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Abstract—Maximum common sub-graph isomorphism (MCS)
is a famous NP-hard problem in graph processing. The problem
has found application in many areas where the similarity of
graphs is important, for example in scene matching, video
indexing, chemical similarity and shape analysis. In this paper,
a novel algorithm Qwalk is proposed for approximate MCS,
utilizing the discrete-time quantum walk. Based on the new
observation that isomorphic neighborhood group matches can be
detected quickly and conveniently by the destructive interference
of a quantum walk, the new algorithm locates an approximate
solution via merging neighborhood groups. Experiments show
that Qwalk has better accuracy, universality and robustness
compared with the state-of-the-art approximate MCS methods.
Meanwhile, Qwalk is a general algorithm to solve the MCS
problem approximately while having modest time complexity.

Keywords-discrete-time quantum walk; maximum common
sub-graph; quantum interference;

I. INTRODUCTION

In the real world, graphs or networks are widely used to
represent structural and relational information in a way that is
abstracted from the actual data. The information, such as social
networks, molecular structures, transport networks or protein-
protein iterations, can be stored and processed more naturally
in this form. The maximum common sub-graph (MCS) is
a classical NP-hard problem in graph analysis which aims
to find the largest common substructure between two graphs
[1,2]. Being strongly relevant to graph similarity, MCS is
the core process of many real applications which require a
measure of similarity between two networks. For example,
MCS algorithms have been used for scene matching [3], video
indexing and chemical similarity.

The MCS problem has been widely studied over the last 4
decades, in two broad categories, namely exact MCS methods
and approximate methods. Prune and backtracking methods
were used in many of the exact MCS approaches, such as VF2
[4] and McGregor [5]. Another common approach is to find
the maximal clique in the association graph in order to solve
the general MCS problems [6]. Although these algorithms can
solve this problem generally and exactly, all of them have

exponential cost. When the graph size is large, these algorithms
are unavailable because of the unacceptable time consumption.

In contrast to exact MCS algorithms, some approximate
MCS methods have been proposed, which are more practical
for real applications. Polynomial time consumption is achieved
by the trade-off of getting some locally optimal solutions rather
than the global optimal one. Lu [7] exploited the properties of
planar triangulation graphs and designed an approximate MCS
algorithm tailored for this kind of graph. Pellilo [8] utilized
replicator dynamics to find the approximate maximal clique
in association graph which can imply the maximal common
sub-graph. However, there exist two problems with state-
of-the-art approximate MCS detectors: Firstly, it is difficult
to solve this problem approximately for the general graphs.
Secondly, though they are not exponential algorithms, in order
to reduce the error as much as possible, the procedure of
these algorithms is usually very complex, which results in
the overwhelming time consumption even on moderately sized
graphs.

From the development of quantum computing, especial-
ly Shor’s integer factoring algorithm and Grover’s database
searching algorithm, the field has made significant progress
over the last few years [9]. The quantum walk was firstly
proposed in 1993, and has drawn much interest from then
on. Recently, some novel quantum algorithms using quantum
walk to detect graph isomorphism have been designed [10,11].
Via utilizing the quantum parallel and quantum interference,
these quantum algorithms could achieve better performance
and discriminative power than the traditional ones. However,
until so far, there are no quantum algorithms to solve the MCS
problem.

In this paper, a discrete-time quantum walk is utilized to
propose a novel quantum algorithm Qwalk for the first time,
which could solve the MCS problem approximately. The new
algorithm has two steps. Firstly, for every vertex pair in the
two graphs, the maximum isomorphic neighborhood group
match will be detected by using the destructive interference
of quantum walk. Secondly, the maximum isomorphic neigh-



borhood group matches will be sorted by size and merged
in descending order until no more can be merged into the
solution. From the initial detection and merging process, a
large common sub-graph should be obtained. Because all the
vertex states are stored in the quantum bits, they could be
transferred in parallel during a discrete-time quantum walk.
Therefore the time complexity of the new quantum algorithm
is only O(NE1.5) for two graphs with N vertices and E edges
individually. Through experiments, it is reported that the new
algorithm shows better accuracy, universality and robustness
for noise compared with the state-of-the-art approximate MCS
algorithms.

II. BACKGROUND

We begin by introducing some definitions related to graphs
and which are relevant to our algorithm.

A. Problem definition

Definition 1. A graph is a tuple G = (V,E), where V
represents all the vertices in the graph with a set of the adjacent
relation E ⊆ V × V .

In this paper, we will mainly focus on the unweighted,
undirected and connected graphs.

