
Eurographics Symposium on Geometry Processing 2016
Maks Ovsjanikov and Daniele Panozzo
(Guest Editors)

Volume 35 (2016), Number 5
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Figure 1: Mobility fitting of a robot’s articulated motion. Top row are excerpts from the robot’s motion sequence, while the bottom row
depicts the captured dynamic scans with the fitted mobility joints (colored hinges) and their mobility graph.

Abstract

Capturing the dynamics of articulated models is becoming increasingly important. Dynamics, better than geometry, encode the
functional information of articulated objects such as humans, robots and mechanics. Acquired dynamic data is noisy, sparse,
and temporarily incoherent. The latter property is especially prominent for analysis of dynamics. Thus, processing scanned
dynamic data is typically an ill-posed problem. We present an algorithm that robustly computes the joints representing the
dynamics of a scanned articulated object. Our key idea is to by-pass the reconstruction of the underlying surface geometry and
directly solve for motion joints. To cope with the often-times extremely incoherent scans, we propose a space-time fitting-and-
voting approach in the spirit of RANSAC. We assume a restricted set of articulated motions defined by a set of joints which
we fit to the 4D dynamic data and measure their fitting quality. Thus, we repeatedly select random subsets and fit with joints,
searching for an optimal candidate set of mobility parameters. Without having to reconstruct surfaces as intermediate means,
our approach gains the advantage of being robust and efficient. Results demonstrate the ability to reconstruct dynamics of
various articulated objects consisting of a wide range of complex and compound motions.

† The authors assert equal contribution and joint first authorship.

1. Introduction

The evolution of 3D scanners has made it possible to acquire the ge-
ometry of various objects in motion, both man-made and natural.
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Nevertheless, in comparison to the prevalence of 3D reconstruc-
tion techniques, there is still little work that addresses the captur-
ing of dynamics, such as those arising in mechanical interactions,
robot dynamics, and even human body motions. Dynamics, more
than geometry, succinctly describe the functionality of an articu-
lated object. In his seminal work, Johansson [Joh73] showed that
visual perception is tightly coupled with motion cues. Dynamics
comprise a wealth of information encompassing motion parame-
ters, joint positions and axes in 3D space, which may be utilized in
various motion analysis, recognition and reconstruction tasks.

Reconstruction of 3D motions is a challenging task which is am-
plified by the often low quality of the scanned dynamic data. 3D
scanners are of limited resolution and frame-rate. When applied
to rapidly moving geometries the resulting point sets are typical-
ly noisy, sparse and largely incoherent. Furthermore, moving part-
s may generate significant outliers due to ghost effects and self-
occlusions yielding holes in the data. To reconstruct the motion
parameters (denoted mobility), a straightforward approach may at-
tempt to first reconstruct the geometry of dynamic objects and then
analyze the mobility based on the animated geometry. Previous
works take 4D scan sequences and register in-between frames to
reconstruct a coherent geometry [MFO∗07,WAO∗09,CZ08]. Data-
driven methods [PG08, CZ11] pre-define geometry templates and
deform them to locally register and track individual frames.

Dynamic objects in the wild typically have a large structural and
geometric variety. Hence, templates that accurately fit and recon-
struct the dynamic geometry cannot be always assumed. In this
work, we take a different approach aiming to recover only the mo-
bility of objects from a dynamic scan sequence. We completely re-
move the necessity of reconstructing the full surface geometry and
topology along its dynamic deformation. Instead, we directly com-
pute the articulated motion parameters (Figure 1), defined by local
piecewise-rigid transformations which are prescribed by a limited
set of joint types. Due to the fact that joints are typically invariant
to form and shape, they may efficiently and robustly computed by
generic parametric models that are fitted to the dynamic scans.

Our algorithm computes mobilities by fitting joints to point tra-
jectories in the scanned data through a random consensus sampling,
denoted 4D RANSAC. Similar to RANSAC, we fit various joints
to random subsets and search for a consensus set which supports
them. Then, the method searches for a global consensus mobility
model which optimally models the whole articulated motion. The
advantage of RANSAC is in its robustness. Although motion da-
ta may be largely missing due to occlusions or consist outliers, it
can accurately estimate the motion parameters of the model that
optimally fits this data.

