Data-Driven Contextual Modeling for 3D Scene Understanding

Yifei Shi^a, Pinxin Long^c, Kai Xu^{a,c,*}, Hui Huang^{b,c}, Yueshan Xiong^a

^aHPCL, National University of Defense Technology ^bShenzhen University ^cShenzhen VisuCA Key Lab / SIAT

Abstract

The recent development of fast depth map fusion technique enables the realtime, detailed scene reconstruction using commodity depth camera, making the indoor scene understanding more possible than ever. To address the specific challenges in object analysis at subscene level, this work proposes a data-driven approach to modeling contextual information covering both intra-object part relations and inter-object object layouts. Our method combines the detection of individual objects and object groups within the same framework, enabling contextual analysis without knowing the objects in the scene *a priori*. The key idea is that while contextual information could benefit the detection of either individual objects or object groups, both can contribute to object extraction when objects are unknown.

Our method starts with a robust segmentation and partitions a subscene into segments, each of which represents either an independent object or a part of some object. A set of classifiers are trained for both individual objects and object groups, using a database of 3D scene models. We employ the multiple kernel learning (MKL) to learn per-category optimized classifiers for objects and object groups. Finally, we perform a graph matching to extract objects using the classifiers, thus grouping the segments into either an object or an object group. The output is an object-level labeled segmentation of the input subscene. Experiments demonstrate that the unified contextual analysis framework achieves robust object detection and recognition over cluttered subscenes.

Keywords: Scene understanding, object recognition, contextual modeling, data-driven approach

*Corresponding author: kaixu@nudt.edu.cn

Figure 1: Scene understanding by our method. (a): The input point cloud of a table-top scene. (b): The labeling result (legends show semantic labels in color).

Preprint submitted to Computers & Graphics

1 1. Introduction

² With the rapid development of 3D sensing techniques, ³ the digitalization of large-scale indoor scenes has be-⁴ come unprecedentedly accessible to a wide range of ⁵ applications. Among the most exciting and promising ⁶ applications, robot-operated exploration and interaction ⁷ over unknown indoor environment would benefit signif-⁸ icantly from the availability of high-quality and realtime ⁹ acquired 3D geometry information [1]. Such 3D in-¹⁰ formation can not only improve robot navigation and ¹¹ exploration, but more importantly, facilitate efficient ¹² robot-scene interaction with fine-grained understanding ¹³ of scene objects. The latter may support highly complex ¹⁴ robot tasks such as room cleaning.

¹⁵ Motivated by the high demand, extensive research has
¹⁶ been devoted to the understanding of scanned indoor
¹⁷ scenes. Most existing works on scene understanding
¹⁸ focus on large-scale objects, such as furniture, as well
¹⁹ as their spatial layout [2, 3, 4, 5, 6], since the analysis

²⁰ is usually limited by the quality and resolution of input ²¹ scans. Recent advances in volumetric scan fusion tech-²² nique (such as KinectFusion [7]) has made it possible ²³ to reconstruct quality and detailed scenes from scans ²⁴ captured by commodity depth camera (e.g. Microsoft ²⁵ Kinect and Asus Xtion). The dense point clouds pro-²⁶ cessed by KinectFusion can well capture small scale ob-²⁷ jects such as household objects, which enables detailed ²⁸ understanding at a subscene level, e.g. many objects ²⁹ placed a tabletop; see Figure 1.

30 Object analysis at subscene level is arguably much more 31 challenging than that at whole scene level. Firstly, un-32 like furnitures which are usually sparsely distributed in 33 an indoor scene, household objects are often highly clut-³⁴ tered due to the limited space of supporting surfaces [8]. 35 For example, a tabletop scene is typically cluttered with 36 many on-table objects. Secondly, repetition of objects, 37 which is ubiquitous among furnitures and has been ex-³⁸ tensively exploited in previous works [3, 5], may not be 39 as commonly seen among household objects. For ex-40 ample, the objects placed on a table are mostly unique 41 within the subscene. Thirdly, from the acquisition point 42 of view, smaller objects are often more sensitive to scan-43 ning imperfection. These challenges make the existing 44 methods, dealing with large-scale furniture layout, un-45 suitable for the object analysis of small-scale subscenes.

46 To address these challenges, it seems a natural option 47 is to fully utilize the inter-object relations, or contextual 48 information. However, a key prerequisite for contextual 49 scene analysis is that all objects are segmented and la-50 beled with semantic tags [9], which is apparently infea-51 sible for an unsegmented scene. Essentially, context is 52 defined with objects. Without knowing objects, how can 53 we utilize contextual information to help the identifica-54 tion of objects? In this work, we try to tackle this prob-55 lem through integrating the discovery of both individ-56 ual objects and object groups into a unified framework. 57 While the former involves grouping parts into an object, 58 which detects individual objects, the latter amounts to ⁵⁹ finding structure groups [10] composed of multiple ob-60 jects, which can actually enhance or reinforce the de-61 tection and recognition of objects within the structure 62 group. The key idea is that contextual information could 63 benefit the detection of either individual objects or ob-64 ject groups, when objects are unknown. However, both 65 can contribute to object extraction.

To enable such unified framework, we take a data-driven
approach equipped with several key procedures. First,
we propose a robust segmentation method to partition a
indoor scene into segments which each represents either

⁷⁰ an independent object or a part of some object. We then
⁷¹ train a set of classifiers for both individual objects and
⁷² object groups, based on a database of 3D scene models.
⁷³ To improve the classification accuracy, we employ mul⁷⁴ tiple kernel learning (MKL) [11] to learn per-category
⁷⁵ optimized SVM classifiers for various objects and ob⁷⁶ ject groups. Finally, we perform a graph matching to
⁷⁷ extract objects using the classifiers, thus grouping the
⁷⁸ segments into either an object or an object group. The
⁷⁹ input of our algorithm is an indoor scene point cloud,
⁸⁰ and the output is an object-level labeled segmentation
⁸¹ of the input scene. Experiments demonstrate the ro⁸² bust performance for both segment extraction and object
⁸³ recognition on several subscenes.

⁸⁴ Our approach possesses two key features compared with ⁸⁵ previous methods. First, we perform a segmentation ⁸⁶ process before recognition, which leads to robust han-⁸⁷ dling of cluttered scenes. Second, instead of solving the ⁸⁸ recognition of individual objects and object groups as ⁸⁹ two separate problems, we encode features of both indi-⁹⁰ vidual objects and object layout into a unified classifier ⁹¹ via contextual modeling.

92 2. Related Work

Scene understanding is a long-standing research topic
which has received extensive research from both computer vision and computer graphics community. We
mainly review those works which take 3D point clouds
as input.

⁹⁸ *Point cloud segmentation*. Mesh segmentation is a fun-⁹⁹ damental shape analysis problem in computer graphics, ¹⁰⁰ for which both heuristic methods [12] and data-driven ¹⁰¹ approach [13] have been extensively studied over the ¹⁰² years. On the other hand, the segmentation of 3D point ¹⁰³ clouds remains to be a challenging problem.

