PIPS-C estimation, and
PIPS-C estimation components take about 6, 2, and 5 hours,
respectively. The input point cloud includes 1, 024 points. In the
PIPS-C estimation component, we set the voxel size h as 8.
In the PIPS-S estimation component, we set the target sparsity
ρ as 0.1. When generating the pseudo ground-truth, we set the
threshold ω to 0.5. The dense sampling points used to train the
teacher model are randomly sampled within a cube in the camera
coordinate system. The cube is centered at the center of the input
point cloud P . The cube’s side length is twice the diagonal length
of the bounding box of the instance or the categorical mean shape.
A total of 4, 096 points are sampled in the cube. In the SO(3)-
equivariant convolutional implicit network, the farthest sampling
algorithm was employed to downsample the input point cloud.
Each kernel contains 13 support points; the receptive field includes
10 points. We add a small random noise to each of the PIPS-C
and PIPS-S sample points when feeding them into the SO(3)-
equivariant convolutional implicit network.

4 RESULTS AND EVALUATION

We conduct comprehensive experiments to evaluate the proposed
method. First, we provide the experimental results on category-
level pose estimation (Sec. 4.1) and instance-level pose estimation
(Sec. 4.2). Second, ablation and parameter studies (Sec. 4.3) are
conducted to analyze the crucial components and parameters of
the proposed method. Third, we conduct a pressure test to quanti-
tatively evaluate the robustness of the proposed method (Sec. 4.4).
Last, we show the cross-task generality by demonstrating that the
learned sampling strategy applies to other relevant tasks (Sec. 4.5).

4.1 Evaluation on Category-level Pose Estimation
4.1.1 Experimental setting
Category-level pose estimation needs to consider novel objects
that have not been trained, so the sample points should be carefully
generated to cover all the underlying shapes. We compare our
method with existing methods on category-level pose estimation
to show the effects.

The experiments are conducted on two datasets: NOCS-
REAL275 and ShapeNet-C. The NOCS-REAL275 dataset [67]
is a dataset containing 4.3k training RGB-D images and 2.75k
testing RGB-D images captured from multiple real-world scenes.
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TABLE 1: The comparisons of ShapeNet-C to existing datasets.

Dataset Avg. instances
per category

Avg. Chamfer distance
to mean shape (mm)

Avg.
occlusion (%)

NOCS-REAL275 [67] 4 2.7 46
NOCS-CAMERA25 [67] 31 2.4 44

Wild6D [77] 360 2.2 42
HouseCat6D [25] 19 2.8 49

ShapeNet-C 2000 3.1 53

The objects in the dataset belong to 6 categories: bottle, bowl,
can, camera, laptop, and mug. Note that, to better evaluate the
learning ability on small sets of training data, we did not use the
CAMERA training set in [67], which contains a large amount of
synthetic data, during training.

To better evaluate the performance of our method in challeng-
ing scenarios. We propose a new dataset, i.e., the ShapeNet-C
dataset. ShapeNet-C contains 60k training depth images and 6k
testing depth images. Each RGB-D image contains one object,
so no object detection method is needed, and the performance
on pose estimation could be better reported. We set the diagonal
length of the bounding box of each object as 1m. The dataset
contains object categories with large shape variations, such as
airplane, chair, and sofa. More detailed statistical comparisons of
ShapeNet-C to existing datasets are provided in Table 1. It shows
that ShapeNet-C is more challenging in terms of shape diversity
and occlusion. In particular, the test set of the ShapeNet-C dataset
contains the following challenging data:

• Holdout pose: objects scanned from untrained camera views.
We show the distribution of camera locations w.r.t. the object
in Figure 9a, where the color of each point indicates the
rotation of the camera along the roll axis. We see a large
difference in the distribution of the training and testing
samples.

• Novel shape: objects with large shape variation from those
in the training data. We show the distribution of chamfer
distance between each object to the categorical meaning
shape [62] in Figure 9b. We see that 98% of the samples have
a chamfer distance >9mm to the category’s mean shape.

• High occlusion: highly occluded objects with only a small
proportion being observed. The distribution of occlusion
percentage is given in Figure 9c. The statistics show that
91% of the samples have an occlusion rate exceeding 50%.

• Severe noise: objects with severe scan noise. We add random
Gaussian noise to the point cloud. The distribution of the
standard deviation is reported in Figure 9d. It tells that 79%
of the samples have a noise magnitude exceeding 2mm.

We see that the data distributions of the four subsets are quite
different from that of the training set. This makes pose estimation
on ShapeNet-C extremely challenging.