Our method robustly estimates the parameters of the articula-
tion motion model from a set of scanned 4D dynamic points. Our
contribution is a 4D RANSAC scheme, which computes the mobil-
ity joints in dynamic scans without intermediately reconstructing
the object’s geometry. The scheme is global in that it avoids lo-
cal operations such as pairwise frame registration, per-frame shape
reconstruction and accurate trajectory tracking.

2. Related Work

Dynamic geometry processing has been an active field of research
in recent years in both computer vision and graphics. It is beyond
the scope of this paper to fully review it and refer to Chang et
al. [CLM∗12] for a comprehensive survey of this topic. Instead,
we focus our discussion on articulated motion analysis and recon-
struction techniques.

Rigid motion segmentation. Motion trajectories are a fundamen-
tal representation of motion sequences besides RGBD depth im-
ages and 3D scans. Their segmentation serve as means to reduce
their complexity and analyze their features. Many approaches to
motion segmentation rely on sparse interest points correspondence
or on dense optical flow based techniques.

To segment moving objects in real time using a calibrated stereo
camera, a three-point RANSAC for rigid body detection is used in
[AKI05]. Thus, rigid motion candidates are detected by fitting rigid
transformations to a sparse set of feature points that are tracked
across the sequence.

A scene flow algorithm introduced in [HRF13] shows how to
combine depth and color information to estimate the dense 3D mo-
tion of each point in an RGB-D frame. To refine the motion, they
perform a rigid motion clustering following [HRF12]. Thus, they
sample possible point correspondences and fit them with rigid mo-
tions in a RANSAC manner, followed by discarding outliers using
a Markov random field.

An expectation-maximization (EM) framework is introduced in
[SB15] for motion segmentation of RGB-D sequences. Motion seg-
ments and their 3D rigid-body transformations are formulated as an
EM problem, thus it determines the number of rigid parts, their 3D
rigid- body motion, and the image regions that map these parts.

Dynamic scan reconstruction. Researchers have considered dy-
namic scans as a 4D surface reconstruction problem in space-time.
Mitra et al. [MFO∗07] use kinematic properties of the 4D space-
time surface to track points and register frames of a rigid object
together. SĺuSSmuth et al. [SWG08] and Sharf et al. [SAL∗08] ex-
plicitly reconstruct the 4D space-time surface using an implicit sur-
face. In [WAO∗09], multiple scan frames are aligned together by
solving surface motion in terms of a displacement field. A common
shape that deforms and matches data is computed.

A template model is used in [LAGP09] as a coarse motion prior
to reconstruct the non-rigid motion. The template deforms using a
deformation graph and is registered to the scanned data reconstruct-
ing the coarse geometry. Popa et al. [PSDB∗10] reconstruct mesh
animations using optical flow and a gradual change prior. Anima-
tion reconstruction is computed in [TBW∗12] using reliable land-
mark correspondences which are extended to define a dense match-
ing across time. Nevertheless, reconstructing the full 4D deforming
geometry from scans is a challenging problem. The solution lies in
a high dimensional domain and requires a dense sampling in both
time and space. In practice, the reconstruction problem is under
constrained as scans are typically sparse with large missing parts
due to self occlusions and noise.

c© 2016 The Author(s)
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Articulated motion processing. Registration of dynamic point
sets is at the core of many 4D reconstruction techniques for both
rigid [GMGP05] and non-rigid [HAWG08] motions. The differ-
ence between general non-rigid and articulated motions is that rigid
parts of the surface yield a constrained motion which help in regis-
tration and trajectory processing. In fact, Huang et al. [HAWG08]
use clustering of rigid transformations to improve registration con-
vergence in non-rigid surface deformations.

Mean shift clustering is used in [JT05] to cluster rotations ex-
tracted from an articulated mesh deformation. This is used to au-
tomatically identify skin bones and their transformations for mesh
animation sequences. Rigid transformation clustering has been also
used in the context of symmetry detection [MGP06]. A similar ap-
proach to RANSAC is applied here, as the surface is sampled and
matching feature pairs are accumulated to identify potential sym-
metries.

The problems of piece-wise rigid point registration and part seg-
mentation are described as tightly coupled in [CZ08]. They pro-
pose to transform the registration problem into a discrete labeling
problem, where the goal is to find an optimal set of rigid trans-
formations for aligning the shapes’ parts. We observe that many
previous works focus on solving the coupled problems of surface
processing and motion reconstruction. Instead, we take a differen-
t approach and directly analyze the joints and their mobility. Our
method utilizes a predefined set of mobility priors which are di-
rectly fitted to the 4D data, leading to robust motion reconstruction
and segmentation.