¹⁰⁴ There are three kinds of methods for point cloud seg-¹⁰⁵ mentation [14]. The first type is based on primitive ¹⁰⁶ fitting [3, 15, 5]. It is hard for these methods to deal ¹⁰⁷ with objects with complex shape. The second kind ¹⁰⁸ of techniques is the region growing method. Nan et ¹⁰⁹ al. [2] propose a controlled region growing process ¹¹⁰ which searches for meaningful objects in the scene by ¹¹¹ accumulating surface patches with high classification ¹¹² likelihood. Berner et al. [16] detect symmetric regions ¹¹³ using region growing. Another line of methods formu-¹¹⁴ lates the point cloud segmentation as a Markov Ran-¹¹⁵ dom Field (MRF) or Conditional Random Field (CRF)

Figure 2: An overview of our algorithm. We first over-segment the scene and extract the supporting plane on the patch graph, then segment the scene into segments and represent the whole scene using a segment graph (a). To obtain the contextual information, we train a set of classifiers for both single objects and object groups using multiple kernel learning (b). The classifiers are used to group the segments into objects or object groups (c).

¹¹⁶ problem [4, 17, 14]. A representative random field seg-¹¹⁷ mentation method is the min-cut algorithm [17]. The ¹¹⁸ method extracts foreground from background through ¹¹⁹ building a KNN graph over which min-cut is performed. ¹²⁰ The shortcoming of min-cut algorithm is that the se-¹²¹ lection of seed points relies on human interaction. We ¹²² extend the min-cut algorithm by first generating a set ¹²³ of object hypotheses via multiple binary min-cuts and ¹²⁴ then selecting the most probable ones based on a voting ¹²⁵ scheme, thus avoiding the seed selection.

¹²⁶ *Object recognition*. Recently, the development of com-¹²⁷ modity RGB-D cameras has opened many new oppor-¹²⁸ tunities for 3D object recognition and scene recogni-¹²⁹ tion [18, 19]. With the ever-growing amount of 3D mod-¹³⁰ els becoming available, data-driven approach starts to ¹³¹ play an important role in 3D object recognition and has ¹³² gained great success [20].

133 Nan et al. [2] propose a search-classify approach to
134 scene understanding by interleaving segmentation and
135 classification in an iterative process. Li et al. [6] propose
136 scene reconstruction by retrieving objects from a 3D
137 model database. Song et al. [21] render database mod138 els from hundreds of viewpoints and train an exemplar139 SVM classifier for each of them to achieve object recog140 nition. Their method overcomes several difficulties in
141 object recognition, such as the variations of texture, il142 lumination, etc. Chen et al. [22] utilize contextual infor143 mation for indoor scene understanding. Small objects
144 and incomplete scans can be recognized with the help of
145 contextual relationships learned from database objects.
146 Our method lends itself to cluttered indoor scene anal147 ysis through integrating segmentation and recognition

¹⁴⁸ into a single framework, which leads to a better per-¹⁴⁹ formance when dealing with close-by objects than the ¹⁵⁰ contour-based method of [22].

151 Another line of analysis method is unsupervised learn152 ing based on the presence of repetitions or symmetries
153 in indoor scenes [3, 5, 23]. A limitation of such ap154 proaches is that such repetitive patterns are less com155 mon in subscenes dominated by household objects, e.g.,
156 a tabletop scene.

¹⁵⁷ *Plane extraction.* Plane extraction from point cloud is
¹⁵⁸ another important topic in scene understanding. For ex¹⁵⁹ ample, planes can be used to improve the reconstruc¹⁶⁰ tion of arbitrary objects containing both planar and non¹⁶¹ planar regions [24].

Perhaps the most widely used approach for plane extraction is RANSAC based plane fitting [15]. This method
scales well with respect to the size of the input point
cloud and the number of planes. Mattausch et al. [5]
utilize planar patches as a compact representation of the
point cloud of an indoor scene, which facilitates efficloud. Zhang et al. [24] perform plane extraction to
delineate non-planar objects. Plane extraction has also
been performed in the analysis of RGB-D data [25, 26].
These works trim the plane boundary and convert the
input data into a compact polygonal representation. Reraw scan of man-made scenes into an arrangement of
planes with both local fitting and global regularization.

177 3. Overview

The input of our algorithm is a 3D point cloud of indoor
scene acquired and fused by KinectFusion. Our goal is
to detect objects in the scene and recognize their semantic categories automatically. Our method proceeds in
two stages. First, we segment the point cloud into segments representing potential objects. Second, to achieve
object extraction and recognition, we propose a joint estimation of individual objects and object groups, as well
as their semantic categories.

¹⁸⁷ Segment detection. In the first stage, we segment the ¹⁸⁸ input scene (Figure 2 (a)). Specifically, we first over-¹⁸⁹ segment the entire scene and build a patch graph. We ¹⁹⁰ then extract the supporting plane with a method inte-¹⁹¹ grating RANSAC primitive fitting into graph-cut. Af-¹⁹² ter plane extraction, the remaining points are grouped ¹⁹³ into isolated groups. Within each group, we generate ¹⁹⁴ segments via a robust segmentation algorithm, which ¹⁹⁵ takes both geometry and appearance information into ¹⁹⁶ account. Based on the segmentation, we represent the ¹⁹⁷ entire scene as a segment graph with two types of edges ¹⁹⁸ representing direct spatial adjacency (solid lines in Fig-¹⁹⁹ ure 2) and spatial proximity (dashed lines) between two ²⁰⁰ segments, respectively.

²⁰¹ *Object extraction and recognition.* In the second phase, ²⁰² we extract objects via recognizing both individual ob-²⁰³ jects and object groups within a unified framework, ²⁰⁴ based on the above segment graph representation.

²⁰⁵ In an off-line stage, we train per-category optimized ²⁰⁶ SVM classifiers with multiple kernel learning for both ²⁰⁷ objects and object groups. The classifiers are trained ²⁰⁸ using 3D database models. Each 3D model is first con-²⁰⁹ verted into 3D point cloud using virtual scanning and ²¹⁰ segmented using the method mentioned above. We then ²¹¹ extract features from the corresponding segment graph ²¹² and train classifiers based on the graph.

²¹³ In the online stage, we extract objects or object groups ²¹⁴ from the segment graph of the input scene, through ²¹⁵ searching for the subgraph matching corresponding to ²¹⁶ the occurrence of database objects and object groups. ²¹⁷ Once a matched subgraph is found, we use the cor-²¹⁸ responding SVM classifier to estimate the probability ²¹⁹ of the match. Finally, we solve a labeling optimiza-²²⁰ tion which minimizes the overall matching cost for all ²²¹ matching probabilities.

222 4. Segment detection

²²³ Our goal is to partition the input scene into segments ²²⁴ which each represents either an independent object or ²²⁵ a part of an object. In order to segment objects from ²²⁶ cluttered scenes, we propose an unsupervised segment ²²⁷ detection approach to detect segments in 3D scene.

²²⁸ Specifically, we first over-segment the input point cloud ²²⁹ into a set of patches (Sec. 4.1) and detect the supporting ²³⁰ plane (Sec. 4.2). We then group the remaining patches ²³¹ to extract potential objects or parts (Sec. 4.3) and rep-²³² resent them as a segment graph (Sec. 4.4). See Algo-²³³ rithm 1 for an overview of our method.

234 4.1. Patch graph generation

²³⁵ We first over-segment the entire scene *S* into sev-²³⁶ eral patches, using the method in [28]. We build a ²³⁷ patch graph based on the patches, denoted with $G_p =$ ²³⁸ ($\mathcal{V}_p, \mathcal{E}_p$), where \mathcal{V}_p and \mathcal{E}_p represent the patches and ²³⁹ the near-by relations within the patches, respectively. ²⁴⁰ Specifically, the near-by relations are determined by ²⁴¹ comparing the nearest distance between two patches ²⁴² with a threshold.