We use standard metrics to evaluate the performance on the
two datasets, respectively. For NOCS-REAL275, we adopt the
intersection over union (IoU) under pre-given thresholds, and the
average precision of detected instances for which the error is less
than n◦ for rotation and m for translation. These metrics are
utilized to evaluate the performance of object detection and pose
estimation, respectively. For ShapeNet-C, we report the rotational
error, and the translational error in the form of mean, and median
values. We also report the average precision of instances for which
the error is less than 5◦ for rotation and 5cm for translation.

(a) Holdout pose (b) Novel shape

(c) High occlusion (d) Severe noise

Training set

Holdout pose

Fig. 9: The statistical comparisons between the training set and
the test set of ShapeNet-C.

4.1.2 Quantitative comparison
Performance on NOCS-REAL275. We first compare our method
to the state-of-the-arts on NOCS-REAL275. The baselines include
those with different input modalities and those trained on real data
or real & synthetic data. The quantitative comparisons are given
in Table 2. It shows that our method outperforms all the baselines
on all evaluation metrics. The advantages come from our design
of SO(3)-equivariant networks and novel point sampling strategy.
Performance on ShapeNet-C. We then compare our method to
several representative baselines on ShapeNet-C. The quantitative
comparisons are reported in Table 3. It shows that our method
achieves state-of-the-art performance.

4.1.3 Qualitative comparison
The qualitative comparisons of the two datasets are visualized in
Figure 10 and Figure 11. We see that our method could estimate
the pose for most objects accurately, while the baselines cannot.
We also provide the visualization of the PIPS sample points in
Figure 13a and Figure 13b. The results show some interesting
phenomena. First, PIPS-C sample points are dense, distributed
around the object surface, possibly around the unseen surface
region, such as the occluded chair in Figure 13b. Second, instead
of uniformly distributing around the object surface, the sampling
rule varies on different shapes, see the laptop in Figure 13a. Third,
PIPS-S sample points are sparse, covering the crucial regions
of the input shape. Last, adding noise to the input points will not
substantially change the distribution of PIPS-S sample points,
such as the two cases in the last row of Figure 13b, where the
sampled points are speared near the wings and tail of the airplane
despite the noise.

4.2 Evaluation on Instance-level Pose Estimation
4.2.1 Experimental setting
We then evaluate our method on instance-level pose estimation
on the public dataset LineMOD-O [5]. LineMOD-O is a widely
used dataset for 6D object pose estimation of tabletop objects with
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Fig. 10: The qualitative comparisons on the NOCS-REAL275 dataset. Our method could accurately estimate the pose on all the tested
objects, while the baselines cannot.

TABLE 2: Quantitative comparisons on the NOCS-REAL275 dataset. ‘*’ denotes the IoU metrics computed as in [40].

Methods Input Data source Shape Prior IoU75∗↑ 5◦2cm↑ 5◦5cm↑ 10◦2cm↑ 10◦5cm↑
SGPA [8] RGB-D Syn.+Real ✓ 0.37 0.36 0.40 0.61 0.71

DPDN [35] RGB-D Syn.+Real ✓ 0.54 0.46 0.51 0.70 0.78
HS-Pose [79] D Real × 0.39 0.45 0.55 0.69 0.84
GenPose [78] D Real × 0.50 0.52 0.61 0.72 0.84
VI-Net [36] RGB-D Real × 0.48 0.50 0.58 0.71 0.82

SecondPose [9] RGB-D Syn.+Real × 0.50 0.56 0.64 0.75 0.86
AG-Pose [37] RGB-D Syn.+Real × 0.61 0.57 0.65 0.75 0.85

Ours RGB-D Real × 0.63 0.63 0.68 0.78 0.86

heavy occlusion. We use the average recall (AR) as the evaluation
metric [17]. It is computed as the arithmetic mean of the recall
rates for three pose-error functions: the visible surface discrepancy
(VSD), the maximum symmetry-aware surface distance (MSSD),
and the maximum symmetry-aware projection distance (MSPD).
The recall for each function is considered correct if the estimated
error is less than a predefined threshold.

4.2.2 Quantitative comparison

The quantitative comparison of our method to baselines is reported
in Table 4. The baselines include state-of-the-art methods. In the
table, AR is the average recall, i.e., the arithmetic mean of the
recall rates for the pose-error functions. We see that our method
achieves the best performance among all baselines without a
refinement procedure. It is slightly inferior to GPose in the AR
metric and has an obvious advantage in computational efficiency.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 3: Quantitative comparisons on the ShapeNet-C dataset.