Pekelny and Gotsman [PG08] present an articulated motion re-
construction method which assume a given segmentation of the
shape into rigid parts and an underlying skeletal structure. Chang
and Zwicker [CZ11] present an algorithm which simultaneously
optimizes scan alignment and model reconstruction using a reduced
deformable model. Their method formulates the problem as a skin-
ning problem, searching for a global set of transformations and
weights. Both works are similar to us in that they attempt to recon-
struct the articulated motion utilizing global priors. Nevertheless,
we avoid the problem of coherent geometry reconstruction and in-
stead, directly reconstruct only the dynamics in terms of joints and
their motion parameters. To this end, we take a RANSAC approach,
taking advantage of its robustness and fast processing.

Similar to us, Mufti et al. [MMH12] introduce a spatio-temporal
RANSAC algorithm for dynamic scan processing. Nevertheless,
their setup consists of a moving ToF camera scanning a 3D outdoor
scene and their goal is the detection of the planar (static) ground.
Thus, their method focus on computing reliable spatio-temporal
planar hypotheses.

3. Overview

The motion of an articulated model is typically governed by a set
of joints which define the relative piecewise rigid motions between
parts pairs. Nevertheless, parts may deform at different intervals, in
more than one way, independently or together, resulting in complex
motions.

Our input consists of a scanned articulated motion sequence.

Figure 2: Our joint types consist of (top left, CW): slider, planar
hinge, orthogonal hinge and ball joint.

Each frame in this sequence contains a 3D point set that samples
the scene at one time point. In a preprocessing step, we compute
inter-frame correspondence between points, utilizing both geome-
try and color cues, and concatenate these correspondences to form
trajectories. To reduce their complexity, we cluster similar trajecto-
ries together, based on their transformation similarity.

We devise a random sampling consensus method in 4D which
fits joints to point trajectories by considering three basic types of
joints: hinge, slider, and ball joint (Figure 2). Thus, we randomly
select a space-time subset by selecting few random trajectories and
a subset of their interval. For each random selection, we compute
its best fitting mobility model among the predefined set of joints.
Typically, articulated motions are defined by joints connecting part
pairs. Thus, our random sampling consensus aims at fitting mobil-
ity models to pairs of relative trajectory motions. We represent the
trajectory motions using a relative scheme which accounts only for
the local transformation as defined by a single joint.

We evaluate each mobility model by computing its consensus
w.r.t. the complete 4D data set and use a voting scheme to measure
the fitting quality of each mobility model. Our method is iterative,
repeating the random selection and consensus voting steps until all
mobilities are reconstructed in the data. Specifically, we iterate until
no mobility models can be found with sufficient support.

The reconstructed mobility joints are organized as a mobility
graph, which represents the dynamic structure of the scanned ob-
ject. The graph is an abstract representation encoding joints as n-
odes and their adjacency relations as edges connecting the nodes
(see Figure 1(bottom row)).

4. Technical Details

Scanned motions are represented by a sequence of frames sampling
the articulated motion in space and time. Using consumer level
RGB-D depth cameras (e.g. Kinectr, Primesenser, and others),

c© 2016 The Author(s)
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Figure 3: Trajectories of an excavator’s articulated motion are il-
lustrated by colored lines. Initial and final states are shown on top
right.

captured frames encode both depth and color channels as raw point
sets.

Trajectory generation. We compute dense motion trajectories
connecting points in adjacent frames using scene flow [JSGJC15].
Our algorithm does not assume accurate trajectories and is designed
for robustness to trajectory noise. In fact, scanned data is typically
very noisy and trajectory noise has a similar magnitude.

Given the RGB-D data of two consecutive frames Si and Si+1,
the algorithm produces a 3D motion vector v for each point p ∈ Si
to Si+1, by computing closest point correspondences. Correspon-
dences are typically noisy due to poor data quality and occlusions.
Thus, from the raw dense correspondences we extract a reliable s-
parse set by rejecting correspondences with low matching scores in
terms of their SIFT image features [Low04]. We represent SIFT by
a 128-dimension vector, and define dissimilarity as the Euclidean
distance between SIFT descriptors. For all experiments, a threshold
of εSIFT = 0.5 on SIFT distance is utilized to prune dense corre-
spondences.