Definition 2. A graph G′ = (V ′, E′) is an (induced) sub-
graph of graph G = (V,E), if and only if V ′ ⊆ V and
∀v1, v2 ∈ V ′, (v1, v2) ∈ E′ ⇔ (v1, v2) ∈ E.

Definition 3. A (sub)graph G = (V,E) is isomorphic to
H = (V ′, E′), if there exists as least one bijective function
f : V → V ′ so that ∀v1, v2 ∈ V, (v1, v2) ∈ E ⇔ (fv1 , fv2) ∈
E′.

Definition 4. For two graphs G and H , the MCS problem
aims to find out the largest sub-graph G′ in G which is
isomorphic to at least one sub-graph H ′ in H . Here the size
of a graph is measured by the cardinality of the vertex set.

The distance d(u, v) between two vertices on a graph is the
length of the shortest path in the graph which joins the two
vertices, i.e. the smallest number of edges traversed to move
from one vertex to the other.

Definition 5. The 1-level neighborhood group of
the vertex in a graph G is a sub-graph G1

v(V
′, E′)

with V ′= {vi|∀vi ∈ V, d(v, vi) ≤ 1}. Similarly, the
k-level neighborhood group is Gk

v(V
′, E′) and

V ′= {vi|∀vi ∈ V, d(v, vi) ≤ k}.
Definition 6. An maximal isomorphic neighborhood group

match is called an ING and marked as ING(u, v, k), where u
and v are the vertices of two graphs G1 and G2 while k =
max{i|Gi

u is isomorphic to Gi
v}.

B. Discrete-time quantum walk

The random walk is a classical stochastic process in which
a walker, residing on a vertex of the graph, takes a random
step along one of the edges to a new vertex. This process has
previously been used in graph matching [12]. By computing
the number of walks with different lengths in the graphs, the
random walk could discriminate between different graphs. As
the quantum counterpart of random walk, quantum walks have

become a solid field of quantum computing full of exciting
open problems for physicists, computer scientists and engi-
neers. More recently, attention has focussed on the quantum
walk on a graph [10,13,14] which has different properties to
its classical counterpart and may be computationally more
powerful.

Analogously with the random walk, the quantum walk has
a state space and transfer matrix. Because a quantum walk
is reversible, the quantum state includes the position and the
walk direction. For each step, the particle will walk towards
every possible direction with certain quantum amplitudes si-
multaneously.

For the quantum walk on a graph G = (V,E), all the states
are stored in a quantum superposition |φ⟩ as (1),

|φ⟩=
∑

(u,v)∈E

αuv |uv⟩, αuv ∈ C,
∑

(u,v)∈E

αuv
2 = 1 (1)

where |uv⟩ represents the quantum state from vertex u to v
with the quantum amplitude αuv. Using the common Grover
diffusion matrices, every state will be transferred as (2),

|uv⟩ → (
2

d(v)
− 1) |vu⟩+ 2

d(v)

∑
∀k∈V,k ̸=u&(k,v)∈E

|vk⟩ (2)

where d(v) denotes the degree of vertex v.
In contrast to the classical random walk, in the quantum

walk every different walk will interfere with each other when
they meet because the particle has a quantum amplitude, not a
probability. This means that graph symmetry can be detected
via the interference of a discrete-time quantum walk[10].
Consider the graph in Fig. 1(a), it is obvious that the two
parts besides vertex v are symmetric. Assume the initial state
of the whole graph is symmetric as (3),

|φ0⟩= a√
2
[|u1u2⟩+ |u2u1⟩+ |u1u3⟩+ |u3u1⟩]

+ a√
2
[|w1w2⟩+ |w2w1⟩+ |w1w3⟩+ |w3w1⟩]

(3)

After every step of quantum walk, we focus on the quantum
amplitudes of vertex v as shown in (4),

αu1v (t+ 1) = 2
3αu2u1 (t) +

2
3αu3u1 (t)− 1

3αvu1 (t)
αw1v (t+ 1) = 2

3αw2w1 (t) +
2
3αw3w1 (t)− 1

3αvw1 (t)
(4)

Via the Hadamard operator for the quantum state, the interfer-
ence amplitude between u1 and w1 is computed as follows,

α−(u1, w1) =
1√
2
[αu1v(t)− αw1v(t)] (5)

We find that the interference amplitude α−(u1, w1) will be
equal to 0 after every step of quantum walk. This property of
quantum walk has been utilized to detect graph isomorphism
via constructing the auxiliary graph and connecting all the
vertex pairs with auxiliary nodes [10]. Destructive interference
will happen in every auxiliary node which connects the true
vertex mapping.
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Figure 1. (a)Symmetric graph. (b)Asymmetric graph

III. ALGORITHM

In this section, we find some new observations based on the
discussion of MCS problem and the discrete-time quantum
walk. Based on them, a novel quantum algorithm Qwalk is
proposed to solve the MCS problem approximately.