Essentially, our segment detection algorithm is a graphcut based approach. The most vital component for graph-cut method is the definition of smooth term. In this section, the smooth terms for all graph-cut optimization are identical, which we first define here:

$$E_s(x_u, x_v) = w_c \cdot E_c + w_p \cdot E_p + w_n \cdot E_n, \qquad (1)$$

²⁴³ where x_u , x_v are two adjacent patches. E_c , E_p , E_n are ²⁴⁴ the differences between two adjacent patches in terms of ²⁴⁵ color, planarity and normal. w_c , w_p , w_n are the weights.

 E_c and E_p are computed based on the chi-square distance of the color and planarity histogram between u and v, we normalize them to (0, 1). It is worth mentioning that the planarity histogram are computed as follow: first compute the least-square plane for a patch, then built a histogram for distances of all points in the patch to the plane. The formulation for E_n is different for convex and concave situations. Specifically, the formulation is:

$$E_n(x_u, x_v) = 1 - \eta (1 - \cos \theta_{u,v}),$$
(2)

²⁴⁶ where $\theta_{u,v}$ is the angle between the average normals of ²⁴⁷ patch P_u and P_v . For η , we take 0.01 (a small value) if ²⁴⁸ the two adjacent patches form a convex dihedral angle

Algorithm 1 :Segment Detection.				
Input: scene S				
Output: segment graph G_s				
1: $G_p \leftarrow \text{OverSegment}(S);$				
2: $S \leftarrow \text{PlaneExtract}(S, G_p)$; //extract plane				
3: $\mathcal{H} \leftarrow \text{SegHypGen}(S, G_p)$; //generate seg. hypo.				
4: $T \leftarrow \text{SegHypSelect}(\mathcal{H})$; //select seg. hypo.				
5: $G_s \leftarrow \text{SegGraGen}(T)$; //generate seg. graph				
6: return G_s ;				

²⁴⁹ and 1 otherwise, to encourage cuts around a concave ²⁵⁰ region [29].

²⁵¹ Our smooth term takes both geometry (planarity and
²⁵² normal) and appearance (color) factors into considera²⁵³ tion, thus makes the patches belong to different objects
²⁵⁴ can be detected easily.

255 4.2. Supporting plane extraction

²⁵⁶ Supporting plane is usually the largest object in most ²⁵⁷ subscenes of an indoor scene, such as tables, beds, ²⁵⁸ shelves, etc. The extraction of supporting plane is es-²⁵⁹ pecially useful since it makes the detection of objects ²⁶⁰ on top of the supporting plane easier. Therefore, the ²⁶¹ first step of our segment generation is supporting plane ²⁶² extraction. For this task, perhaps the most straightfor-²⁶³ ward approach is RANSAC based primitive fitting [15]. ²⁶⁴ Since the objects placed on the supporting plane may be ²⁶⁵ very small or thin, setting a hard threshold for point-to-²⁶⁶ plane distance may cause a lot of false positives. We ²⁶⁷ therefore improve this method by adding a graph-cut ²⁶⁸ optimization, to robustly segment on-top objects from ²⁶⁹ the supporting plane.

We try to assign each patch a binary label, denoted by $X = [x_1, ..., x_n]$ with $x_i \in \{0, 1\}$. $x_i = 1$ if patch P_i lies in the plane, and $x_i = 0$ otherwise. We formulate the labeling problem as graph cuts over the patch graph:

$$E(X) = \sum_{u \in \mathcal{V}_{p}} E_d(x_u) + \sum_{(u,v) \in \mathcal{E}_{p}} E_s(x_u, x_v), \qquad (3)$$

where the data term is defined as:

$$E_d(x_u) = \begin{cases} \delta, & \text{if } x_u = 1\\ (1 - \frac{p}{p_{max}}) \cdot (1 - \frac{d}{d_{max}}) \cdot \cos \theta_{u,l}, & \text{if } x_u = 0 \end{cases}$$

²⁷⁰ where δ is a constant value, *d* the distance between the ²⁷¹ center of *u* to the plane, and *p* the planarity of the patch. ²⁷² d_{max} and p_{max} is the maximum distance and planarity, ²⁷³ respectively. We compute *p* as the average distance

Figure 3: Plane extraction from the point cloud of a tabletop scene by using our method (a) and RANSAC based primitive fitting (b), respectively. While our method can segment out the supporting plane accurately, RANSAC missed some points due to the thin objects.

²⁷⁴ of all the points in patch P_u to its corresponding least-²⁷⁵ square fitting plane. $\theta_{u,l}$ is the angle between the average ²⁷⁶ normal of P_u and the normal of the plane.

²⁷⁷ Figure 3 (a) demonstrates the segmentation results of ²⁷⁸ our method. As a comparison, the RANSAC based ²⁷⁹ primitive fitting can also get the majority of points cor-²⁸⁰ rectly, but it fails when dealing with small and thin ob-²⁸¹ jects, as is shown in Figure 3 (b).

282 4.3. Segment generation

283 Segment hypothesis generation. After plane removal, 284 object extraction only amounts to segmenting the iso-285 lated groups of patches on top of the supporting plane 286 into individual objects. To solve the problem, we pro-287 pose to first generate a set of segment hypotheses and 288 then select the most prominent ones based on a voting 289 algorithm.

²⁹⁰ We first update the patch graph G_p by removing the ²⁹¹ nodes belonging to the extracted plane. Based on the ²⁹² updated patch graph, we generate segment hypothe-²⁹³ ses by performing several times of binary graph cut, ²⁹⁴ where the foreground corresponds to potential objects ²⁹⁵ or prominent parts.

Different from other graph cut method, we do not select foreground seed heuristically. Instead, we use every patch as seed and perform binary graph cuts for multiple

Figure 4: Illustration of our segment detection method. The scene is composed of two bottles stuck together on a round table (a). We use every patch as seed to generate many foreground hypotheses and then select the most prominent ones (b).

times, generating many candidate foregrounds. In each binary cut, we select one patch as foreground seed but do not prescribe any seed for background. This is performed by introducing a background penalty for each non-seed patch [30]. Specifically, we select one patch, denoted by P_s , labeling it as foreground $x_s = 1$, and minimize over binary patch labels $X = [x_1, \ldots, x_n], x_i \in \{0, 1\}$ (*n* is the number of patches) the following parametric energy function:

$$E^{\lambda}(X) = \sum_{u \in \mathcal{V}_{p}} E^{\lambda}_{d}(x_{u}) + \sum_{(u,v) \in \mathcal{E}_{p}} E_{s}(x_{u}, x_{v}), \qquad (4)$$

where the data term is defined as:

$$E_d^{\lambda}(x_u) = \begin{cases} \infty, & \text{if } x_u = 0 \text{ and } u = s \\ 0, & \text{if } x_u = 1 \text{ and } u = s \\ 0, & \text{if } x_u = 0 \text{ and } u \neq s \\ f_u, & \text{if } x_u = 1 \text{ and } u \neq s \end{cases}$$
$$f_u = \begin{cases} k(d(P_s, P_u) - \lambda), & \text{if } d(P_s, P_u) > \lambda \\ 0, & \text{otherwise.} \end{cases}$$

²⁹⁶ f_u is the background penalty which penalizes a non-²⁹⁷ seed patch which is distant from the foreground seed.

Figure 5: Segment detection from the point cloud of a highly cluttered scene (a) by using our method (b). The input data has a lot of close-by objects and the back view is not scanned, which makes the segmentation quite challenging. Our method can segment out most objects accurately.