Methods Input Data source
Rotation Translation

Mean(◦) ↓ Median(◦)↓ 5◦ ↑ Mean(cm)↓ Median(cm)↓ 5◦5cm ↑
NOCS [67] RGB Syn. 53.15 27.68 0.34 6.87 5.03 0.29

GPV-Pose [12] D Syn. 50.95 20.62 0.38 6.31 4.82 0.33
GenPose [78] D Syn. 48.29 11.81 0.41 5.76 4.29 0.37
VI-Net [36] RGB-D Syn. 46.45 9.81 0.47 5.55 3.89 0.42

SecondPose [9] RGB-D Syn. 45.77 7.87 0.49 5.42 3.91 0.45
AG-Pose [37] RGB-D Syn. 40.45 7.49 0.53 5.01 3.59 0.46

Ours RGB-D Syn. 30.70 3.16 0.66 3.84 2.13 0.62
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var_test71_input

var_test95
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OursRGB image

Fig. 11: The qualitative comparisons on the ShapeNet-C dataset.
The grey points denote the input points. The colored points
represent the canonical shapes transformed with the estimated
poses.

The good performance of GPose stems from its mechanism of
rendering and comparing for pose refinement, which incurs a
significant computational cost.

4.2.3 Qualitative comparison
We visualize the comparison of the estimated pose by our method
on the LineMOD-O dataset in Figure 12. It is clear that our method
would lead to more accurate pose estimation in challenging
scenarios, as highlighted. We also provide visualizations of the
sample points generated by PIPS in Figure 13c.

4.3 Ablation and Parameter Studies

In Table 5, we study the key components of our method to quantify
their efficacy. In Table 6, Table 7, and Table 8, we study the impact

TABLE 4: Quantitative results on the LineMOD-O dataset. The
best results are in bold, and the second-best results are underlined.

Methods Data type Refinement AR time

CDPNv2 [34] RGB × 62.4 0.98
NCF [19] RGB × 63.2 7.17

ZebraPose [59] RGB × 72.1 0.25
CosyPose [30] RGB-D ✓ 71.4 13.74
GDRNPP [41] RGB-D × 71.3 0.28

GDRNPP [41] (GPose) RGB-D ✓ 80.5 4.58

Ours RGB-D × 77.3 0.39

OursZebraPose Ground-truthNCF

Fig. 12: The qualitative comparisons on the LineMOD-O dataset.
The boundary of the shape transformed by the estimated pose is
shown in the figure. Please pay attention to the highlighted objects.

of several parameter settings. The experiments are conducted on
the ShapeNet-C dataset.
No PIPS and its components. The PIPS estimation network,
including the PIPS-C and PIPS-S estimation components, is
our core contribution. To evaluate the necessity, we turn off the
components and retrain the networks. Several conclusions can
be drawn from the results. First, the baseline of w/o PIPS uses
near-surface sampling instead of PIPS. It is inferior to our full
method, confirming the necessity of detecting positive-incentive
sample points. However, this baseline achieves better performance
when compared to state-of-the-art implicit neuron networks in
pose estimation [65] (0.45 in 5◦5cm), demonstrating the effects
of the proposed SO(3)-equivariant convolutional implicit network.
Second, the baseline of w/o PIPS-C does not filter sample
points with low estimation certainty, resulting in a substantial
performance drop. Third, the baseline of w/o PIPS-S did not
consider the geometric stability. Its performance is slightly inferior
to our full method. The results demonstrate the need for the PIPS
and its two components.
No anisotropic variance. To evaluate the effectiveness of the
anisotropic variance in generating the pseudo ground-truth, we
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PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image

PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image

(a) NOCS-REAL275

PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image

PIPS-C sample points PIPS-S sample pointsPoint cloud

(without noise)

RGB image PIPS-C sample points PIPS-S sample pointsPoint cloud

(with noise)

RGB image

(b) ShapeNet-C

(c) LineMOD-O

PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image

PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image PIPS-C sample points PIPS-S sample pointsPoint cloudRGB image

Fig. 13: Visualization of the PIPS sample points. The results show that: 1) PIPS-C sample points are dense, distributed around the
object surface, possibly around the unseen surface region, such as the occluded chair in (b); 2) instead of uniformly distributing around
the object surface, the sampling rule varies on different shapes, such as the laptop in (a); 3) PIPS-S sample points are sparse, covering
the crucial regions of the input shape; 4) adding noise to the input points will not substantially change the distribution of PIPS-S
sample points, such as the two cases in last row of (b), where the sampled points are speared near the wings and tail of the airplane
despite the noise. The results are produced with only the point cloud as input, without the RGB image features.