A. Observations

Observation 1. The quantum amplitude of a vertex will
spread to another vertex according to their distance during
quantum walk. The discrete-time quantum walk can measure
the distance.

From (2), it is known that for every step, the quantum
amplitude could be transferred from one vertex v to its 1-
level neighborhood group G1

v . Therefore, if d(u, v) = k, the
quantum amplitude of vertex v will spread to vertex u after a
k-step quantum walk.

Observation 2. The destructive interference of discrete-time
quantum walk can be used to detect graph isomorphism, while
the k-step discrete-time quantum walk can be used to detect
the (k-2)-level isomorphism neighborhood group matches.

In [10], the destructive interference of discrete-time quan-
tum walk on the auxiliary graph will make the interference
amplitudes of the auxiliary nodes between the true vertex
mappings equal to 0. Consider the quantum walk on the graph
in Fig. 1(b), the vertex can be considered as the auxiliary node
between the vertex u1 and w1. We see that G1

u1
is isomorphic

to G1
w1

, but G2
u1

is not isomorphic to G2
w1

. The different
substructure is the vertex w4 and d(v, w4) = 3. Based on
Observation 1, it is known that the quantum amplitude of
vertex w4 will spread to vertex v after 3 steps of discrete-time
quantum walk. Because the interference amplitude maintains
0 after two steps, it means all the 2-length walks around the
vertex are symmetric and there is no difference between the
two substructures G1

u1
and G1

w1
. However, the symmetry is

destroyed after the 3th step. Therefore, through 3-step discrete-
time quantum walk, an isomorphic neighborhood group match
G1

u1
and G1

w1
is detected.

Observation 3. Every graph can be constructed from some
neighborhood groups. Every common sub-graph pair can be
decomposed into some isomorphic neighborhood group match-
es.

For a connected graph, every vertex can reach all the others
via a limited-length path. Therefore, the whole graph can
be considered as a neighborhood group of every vertex. In
general, we can divide the graph into some neighborhood
groups randomly and there are exponential different divisions

for a graph. Besides, if a sub-graph is a common one of
two graphs, the division of this substructure can also be
included into the divisions in the two graphs. Moreover, every
element in the neighborhood set in the division is isomorphic
in the divisions of the two graphs. That is the reason we can
find MCS via merging the isomorphic neighborhood group
matches.

B. Method

Given the two graphs G1 and G2 with m and n vertices
respectively, we need to construct the auxiliary graph G12

firstly. We use auxiliary nodes to connect every vertex pair
between the two graphs.

The whole algorithm can be divided into two steps.
Step 1. Run the discrete-time quantum walk on the auxiliary

graph G12. This step is similar with the algorithm in [10].
However, we set a label Luw on every auxiliary node vuw (
vuw connects vertex u and w in G1 and G2 respectively) to
count the steps the interference amplitude α−(u,w) maintains
0. Therefore, after the first step of quantum walk, we will
check the amplitude of every auxiliary node, if it is equal to 0,
its label will increment by 1. Otherwise, the auxiliary node will
be marked and not be checked later. Then run quantum walk
until all the auxiliary nodes are marked or κ-steps quantum
walk has finished ( κ = max (d1, d2)+ 1, in which d1 and d2
are the diameters of the two graphs respectively).

After the first step of the algorithm, all the auxiliary nodes
have labels which denote the times that the interference
amplitude maintains 0. From Observation 2, we know that it
also means that we have found m×n isomorphic neighborhood
group matches. Every match can be represented as a triple
ING(u, v, Luv − 2).

Step 2. After collecting m × n isomorphic neighborhood
group matches as a set Ψ, we will sort them by size. In order
to get a larger common sub-graph as a better solution, we give
high priority to the bigger INGs to be chosen to merge into
the result.

After sorting, we begin to merge the matches in descending
order. We represent the isomorphic sub-structure pair from the
two graphs as S = (S1, S2), this pair is initially empty S =
(∅, ∅). We build this structure by sequentially merging INGs
discovered by the quantum walk.