²⁹⁸ $d(P_s, P_u)$ is the distance between the centers of patch P_s ²⁹⁹ and P_u . We use k = 2.0 for a steep penalty to quickly ³⁰⁰ reject those patches whose distance to P_s is larger than ³⁰¹ λ to be labeled as foreground. The parameter λ controls ³⁰² the range, centered around the foreground seed, within ³⁰³ which one seeks for foreground patches. Instead of us-³⁰⁴ ing a hard threshold on this range, we slide λ from 0 to ³⁰⁵ ℓ_d (the diagonal length of the bounding box of the entire ³⁰⁶ scene) and find the first point where the total cut cost ³⁰⁷ drops significantly (up to 50%) and take the resulting ³⁰⁸ cuts as the segmentation result. The smooth term is the ³⁰⁹ same as the one used for plane extraction in Eq. (1).

³¹⁰ Once we select every patch as seed and perform graph ³¹¹ cut for each of them, we can obtain a set of foreground ³¹² segments. To filter out the redundancy, we cluster ³¹³ the foreground segments using non-parametric mean-³¹⁴ shift [31]. The similarity between two segments, de-³¹⁵ noted as *S* and *T*, is measured by the Jaccard index, i.e., ³¹⁶ $s(S,T) = |S \cap T|/|S \cup T|$. For example, as is shown ³¹⁷ in Figure 4 (b), selecting the seed patches in the same ³¹⁸ row will led to identical foregrounds, thus these fore-³¹⁹ grounds will cluster together after the mean-shift pro-³²⁰ cessing, as the Jaccard index is high. For each cluster, ³²¹ we choose the cluster center as the segment hypothesis ³²² for that cluster. As a result, we obtain a pool of *k* hypo-³²³ thetic segments, $\mathcal{H} = \{H_i\}_{i=1}^k$.

Segment hypothesis selection. The set of hypotheses may overlap with each other, making the labeling of patches ambiguous. To select good hypotheses without relying on heuristics or supervision, we propose a multi-class Markov random field (MRF) segmentation with object label selection, which minimizes the following energy function:

$$E(L) = \sum_{u \in \mathcal{V}_p} E_d(l_u; P_u) + \sum_{(u,v) \in \mathcal{E}_p} E_s(l_u, l_v), \quad (5)$$

³²⁴ over the labeling for all patches: $L = [l_1, \ldots, l_n], l_i \in$ ³²⁵ $\{1, \ldots, k\}.$

The data term $E_d(l_u; P_u)$ is defined as the likelihood that the patch P_u belongs to a particular segment hypothesis. For instance, for patch P_u and hypothesis H_i , we define the data term as the frequency of P_u being covered by the hypotheses in H_i :

$$E_d(H_i; P_u) = -\ln\left(t(P_u, C_i) / \sum_j t(P_u, C_j)\right), \quad (6)$$

³²⁶ where $t(P_u, C_i) = |\{P_u \subset H_j | H_j \in C_i\}|$ is the presence ³²⁷ times of patch P_u in cluster C_i . The smooth term is also ³²⁸ the same as the one in Eq. (1)).

³²⁹ The data term selects a label for each patch based on a ³³⁰ consensus voting by all foreground clusters: The larger ³³¹ a foreground cluster is, the more probable that its cor-³³² responding segment hypothesis represents an indepen-³³³ dent object, since the object is proposed by many binary ³³⁴ segmentations. Figure 4 depicts our segment detection ³³⁵ algorithm and Figure 5 demonstrates the segmentation ³³⁶ results over a highly cluttered scene.

337 4.4. Segment graph generation

338 To deal with the recognition for both object and object ³³⁹ group, we represent the entire scene as a segment graph $_{340} G_{\rm s} = (\mathcal{V}_{\rm s}, \mathcal{E}_{\rm s})$, where $\mathcal{V}_{\rm s}$ represents the segments we $_{341}$ detected in the input scene and \mathcal{E}_{s} encodes the relation-342 ship between two segments. We use two kinds of edges $_{343}$ to describe relations in $G_{\rm s}$. If the shortest distance be-³⁴⁴ tween two segments is less than a small threshold t_s , we 345 use a *connection edge* to link them, that means the two 346 segments contact with each other and probably belongs 347 to the same object. If the shortest distance between two 348 segments is large than the small threshold but less than 349 a larger threshold t_l , we use a proximity edge to con-³⁵⁰ nect them, which means they are in the same supporting ³⁵¹ plane and has the potential to constitute a object group. 352 The two kinds of edges represent the contextual infor-353 mation for intra-object part relations and inter-object $_{354}$ object layouts, respectively. t_l is selected as slightly 355 larger than the largest bounding box diagonal length of 356 all object groups in the database. Figure 2 shows an ³⁵⁷ illustration the segment graph of the given input scene.

358 5. Object Recognition

359 5.1. Training

When recognizing a scene containing multiple objects, human perception is predominantly affected by three levels of prior knowledge [32]: the shape information of individual parts, the part composition of individual objects, and the contextual relationship among object groups. In our object recognition procedure, we encode all these knowledge in an unified model and recognize objects and object groups simultaneously. Specifically, we train per-category optimized SVM classifiers for all kinds of objects and object groups, and then utinowline these classifiers to test the category of the input segnize these classifiers to test the category of the input segtiments. Here, an object group is refer to a group of obtrain door scene category [33]. For example, the monitortrain office.

³⁷⁵ *Data Preparation.* To learn the model from the ³⁷⁶ database of 3D scene models, the first step is to convert ³⁷⁷ the database models (training data) into point cloud rep-³⁷⁸ resentation, which is compatible against the input (test ³⁷⁹ data), and extract features from the point clouds.

³⁸⁰ First, we download a set of 3D CAD models of house-³⁸¹ hold objects, denoted by { Γ_i }, from the internet. Each Γ_i ³⁸² contains the models belonging to the same shape cate-³⁸³ gory. Second, we collect indoor scene models from the ³⁸⁴ dataset of [9] and [10]. In order to obtain object groups ³⁸⁵ which are not only frequently occurring but also seman-³⁸⁶ tically significant, we extract local substructures { Φ_i } ³⁸⁷ from the dataset as the focal points defined in [33]. Each ³⁸⁸ Φ_i contains the substructures belonging to the same se-³⁸⁹ mantic group.

³⁹⁰ We then perform virtual scanning for all models/groups ³⁹¹ in { Γ_i } and { Φ_i }, similar to [2]. Such virtual scan could ³⁹² mimic the real situation of object clutter or incomplete ³⁹³ scan, making the training data more suitable for learn-³⁹⁴ ing a generalizable recognition model. After the virtual ³⁹⁵ scanning, we compute segment graphs using the method ³⁹⁶ described in Sec. 4 for object groups in { Φ_i }. For in-³⁹⁷ dividual objects in { Γ_i }, we perform the same process ³⁹⁸ except for table extraction. The label of each virtually ³⁹⁹ scanned point is determined by aligning the point cloud ⁴⁰⁰ with the original 3D CAD models and transferring the ⁴⁰¹ labels based on closest point search.

Classifier Learning. We compute two kinds of features for our SVM classifier: node features and edge features.

Algorithm 2 : Training.