replace it with a scalar variance and train the network in Sec-
tion 3.4.1 with the loss function by formulation 4. Consequently,
the PIPS-S estimation component is also turned off. The de-
graded performance of this baseline validates our design.
No SO(3)-equivariance. The SO(3)-equivariant convolutional
implicit network is one of the main contributions. We replace
it with an existing non-equivariant network, i.e., 3D-GCN [38].
We see that this baseline is less capable on the ShapeNet-C
dataset. We also found that this baseline is significantly inferior
to our full method in the holdout pose subset, where our full
method achieves 0.61 in 5◦5cm and the baseline of w/o SO(3)-

equivariance achieves 0.38 in 5◦5cm.
No RGB feature. Adding RGB features seems straightforward,
which could enhance the overall performance. To evaluate its
importance, we ablate the RGB features in our method and retrain
the networks. The performance drop shows that the RGB features
are crucial in our method.
Parameter settings. Several key parameters are crucial to our
method. Here, we evaluate other possibilities to study the ratio-
nality of the parameter settings. The parameters include: 1) the
voxel size h of the network output in the PIPS-C estimation
component; 2) the target sparsity ρ in the training loss function
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TABLE 5: Ablation study of our method on ShapeNet-C.

Methods Median(◦)↓ Median(cm)↓ 5◦5cm↑
w/o PIPS 5.92 2.78 0.51

w/o PIPS-C 5.34 2.61 0.53
w/o PIPS-S 4.23 2.49 0.57

w/o anisotropic variance 4.51 2.89 0.55
w/o SO(3)-equivariance 5.18 3.02 0.49

w/o RGB 3.48 2.67 0.59
Full method 3.16 2.13 0.62

Degree mm

Percentage mm

(a) Holdout pose (b) Novel shape

(c) High occlusion (d) Severe noise

Fig. 14: Robustness evaluation. The quantitative comparisons of
our method to a baseline method on the four challenging subsets
of the NOCS-CAMERA25 dataset. Our method is more robust on
unseen poses, novel shapes, high occlusion, and severe noise.

of the PIPS-S estimation component; 3) the threshold ω to
determine the positive samples in generating pseudo ground-truth
for the PIPS estimation network. In general, the results show
our method is not very sensitive to these parameter settings.
Nevertheless, using a large h increases the training efforts and
does not lead to significant improvements. Selecting a small ρ
makes the generated sample points sparse, probably missing the
detailed information. Adopting a small ω incurs uncertain points
that are unbeneficial to the network training.

4.4 Robustness Evaluation
Robustness in challenging scenarios. To evaluate the robust-
ness of our method, we conduct a pressure test on the NOCS-
CAMERA25 dataset following a similar data division in Sec-
tion 4.1. The quantitative comparisons to the baseline method
AG-Pose [37] are shown in Figure 14. The plots show that
our method is more stable and robust in scenarios with holdout
pose, novel shape, high occlusion, and severe noise. There are
several phenomena we can observe. First, our method achieves
better performance on holdout pose, revealing the necessity of
the SO(3)-equivariant convolutional implicit network. Second, the
better performance of our method on novel shape demonstrates
the advantage of balancing the exploitation and exploration of
the proposed PIPS. Last, the results on high occlusion and
severe noise imply the robustness of our method, thanks to the
mechanism of sampling in the unobserved regions.
Robustness to perturbation on sample points. Another inter-
esting problem is the method’s robustness under perturbations

TABLE 6: Effect of voxel size h in PIPS-C estimation.

Voxel size Median(◦)↓ Median(cm)↓ 5◦ ↑ 5◦5cm↑
4 5.42 3.15 0.56 0.49
8 3.16 2.13 0.68 0.64

16 3.28 2.08 0.68 0.62
32 3.71 2.34 0.63 0.58

TABLE 7: Effect of target sparsity ρ in PIPS-S estimation.

Target sparsity Median(◦)↓ Median(cm)↓ 5◦ ↑ 5◦5cm↑
0.3 3.42 2.65 0.63 0.56
0.2 3.28 2.38 0.68 0.61
0.1 3.16 2.13 0.66 0.62

0.05 3.71 2.84 0.59 0.52

TABLE 8: Effect of threshold ω in positive sample selection of
the PIPS estimation network.