Firstly, we introduce the core function merge(A,B). A =
(A1, A2) and B = (B1, B2) are two isomorphic substructure
pairs. If the following 4 conditions are satisfied, the merge will
succeed.
(1) A1 and B1 are connected, A1 ̸⊂ B1 and B1 ̸⊂ A1. Same

to A2 and B2.
(2) Any vertex which appears multiple times in {A1, B1}

maps to the same vertex in A2 ∪B2.
(3) The vertex number of A1 ∪B1 should be the same with

that of A2 ∪B2.
(4) Construct the auxiliary graph which only connects the

subgraphs A1∪B1 and A2∪B2. Run π-step (π = dA1 +
dB1 +1) discrete-time quantum walk, all the interference
amplitudes of the auxiliary nodes should maintain 0.



1: procedure QWALK(G1, G2)
2: Construct the auxiliary graph G12

3: ∀j, k ∈ [1, N ], Mjk ← 0 and M ′
j+(k−1)×N ← 0

4: set |φ0⟩ as a symmetry quantum state on G12

5: for i = 1 : κ do ◃ κ = max (d1, d2) + 1
6: |φi−1⟩ → |φi⟩ ◃ quantum walk on G12

7: if ∀j, k,Mjk ̸= 0 then
8: stop quantum walk
9: end if

10: for every auxiliary node vjk do
11: if α−(j, k) = 0 and Mjk = 0 then
12: Ljk ← Ljk + 1
13: update(ING(j, k, Ljk − 2))
14: elseMjk ← 1
15: end if
16: end for
17: end for
18: sort(Ψ)
19: set S = (∅, ∅) and i← 1
20: while i ≤ N2 do
21: if M ′

i = 0 and merge[S, ING(j, k, L)] then
22: S1 ← S1 ∪GL

j and S2 ← S2 ∪GL
k

23: M ′
i ← 1 and i← 1

24: elsei← i+ 1
25: end if
26: end while
27: end procedure

Figure 2. Qwalk’s algorithm. Mjk denotes the mark of the auxiliary node
vjk . M ′

i denotes the mark of the ith triple in the sorted set Ψ.

We then use the merge operation to include the INGs into
S. We iterate through all INGs from the largest downwards to
find a legal merging step. If merge[S, ING(ui, wi, Luiwi − 2)]

returns true, we set S = (S1 ∪ G
Luiwi

−2
ui , S2 ∪ G

Luiwi
−2

wi ).
Meanwhile we delete ING(ui, wi, Luiwi − 2) from the set Ψ
and restart the search to retry all the remaining . The whole
procedure will finish when every remaining INGs cannot be
merged into S. S is the final solution of our algorithm. Fig. 2
gives the pseudo code of the whole algorithm.

C. Analysis

We now discuss the time complexity. For simplicity, we
assume that both of the two input graphs have N vertices and
E edges.

For these graphs, there are totally 2E + 2N2 states and
the state transition involves matrix multiplication of state-
state matrices, the time complexity of quantum walk is about
O
(
E3

)
. However, according to [10], it is known that the

simulation of the discrete-time quantum walk could be realised
with complexity O(E1.5) on the auxiliary graph via Grover’s
technique. Though we need to detect the values of all the
interference amplitudes of the auxiliary nodes after every step,
compared with transition of quantum state, the time cost can
be neglected. Therefore, for Line 5-18, the time complexity of
Step 1 is O(E1.5).

The size of the set Ψ is N2 because there is an potential
match between all possible pairs of vertices. The time cost of
quick sort is O(N2 logN2). Because there are no more than
N times we need to use the 4th condition to judge the merge
of two isomorphic substructure match in Step 2 (According
to the 1st condition of the function merge, in the worst case,
for every merge, we add at least one new vertex mapping into
S) and when we have to do it, a run of discrete-time quantum
walk is needed, the time complexity for Line 22-29 is no more
than O(NE1.5). Because E ≤ N2, the time consumption of
this algorithm is approximately O(N4).

In [7], Lu’s algorithm found the maximum common sub-
graph via travelling all the triangulations in the two input
graphs. All pairs of ordered triangles need to be considered
as the roots of the pairs of traversals. Therefore the algorithm
will cost O(kmn) for two graph of size m and n and their
maximum common sub-graph of size k. We can consider that
the time complexity is about O(N3).

In [8], in order to obtain the maximum common sub-graph,
the association graph is utilized which size is N2 for two
graphs of size N . And such a N2-length vector will iterate in
replicator dynamics function for many times while it requires
cubic time for every iteration as reported. In general, more
iterations are needed for bigger graphs. Therefore, the time
complexity of this algorithm is O(KN6) and K is the iteration
time which cannot be neglected.

Compared with these state-of-the-art approximate MCS
algorithms, Qwalk shows good performance relative to other
general algorithms.

IV. EXPERIMENTS

In order to evaluate the performance comparison between
the new algorithm and the state-of-the-art ones, two common
kinds of graphs are tested which are the Delaunay Triangu-
lation Graph (DTG) and the Erdös-Rényi random connected
graph (RCG) including some synthetic dataset and COIL-100
database [15].