Input: object set $\{\Gamma_i\}$ and object group set $\{\Phi_i\}$ **Output:** classifiers *C* 1: **for all** Γ_i **do** 2: **for all** γ_j in Γ_i **do**

- 3: $\gamma_j \leftarrow \text{VirtualScan}(\gamma_j);$
- 4: **end for**
- 5: $g_i \leftarrow \text{ConstructSegGraph}(\Gamma_i);$
- 6: $c_i^{\gamma} \leftarrow \text{MKL}(g_i);$ //train SVM for each single object category
- 7: end for
- 8: for all Φ_i do
- 9: **for all** ϕ_i in Φ_i **do**
- 10: $\phi_i \leftarrow \text{VirtualScan}(\phi_i);$
- 11: **end for**
- 12: $g_i \leftarrow \text{ConstructSegGraph}(\Phi_i);$
- 13: $c_i^{\phi} \leftarrow \text{MKL}(g_i);$
- //train SVM for each object group category
- 14: end for
- 15: **return** $C = \{c_i^{\gamma}\}_{i=1}^m + \{c_i^{\phi}\}_{i=1}^n;$

For each node, we voxelize its bounding box and extract features of shape, normal and volume as described in [21]. In addition, we estimate the oriented bounding box (OBB) for each object and measure its anisotropy:

$$c_{l} = \frac{s_{1} - s_{2}}{(s_{1} + s_{2} + s_{3})}, c_{p} = \frac{2(s_{2} - s_{3})}{(s_{1} + s_{2} + s_{3})}, c_{s} = \frac{3s_{3}}{(s_{1} + s_{2} + s_{3})}$$

where s_1, s_2, s_3 are the three scales of the OBB with $s_1 > s_2 > s_3 \ge 0$. For each edge, we compute the layout similarity [33] as its feature:

$$\gamma(p,q) = \frac{d_H(obb(p), obb(q))}{dl(p) + dl(q)},$$
(8)

$$\rho(p,q) = angle\left(\mathbf{v}_{dir}(p,q), \mathbf{v}_{upright}\right), \quad (9)$$

⁴⁰² The two features measure the distance and direction be-⁴⁰³ tween two objects, respectively.

⁴⁰⁴ We compute features and learn pre-category optimized ⁴⁰⁵ SVM classifiers for each category of individual objects ⁴⁰⁶ in { Γ_i } and object groups in { Φ_i }. Positive examples are ⁴⁰⁷ the models from the two datasets, while negative ones ⁴⁰⁸ are generated by using the method in [21] for individ-⁴⁰⁹ ual objects and the method in [22] for object groups. ⁴¹⁰ In addition, we associate a triplet (n_n, n_c, n_p) with each ⁴¹¹ classifier, where n_n, n_c and n_p represent the number of ⁴¹² segments, edges and proximity edges, respectively. This ⁴¹³ triplet is used to perform a coarse matching based on the ⁴¹⁴ triplet, before testing with the classifier.

Figure 6: The generation of object and object group. The input is a segmented object or object group (a). We compute the OBB for each part (b) and connect them into a graph (c). The solid and the dashed lines in (c) are connection and proximity edge, respectively.

⁴¹⁵ *Multiple Kernel Learning.* Kernel method has been ⁴¹⁶ successfully applied into many learning areas, while the ⁴¹⁷ results of these methods are heavily dependent on the ⁴¹⁸ selection of kernels. Instead of choosing a single ker-⁴¹⁹ nel, it is better to have a set of kernels and use the com-⁴²⁰ bination of them [11]. Since our features are computed ⁴²¹ for both individual objects and their relations, it is espe-⁴²² cially desirable to combine several kernels and to allow ⁴²³ the classifiers to choose their optimized kernels, in order ⁴²⁴ to reduce their bias [34]. The idea is to use a combina-⁴²⁵ tion of basic kernels $k(\mathbf{x}, \mathbf{y}) = \Sigma w_i \cdot k_i(\mathbf{x}, \mathbf{y})$ rather than ⁴²⁶ a specific kernel in SVM. The basic kernels could be ⁴²⁷ linear kernel, Gaussian kernel, polynomial kernel, etc.

⁴²⁸ Figure 7 illustrates the architecture of our MKL-based ⁴²⁹ classification. Given the segment graph of an individual ⁴³⁰ object or an object group, we first represent it in the fea-⁴³¹ ture space spanned with six kinds of features. We then ⁴³² transform the data from feature space to kernel space us-⁴³³ ing several predefined kernels. By computing the opti-⁴³⁴ mized weights for each kernel space, we obtain the final ⁴³⁵ MKL classifier. The procedure for training the classi-⁴³⁶ fiers is detailed in Algorithm 2.

437 5.2. Testing

⁴³⁸ *Data Preprocessing.* The segments in scenes acquired ⁴³⁹ by Kinect or any other commodity depth camera are ⁴⁴⁰ usually noisy and low-quality, making the recognition ⁴⁴¹ quite difficult. Therefore, we first surface reconstruc-⁴⁴² tion [35] to form a watertight surface for each segment, ⁴⁴³ and then compute features as described in Sec. 5.1.

- 6: X ← ComputeLabel({cost_i}^k_{i=1});
 //compute label for all segments
- 7: return X;

Figure 7: The architecture of our MKL-based classifier. Given an object or a object group, we compute its features and map it into several kernel spaces with several basic kernels. The MKL-SVM classifier is learned by computing the optimized weight for each kernel.

⁴⁴⁴ Labeling Optimization. To extract objects and object ⁴⁴⁵ groups from the segment graph, we search from the seg-⁴⁴⁶ ment graph of the input scene for the subgraphs cor-⁴⁴⁷ responding to the occurrences of database objects and ⁴⁴⁸ object groups. Graph matching can be formulated as ⁴⁴⁹ quadratic assignment problem, which is known to be ⁴⁵⁰ NP-hard, so an exhaustive search over the whole graph ⁴⁵¹ leads to high computational cost.

⁴⁵² In our method, the graph matching is performed as fol-⁴⁵³ lows. For each MKL classifier, we first use the associ-⁴⁵⁴ ated triplet (n_n, n_c, n_p) to filter subgraph matchings. A ⁴⁵⁵ subgraph is filtered if any one of the three terms is dif-⁴⁵⁶ ferent from that of the classifier. For the remaining sub-⁴⁵⁷ graphs, we use the learned MKL classifiers to test if it ⁴⁵⁸ belongs to the corresponding category and record the ⁴⁵⁹ probability if yes. The probability will be used as the ⁴⁶⁰ labeling cost which penalizes the mislabeling in the fol-⁴⁶¹ lowing optimization.

Figure 8: The matching strategy of our algorithm. Given a segment graph of the input scene on the left, we use all the three classifiers to test the occurrence of the corresponding subgraph. The testing samples are shown on the right. Note that some connection edge in the first row can be turned into a proximity one to allow more matches.

⁴⁶² After applying all classifiers, we detect all the potential ⁴⁶³ objects or object groups in the input scene. The graph ⁴⁶⁴ matching strategy is illustrated in Figure 8. Note that we ⁴⁶⁵ allow a connection edge to be converted into a proximity ⁴⁶⁶ one to produce more matchings. The rationale of this is ⁴⁶⁷ that some segments not belonging to the same object ⁴⁶⁸ could be linked by connection edges mistakenly due to ⁴⁶⁹ small mutual distance.