Threshold Median(◦)↓ Median(cm)↓ 5◦ ↑ 5◦5cm↑
0.9 4.32 3.24 0.57 0.49
0.7 3.89 2.95 0.61 0.54
0.5 3.16 2.13 0.66 0.62
0.3 3.58 2.75 0.63 0.56

of the PIPS-S sample points. To investigate this problem, we
randomly add Gaussian noise to the generated PIPS-S sample
points during both the training and testing. We found the influence
is not significant when the standard deviation of noise is less than
1 cm. Moreover, we conducted another experiment that randomly
dropped out some PIPS-S sample points during the training of
testing of the student model. Results show the performance is
robust with about 30% of the sample points being turned off.

4.5 Cross-task Generality of PIPS
The PIPS estimation network essentially learns to generate
sample points whose features are informative and representative,
allowing for a direction-aware quantification of prediction con-
fidence for 3D coordinates. Consequently, the learned sampling
strategy might be useful to other relevant tasks that involve per-
point 3D coordinate regression and require uncertainty estimation
for these outputs. To show the cross-task generality of PIPS,
we apply the PIPS estimation network trained on category-level
pose estimation (denoted as PIPSCAT) to two relevant tasks:
instance-level pose estimation and shape reconstruction. Specif-
ically, PIPSCAT is trained on the ShapeNet-C dataset.
Generalizing to instance-level pose estimation. We first apply
PIPSCAT to the instance-level pose estimation task. To verify its
generality, we train an alternative SO(3)-equivariant convolutional
implicit networks to estimate object pose in the LineMOD-O
dataset with the PIPS sample points generated by PIPSCAT. We
then compare it with the original network trained on instance-level
pose estimation (denoted as PIPSINS) as described in Section 4.2.
Interestingly, we found PIPSCAT and PIPSINS produce similar
distributions of sample points, resulting in comparable perfor-
mances of the alternative method.
Generalizing to shape reconstruction. To validate the effects of
PIPSCAT in the shape reconstruction task, we train two SO(3)-
equivariant convolutional implicit networks to estimate the point-
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Fig. 15: (a) The training plot of the generalizing to shape recon-
struction experiment. (b) Examples of the reconstructed shapes
during the network training.

wise SDFs similar to DeepSDF [48]. The networks take single-
view depth images as input and learn continuous signed distance
functions to represent the complete shape. The object is then
reconstructed by the Marching Cubes algorithm [42]. The two
networks are trained with random sample points and the PIPS-C
sample points by PIPSCAT, respectively. The training plots of
the two networks are visualized in Figure 15a, which shows
that PIPS-C sampled points lead to a faster error drop. The
reconstructed shapes generated by the two methods are visualized
in Figure 15b. The results indicate that the PIPS-C trained
on pose estimation is indeed helpful to shape reconstruction,
demonstrating the cross-task generality.

5 CONCLUSION AND DISCUSSION

In this work, we studied the problem of positive-incentive point
sampling for neural implicit fields. To this end, we proposed
a PIPS estimation network that generates sparse sample points
that would gain sufficient information to determine all the DoFs
of the object pose by training on them. Moreover, an SO(3)-
equivariant convolutional implicit network that estimates point-
level attributes with SO(3)-equivariance at any sample point is de-
veloped, outperforming most existing implicit neuron networks in
pose estimation. Our method achieves state-of-the-art performance
on three datasets. Several crucial conclusions can be drawn from
this study. First, dense sampling is unnecessary for pose estimation
with neural implicit fields. Second, positive-incentive point sam-
pling can be estimated with a learning-based approach. Third, the
learned sampling strategy is generalizable to other relevant tasks.

Our method estimates 3D anisotropic uncertainty from a
pointset, making it applicable to tasks that involve per-point
3D coordinate regression and require uncertainty estimation for
these outputs. Promising applications include: 1) Localization and
Mapping: Our method can be used to select landmarks or points in
a point cloud that provide the most reliable information for pose
estimation, reducing drift and improving robustness in perceptu-
ally challenging environments; 2) Point Cloud Registration: Our
method can prioritize point correspondences with high certainty
and geometric stability, leading to faster convergence and higher
accuracy in alignment algorithms.

Our method has the following limitations. First, the PIPS
estimation network is trained with the pseudo ground-truth gener-
ated by a teacher model which requires additional training efforts.
Integrating the two networks into a unified framework might make
the method concise and further reduce the training costs. Second,
our method cannot handle the problem of pose ambiguity caused
by occlusions. An interesting direction is to opt for a diffusion

model-based network that could generate multiple outputs given
an input point cloud. For future work, we expect to apply the
proposed PIPS to Neural Radiance Fields [46] and 3D Gaussian
Splatting [27], which might enable more efficient network training
and improve the quality of synthesis images in large-scale scenes.
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