Because VF2 [4] is a famous exact MCS algorithm, we
use its result as the optimal one. Our algorithm (Qwalk) is
compared to the algorithm of Lu [7] specialized for DTGs
and the maximal clique algorithm of Pelillo [8] (MC-X). Here
X refers to the number of replicator function iterations used.
The reported error is the fractional size difference between the
recovered MCS and the one reported by VF2 as the following
equation.

ErrorA =
abs (SV F2 − SA)

SV F2
(6)

where SV F2 and SA are the sizes of the maximum common
sub-graph matches of VF2 and the approximate algorithm A.

Fig. 3 demonstrates the accuracy comparison of all the
approximate MCS algorithms for DTGs with different sizes.
Although Lu is a tailored algorithm for DTGs, Qwalk and
MC outperform for this kind of graphs. Moreover, Qwalk has
a small standard deviation and stable accuracy as the graph
size increases. Therefore, the newly proposed algorithm has
good accuracy for DTGs.
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Figure 4. The accuracy comparison for RCGs with connected probability 0.3-0.6.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
DTG

Size

E
rr

or

 

 

Lu
MC−100
MC−500
Qwalk

Figure 3. The accuracy comparison for DTGs.

Figure 5. Delaunay triangulation graphs of the objects.

Fig. 4 shows the accuracies of these algorithms for RCGs
with different connecting probabilities. Because RCGs do not
have the same properties with DTGs, the algorithm Lu will be
difficult to find triangulations in the input graphs so that the
accuracy is worst and unstable. Meanwhile, it is found that
Qwalk performs similar with MC-500. However, Lu and MC
with few iterations have bad accuracy and stability. Therefore,
Qwalk has better universality.

Maximum common sub-graph between two graphs is
strongly relative to the graph similarity. In this part, we will use
the solution of these approximate MCS algorithms to be the
measurement of graph similarity to making image clustering
for COIL-100 database. For each image in this database, the
corner features are extracted using the Harris corner detector
[16]. The extracted corner features are used as the vertices
to construct Delaunay triangulation graphs in our experiment.
We choose five objects randomly of which the corner numbers
are all around 25, and for each one, five images are taken
from -10 degree to 10 degree. Fig. 5 shows the Delaunay
triangulation graphs of all the five objects with angulation 0.
We use the size ratio between the input graphs and MCS as the
similarity and utilize multidimensional scaling (MDS) to make
image clustering into 5 groups for every algorithm. The detail
distributions of graph are visualized in Fig. 6. We see that
only Qwalk could make an approximately correct clustering
for these 25 graphs. All the graphs of the same objects are

near. However, the results of Lu and MC are bad and the same-
object graphs are far away with each other and the different-
object graphs are mixed so that it is difficult to make a correct
clustering.

In the real world, noise will disturb usually. In order to
test the robustness of these algorithms, noise will be added
into the DTG database with size 30, 40 and 50. The way to
add noise is to delete n edges randomly from DTGs. Fig. 7
reports the accuracy comparison of these algorithms for DTGs
with different noise intensities. Because noise will destroy the
graph and its original properties, the accuracy of Lu will be
abnormal, bad and unstable. While Qwalk and MC performs
better. Especially when the graph is more bigger, Qwalk shows
better accuracy and stability than MC. Therefore, Qwalk has
better robustness for noise.

V. CONCLUSION

In this paper, a novel quantum algorithm Qwalk is designed
which utilizes discrete-time quantum walk firstly to solve
the MCS problem approximately. Based on the observation
that it can be fast and convenient to detect all the maxi-
mum isomorphic neighborhood group matches in parallel via
the interference of discrete-time quantum walk, this kind of
substructure is used to solve the MCS problem for the first
time. For the general graphs, our new algorithm could give an
approximate optimal solution in time complexity O(NE1.5).
Experiments report that compared with the state-of-the-art
approximate MCS algorithms, our newly proposed algorithm
could achieve better availability for the real world.

Our algorithm will be low-performance if quantum walk
could not find some high-level isomorphic neighborhood pairs,
especially when most of the node pairs in the two graphs
have different degrees. This is a common situation in the
problem of sub-graph isomorphism. In the future work, some
tricky auxiliary nodes or edges will be utilized to address
this problem so that our algorithm will be also proper to the
sub-graph isomorphism problem. Besides, we will continue to
focus on what will happen if the quantum walk runs on the
association graph.
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Figure 6. Graph Clustering for five objects in COIL-100 database.
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