Next, we solve a labeling optimization which minimizes the overall matching cost computed from all the matching probability. The final labeling, X, for all segments of the input scene is computed by:

$$X = \operatorname{argmin}_{X} \sum_{c_i \in C} D(X, c_i)$$
(10)

where:

$$D(X, c_i) = \begin{cases} 0, & \text{if recognized subgraph by} \\ c_i \text{ is labeled correctly in } X \\ \cos(X, c_i), & \text{otherwise.} \end{cases}$$

⁴⁷⁰ where $cost(X, c_i)$ is the labeling cost penalizing the ⁴⁷¹ wrong labeling of the subgraph detected by the classifier ⁴⁷² c_i . We found it suffices to solve this labeling optimiza-⁴⁷³ tion using a combinatorial search over all labeling pos-⁴⁷⁴ sibilities since the possible labeling for each segment ⁴⁷⁵ is limited after the classifier filtering and testing. The

Figure 9: Segmentation comparison against the RANSAC based primitive fitting method [15]. Left: Comparison over nine test scenes. Right: Results of our method and the RANSAC-based one over scene #2 with increasing number of scans.

⁴⁷⁶ whole testing process for object and object group detec-⁴⁷⁷ tion is described in Algorithm 3.

478 6. Results and Evaluation

⁴⁷⁹ We test our method on both real-world and virtually ⁴⁸⁰ scanned scenes. A gallery of results is shown in Fig-⁴⁸¹ ure 18. We first describe the experimental setting of our ⁴⁸² method and then evaluate our method in two aspects, ⁴⁸³ i.e., the segment detection and the object recognition.

⁴⁸⁴ *Experimental Setting.* Our method is implemented us-⁴⁸⁵ ing C++ and run on a desktop PC with an Intel I5-3750 ⁴⁸⁶ CPU (quad core, 3.4GHz) and Nvidia GeForce GTX ⁴⁸⁷ 460 graphics card. We scan a few indoor scenes using a ⁴⁸⁸ Microsoft Kinect. We also use the Washington scene ⁴⁸⁹ dataset [36] acquired by an ASUS Xtion PRO LIVE ⁴⁹⁰ RGB-D sensor. The parameter settings are provided be-⁴⁹¹ low. Patch size (diameter): 8cm for NYU-Depth V2 ⁴⁹² dataset and 4cm for others; w_c , w_p , and w_n in 1: 0.2, ⁴⁹³ 0.3, and 0.5, respectively; δ for table extraction: 0.95 ⁴⁹⁴ for all datasets; t_s and t_l for segment graph construc-⁴⁹⁵ tion: 3cm and 50cm, respectively; Poisson iso-point ⁴⁹⁶ sampling density: 2cm; basic kernels for MKL (we use ⁴⁹⁷ SimpleMKL [37]): five Gaussian kernels and two poly-⁴⁹⁸ nomial kernels.

⁴⁹⁹ Segment Detection. We test our segment detection al-⁵⁰⁰ gorithm on nine tabletop scenes downloaded from the ⁵⁰¹ Internet (Figure 10) and virtually scanned. We compare ⁵⁰² our method with the RANSAC-based primitive fitting ⁵⁰³ method in [15]. The Rand Index [38] is used as the ⁵⁰⁴ evaluation criterion. We perform six tests on each scene

Figure 10: The test scenes used in segmentation evaluation.

Figure 11: The segmentation results our algorithm over the scenes from the NYU-Depth V2 dataset. Our method can segment most objects correctly in the highly cluttered scenes.

⁵⁰⁵ with different number of scan and quality and take the ⁵⁰⁶ average Rand Index. In the virtual scanning, the virtual ⁵⁰⁷ scanners are positioned around the scene being scanned ⁵⁰⁸ and oriented to the center of the scene. The plot in Fig-⁵⁰⁹ ure 9 (left) show that the Rand Index of our method is ⁵¹⁰ higher than that of the RANSAC-based method over the ⁵¹¹ nine test scenes. We also evaluate how scan quality ⁵¹² would affect the segmentation results with the varying ⁵¹³ number of scans for scene #2; see Figure 9 (right).

⁵¹⁴ We also test our segmentation approach on NYU-Depth ⁵¹⁵ V2 dataset. A significant feature of the depth images is ⁵¹⁶ that the point cloud is of low resolution, making our seg-⁵¹⁷ mentation infeasible. In order to tackle this kind of in-⁵¹⁸ put, we made some changes over our algorithm. Given ⁵¹⁹ an RGB-D image and its camera parameters, we first

	Primitive fitting[16]	Support relation[9]	Our method
Rand Index	61.8%	78.7%	76.4%

Figure 12: A comparison of the segmentation accuracy (Rand Index) of the methods in [15] and [8] and ours on the NYU-Depth V2 dataset.

Figure 13: Precision-recall curves for object recognition. Comparison is made between our method and the other three methods by testing on the database in [36].

⁵²⁰ project the 2D points into 3D space to reconstruct a 3D ⁵²¹ scene. We skip the table extraction process and detect ⁵²² the segments for the near-camera points (distance less ⁵²³ than 2m) using our method, and cluster the rest distant ⁵²⁴ points using Euclidean cluster extraction [39].

⁵²⁵ We test our method on a selected subset of the NYU-⁵²⁶ Depth V2 dataset as in [22], which contains 45 living ⁵²⁷ rooms and offices. Some results of our algorithm are ⁵²⁸ shown in Figure 11. We compare our method with the ⁵²⁹ support relation based method in [8] and the RANSAC-⁵³⁰ based one in [15]. The segmentation Rand Index mea-⁵³¹ sures for the three methods are shown in Figure 12. The ⁵³² support relation based method slightly outperforms our ⁵³³ method, due to the incorporation of the high-level prior.

⁵³⁴ *Object Recognition.* Our recognition database contains ⁵³⁵ 900 objects in 18 categories and 10 kinds of object ⁵³⁶ groups. We test our object recognition method on two ⁵³⁷ scanned scene datasets. The first one is several real-⁵³⁸ world scenes such as office, meeting room, and lab-⁵³⁹ oratory, scanned by ourselves and the second dataset ⁵⁴⁰ from [36]. The scenes contain a variety of object cat-⁵⁴¹ egories with noisy and low quality scans.

⁵⁴² Figure 18 demonstrates the results on six indoor scenes.
⁵⁴³ The semantic labels are shown using distinct colors,
⁵⁴⁴ while the contextual information is illustrated with red

⁵⁴⁵ dots and dashed lines. The majority of objects can be ⁵⁴⁶ recognized correctly, benefiting from the contextual in-⁵⁴⁷ formation. The geometric ambiguity between different ⁵⁴⁸ categories of objects, such a keyboard and a book, are ⁵⁴⁹ resolved with the help of contextual information. Some ⁵⁵⁰ segments are correctly segmented but not successfully ⁵⁵¹ recognized due to capability of our recognition model ⁵⁵² learned from the limited model database. This can be ⁵⁵³ improved by collecting more data and training a more ⁵⁵⁴ powerful model.

⁵⁵⁵ We evaluate our method on the database of [36] con-⁵⁵⁶ taining 58 indoor scenes collected using KinectFusion. ⁵⁵⁷ We compare to three alternative methods: the sliding ⁵⁵⁸ shapes [21], a reduced version of our method by us-⁵⁵⁹ ing linear SVM classifiers, and a reduced method with-⁵⁶⁰ out using contextual information. The precision-recall ⁵⁶¹ curves for recognition are plotted in Figure 13. It is ⁵⁶² obvious that our method outperforms sliding shapes, ⁵⁶³ thanks to the object-group-level analysis and the MKL ⁵⁶⁴ classifiers in our method. The reduced method with-⁵⁶⁵ out contextual information is slightly inferior to sliding ⁵⁶⁶ shapes. This is because sliding shapes use a plethora ⁵⁶⁷ of classifiers, which is three orders of magnitude more ⁵⁶⁸ than what our method uses.

⁵⁶⁹ As demonstrated in Figure 14, our method benefits from ⁵⁷⁰ the contextual information in two ways. First, context ⁵⁷¹ helps to eliminate recognition ambiguity. For example, ⁵⁷² the object in Figure 14 (a) can either be a book or a ⁵⁷³ keyboard, which is correctly recognized with the help ⁵⁷⁴ of the monitor-keyboard-mouse combo. Second, con-⁵⁷⁵ text can enhance the recognition ability under low data ⁵⁷⁶ quality. For example, the cup in Figure 14 (b) is hard ⁵⁷⁷ to be recognized due to the low data quality, where the ⁵⁷⁸ cup-cup group helps recognize it.

⁵⁷⁹ We make two observations from the results. (1) The ⁵⁸⁰ precision is consistently high with the increasing of the ⁵⁸¹ recall. (2) The recall converges to a high value but never ⁵⁸² reaches 1 with the precision decreasing. These obser-⁵⁸³ vations can be explained by the inter-restriction of the ⁵⁸⁴ multiple MKL classifiers. Our method finds a labeling ⁵⁸⁵ that tries to satisfy all the MKL detectors as much as ⁵⁸⁶ possible, leading to more reliable labeling result.

⁵⁸⁷ To evaluate the performance our method on cluttered ⁵⁸⁸ scenes, we scan six desktop scenes with an increasing ⁵⁸⁹ degree of object clutter. The objects we recognized are ⁵⁹⁰ highlighted with boxes in Figure 15. It is clear that our ⁵⁹¹ method achieves robust recognition on these cluttered ⁵⁹² scenes, especially the one in Figure 15 (c). As a com-⁵⁹³ parison, the method in [22] cannot recognize the mouse ⁵⁹⁴ in (c), because the contour-based approach fails when

Figure 14: The contextual knowledge could benefit object recognition in two ways. (a): Resolving recognition ambiguity: The keyboard in blue box is recognized correctly due to the contextual information of the monitor-keyboard-mouse combo. (b): Enhancing recognition ability: The cup in blue box is in low scan quality but can be recognized based on the cup-cup combo.

Figure 15: Our recognition results on several scenes with increasing degree of object from (a) to (f). The monitors, keyboards and mouses are correctly recognized by our method and labeled with blue, orange and green boxes.

⁵⁹⁵ dealing with cluttered scenes due to the incorrect con-⁵⁹⁶ tour extraction. The contour of the red box area in (c) is ⁵⁹⁷ shown on the top-right corner.

Figure 16: A failure case of our method. Our method cannot recognize most of the objects in a cluttered scene (c). This is due to the fact that the scene point cloud is only a single-view scan (b).

⁵⁹⁹ *Time Performance.* For a scene with 100K points, the ⁵⁹⁹ segment detection takes 20 seconds. The training proce-⁶⁰⁰ dure of our object recognition is determined by the num-⁶⁰¹ ber of individual object and object group categories. In ⁶⁰² our case, it takes about 1 hour to train a classifier us-⁶⁰³ ing SimpleMKL averagely. The training process takes ⁶⁰⁴ about 32 hours in total for the 18 objects and the 10 ob-⁶⁰⁵ ject groups. The testing time is determined by the num-⁶⁰⁶ ber of segments and the degree of object clutter. The ⁶⁰⁷ testing time for the scenes in Figure 18 (a) to (f) are 7.8, ⁶⁰⁸ 19.1, 39.5, 20.3, 1.7 and 12.9 minutes, respectively.

⁶⁰⁹ *Limitations*. Our method has the following limitations. ⁶¹⁰ First, our method does not provide a mechanism to deal ⁶¹¹ with input data with severe missing parts. For example, ⁶¹² if the input contains only a single-view scan, our method ⁶¹³ would not be able to produce meaningful segments for ⁶¹⁴ further analysis. A failure case of this is shown in Fig-⁶¹⁵ ure 16. Second, our method can tolerate only moder-⁶¹⁶ ate shape variation. It might fail when recognizing ob-⁶¹⁷ jects with too special structure of segment graph, such ⁶¹⁸ as the case shown in Figure 17. Last, our method works ⁶¹⁹ the best for a scene containing a planar support. Al-⁶²⁰ though quite commonly seen in everyday indoor envi-⁶²¹ ronments, the assumption does not generalize well for ⁶²² outdoor scenes.

Figure 18: A gallery of scene understanding results by our method.

623 7. Discussion and future work

⁶²⁴ To achieve object analysis from clustered subscenes, we ⁶²⁵ have developed a unified framework for the discovery of ⁶²⁶ both individual objects and object groups, both of which ⁶²⁷ are based on the contextual information learned from a ⁶²⁸ database of 3D scene models. Our method makes the ⁶²⁹ contextual information applicable even without know-⁶³⁰ ing the object segmentation of the input scene. The lat-⁶³¹ ter has so far been predominantly assumed by existing ⁶³² methods, e.g., [22].

⁶³³ We see three venues for future work. First, our current ⁶³⁴ work focuses on subscene analysis. It would be inter-⁶³⁵ esting to extend our method to deal with whole scene, ⁶³⁶ leading to multi-scale scene analysis in a unified frame⁶³⁷ work. Currently, the contextual information is based on
⁶³⁸ spatial proximity. As another future work, we would
⁶³⁹ like to expand our contextual features with multi-modal
⁶⁴⁰ object interaction, such as dynamic motion, to address
⁶⁴¹ more complex mutual relations among objects. Finally,
⁶⁴² it is natural to utilize our framework in robot-operated
⁶⁴³ autonomous scene scanning and understanding.

644 Acknowledgements

⁶⁴⁵ We thank all the reviewers for their comments and feed-⁶⁴⁶ back. We would also like to acknowledge our research ⁶⁴⁷ grants: NSFC (61572507, 61202333, 61379103),

Figure 17: The object classifier for a globe is trained using the examples containing two components (a). The recognition may fail when testing an exceptional instance of globe with three legs (b).

⁶⁴⁸ 973 Program (2014CB360503), Guangdong Sci⁶⁴⁹ ence and Technology Program (2015A030312015,
⁶⁵⁰ 2014B050502009, 2014TX01X033), Shenzhen Vi⁶⁵¹ suCA Key Lab (CXB201104220029A).

652 References

- [1] K. Xu, H. Huang, Y. Shi, H. Li, P. Long, J. Caichen, W. Sun,
 B. Chen, Autoscanning for coupled scene reconstruction and
- proactive object analysis, ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 34 (6) (2015) 177:1–177:14.
- L. Nan, K. Xie, A. Sharf, A search-classify approach for cluttered indoor scene understanding, ACM Trans. on Graphics
 (Proc. of SIGGRAPH Asia) 31 (6) (2012) 137:1–137:10.
- Y. M. Kim, N. J. Mitra, D.-M. Yan, L. Guibas, Acquiring 3d in door environments with variability and repetition, ACM Trans.
 on Graphics (Proc. of SIGGRAPH Asia) 31 (6) (2012) 138:1–
- a 138:11.
 b 13
- camera, ACM Trans. on Graphics (Proc. of SIGGRAPH Asia)
 31 (6) (2012) 136:1–136:11.
 [5] O. Mattausch, D. Panozzo, C. Mura, O. Sorkine-Hornung,
- R. Pajarola, Object detection and classification from large-scale
 cluttered indoor scans, Computer Graphics Forum (Proc. of Eurographics) 33 (2) 11–21.
- Y. Li, A. Dai, L. Guibas, M. Nießner, Database-assisted object
 retrieval for real-time 3d reconstruction, Computer Graphics Fo rum (Proc. of Eurographics) 34 (2) (2015) 435–446.
- R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
 J. Shotton, D. Molyneaux, S. Hodges, D. Kim, A. Fitzgibbon,
 KinectFusion: Real-time dense surface mapping and tracking,
 in: Proc. IEEE Int. Symp. on Mixed and Augmented Reality,
 2011, pp. 127–136.
- [8] N. Silberman, P. Kohli, D. Hoiem, R. Fergus, Indoor segmentation and support inference from rgbd images, in: Proc. Euro.
 Conf. on Computer Vision, 2012, pp. 746–760.
- [9] M. Fisher, M. Savva, P. Hanrahan, Characterizing structural
 relationships in scenes using graph kernels, ACM Trans. on
 Graphics (Proc. of SIGGRAPH) 30 (4) (2011) 34:1–34:11.

- K. Xu, K. Chen, H. Fu, W.-L. Sun, S.-M. Hu, Sketch2Scene:
 Sketch-based co-retrieval and co-placement of 3D models,
 ACM Trans. on Graphics (Proc. of SIGGRAPH) 32 (4) (2013)
 123:1–123:10.
- 690 [11] M. Gönen, E. Alpaydın, Multiple kernel learning algorithms,
 691 Journal of Machine Learning Research 12 (2011) 2211–2268.
- [12] A. Shamir, A survey on mesh segmentation techniques, Computer Graphics Forum 27 (6) (2008) 1539–1556.
- E. Kalogerakis, A. Hertzmann, K. Singh, Learning 3d mesh segmentation and labeling, ACM Trans. Graph. 29 (2010) 102:1– 102:12.
- [14] M. Johnson-Roberson, J. Bohg, M. Björkman, D. Kragic, Attention-based active 3d point cloud segmentation., in: Proc. IEEE Int. Conf. on Intelligent Robots & Systems, 2010, pp. 1165–1170.
- [15] R. Schnabel, R. Wahl, R. Klein, Efficient RANSAC for pointcloud shape detection, Computer Graphics Forum 26 (2) (2007)
 214–226.
- A. Berner, M. Bokeloh, M. Wand, A. Schilling, H.-P. Seidel,
 A graph-based approach to symmetry detection., in: Volume
 Graphics, Vol. 40, 2008, pp. 1–8.
- 707 [17] A. Golovinskiy, T. Funkhouser, Min-cut based segmentation of
 708 point clouds, in: Proc. Int. Conf. on Computer Vision, IEEE,
 709 2009, pp. 39–46.
- [18] L. A. Alexandre, 3d descriptors for object and category recognition: a comparative evaluation, in: Proc. IEEE Int. Conf. on
 Intelligent Robots & Systems, Vol. 1, pp. 1–6.
- 713 [19] K. Lai, L. Bo, X. Ren, D. Fox, Rgb-d object recognition: Features, algorithms, and a large scale benchmark, in: Consumer
 Depth Cameras for Computer Vision, Springer, 2013, pp. 167–192.
- [20] K. Xu, V. G. Kim, Q. Huang, E. Kalogerakis, Data-driven shape
 analysis and processing, Computer Graphics Forum (2015) to
 appear.
- [21] S. Song, J. Xiao, Sliding shapes for 3d object detection in depth images, in: Proc. Euro. Conf. on Computer Vision, Springer, 2014, pp. 634–651.
- [22] K. Chen, Y.-K. Lai, Y.-X. Wu, R. Martin, S.-M. Hu, Automatic semantic modeling of indoor scenes from low-quality rgb-d data using contextual information, ACM Trans. on Graphics (Proc. of SIGGRAPH Asia) 33 (6) (2014) 208:1–208:15.
- 727 [23] J. S. Rudolph Triebel, Roland Siegwart, Unsupervised discovery
 of repetitive objects, in: Proc. IEEE Int. Conf. on Robotics &
 Automation, 2010, pp. 5041 5046.
- Y. Zhang, W. Xu, Y. Tong, K. Zhou, Online structure analysis for real-time indoor scene reconstruction, ACM Trans. on Graphics 159:1–159:12.
- J. Biswas, M. Veloso, Planar polygon extraction and merging
 from depth images, in: Proc. IEEE Int. Conf. on Intelligent
 Robots & Systems, IEEE, 2012, pp. 3859–3864.
- M. Dou, L. Guan, J.-M. Frahm, H. Fuchs, Exploring high-level plane primitives for indoor 3d reconstruction with a hand-held rgb-d camera, in: Computer Vision-ACCV 2012 Workshops, Springer, 2013, pp. 94–108.
- [27] A. Monszpart, N. Mellado, G. Brostow, N. Mitra, RAPter: Rebuilding man-made scenes with regular arrangements of planes 34 (2015) 103:1–103:12.
- 743 [28] J. Papon, A. Abramov, M. Schoeler, F. Worgotter, Voxel cloud connectivity segmentation-supervoxels for point clouds, in:
 Proc. IEEE Conf. on Computer Vision & Pattern Recognition, IEEE, 2013, pp. 2027–2034.
- 747 [29] S. Katz, A. Tal, Hierarchical mesh decomposition using fuzzy clustering and cuts, ACM Trans. on Graphics (Proc. of SIG-GRAPH) 22 (3) (2003) 954–961.
- 750 [30] A. Golovinskiy, V. G. Kim, T. A. Funkhouser, Shape-based

- recognition of 3d point clouds in urban environments, in: Proc.
 Int. Conf. on Computer Vision, 2009, pp. 2154–2161.
- 753 [31] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE
 Trans. Pattern Analysis & Machine Intelligence 17 (8) (1995)
- 755 790–799.
 756 [32] N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, V. Kim, Q.-
- 757 X. Huang, Structure-aware shape processing, in: ACM SIG 758 GRAPH 2014 Courses, 2014.
- 759 [33] K. Xu, R. Ma, H. Zhang, C. Zhu, A. Shamir, D. Cohen-Or,
 H. Huang, Organizing heterogeneous scene collection through
 contextual focal points, ACM Trans. on Graphics (Proc. of SIG-
- 762 GRAPH) 33 (4) (2014) 35:1–35:12.
- 763 [34] C. Zhu, X. Liu, Q. Liu, Y. Ming, J. Yin, Distance based multiple
 kernel elm: A fast multiple kernel learning approach, Mathematical Problems in Engineering 2015.
- 766 [35] M. Kazhdan, H. Hoppe, Screened poisson surface reconstruc 767 tion, ACM Trans. on Graphics 32 (3) (2013) 29:1–29:13.
- 768 [36] A. Karpathy, S. Miller, L. Fei-Fei, Object discovery in 3d scenes
 via shape analysis, in: Proc. IEEE Int. Conf. on Robotics &
 Automation, IEEE, 2013, pp. 2088–2095.
- [37] A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, Sim pleMKL, Journal of Machine Learning Research 9 (2008) 2491–
 2521
- J. Chen, D. Bautembach, S. Izadi, Scalable real-time volumetric surface reconstruction, ACM Trans. on Graphics (Proc. of SIGGRAPH) 32 (4) (2013) 113:1–113:16.
- 777 [39] D. Sparks, Euclidean cluster analysis, Applied Statistics (1973)778 126–130.