We build motion trajectories by concatenating sparse correspon-
dences sharing common points. Trajectories may not exist during
the entire sequence due to occlusions or disappearance from camera
view, and thus may have different life spans. We denote a trajecto-
ry life span T = (ps, . . . ,ps+k), where ps is the trajectory point in
frame s and ps+k in frame s+ k. Figure 3 shows the motion trajec-
tories of an excavator. Although they are noisy due to artifacts in
the sceneflow algorithm, they capture the overall motion well, due
to our SIFT filtering step.

Trajectories simplification. Trajectory data is typically large in
the order of the sampled points. Furthermore, it may be of various
lengths due to disconnections and intersections. Our goal is to sim-
plify the trajectory data and reduce its complexity by a compact set
of representative trajectories. Although our mobility fitting can per-
form on the raw trajectories its performance significantly benefits
from reducing their size, similar to Yan et al. [YSL∗14].

Thus, we cluster together trajectories based on a similarity metric

Figure 4: 2D illustration of trajectory representation. Three trajec-
tories (Ti,Tj,Tk) sharing a common life span (blue). We randomly
select a trajectory triplet (here in 2D the pair Ti,Tj) and compute
its RTM: M = (Ma→b,Mb→c). The residual r(Tk,M) measures the
average positional offset when applying M on Tk (in green).

which accounts for the articulated motion. We represent a trajectory
T using a rigid trajectory-model (RTM) which encodes a series of
rigid transformations M representing its articulated motion:

M = (Ms→s+1, . . . ,Ms+k−1→s+k), (1)

where Ma→b is a local rigid transformation from frame fa to fb.

To compute Ma→b in two consecutive frames a,b, we random-
ly select trajectory points triplets {pa

i } in frame a and their cor-
respondences {pb

i } in frame b. The rigid transformation Ma→b =
(R, t)a→b is estimated by:

Ma→b = argmin
R,t

N

∑
i=1
‖pb

i − (Rpa
i + t)‖2. (2)

We solve this optimization problem using the least-squares fitting
algorithm [AHB87]. Note that since rigidity preserves isometry, we
reject triples which do not preserve pairwise distances along the
trajectories.

Given a rigid transformation model M and a trajectory T =
(ps, . . . ,ps+k), we define the residual of T w.r.t. M as:

r(T,M) =
1
k

k−1

∑
i=0
||Ms+i→s+i+1ps+i−ps+i+1||, (3)

which measures the average 3D positional offset of a trajectory
when applying transformation M to T along ( fs, fs+k) (see Fig-
ure 4).

Naturally, we randomly select trajectory triplets and compute
their RTM’s using Equation 1 (see Figure 4). In total n RTM candi-
dates are generated. We define a trajectory-model association sig-
nature (TMS) for a trajectory T , as a n-dimensional vector A, which
measures how well each RTM represents T :

A(i) =

{
1, if ri < εr,

0, if ri ≥ εr,
(4)

where ri = r(T,Mi) is the residual of T w.r.t. the i-th RTM Mi, using
εr = 0.004 in all experiments.

c© 2016 The Author(s)
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Figure 5: 2D illustration of hinge fitting. We randomly select two
frames ( fi, f j) and compute the hinge fitting h = (a,c), in yellow.
To compute the consensus set, we measure the distortion Dh( fi, fk)
for a new frame fk w.r.t fi by transforming fi using Mh,α.

Finally, using the TMS signature A, the clustering algorithm per-
forms by incrementally merging closest clusters in terms of their
Jaccard distance, following Roldo and Fusiello [TF08]:

dJ(A1,A2) = 1− A1∩A2
A1∪A2

. (5)

For each cluster, we update its TMS by the intersection of TMS’s
of merged clusters. The merging procedure stops when the distance
between two clusters is dJ(Ai,A j)≥ 0.7 which means two clusters
Ai and A j share less than 30% common RMTs . We then remove
small clusters containing less than 5% of the total number of trajec-
tories. A consolidated RTM M̂ is then computed for each cluster by
computing the transformations between frames within a cluster. In
the following, we refer to a consolidated RTM as a representative
trajectory (or trajectory for simplicity).

Mobility fitting. We consider joint types that include general
hinges, sliders and ball joints. We randomly sample trajectory da-
ta and fit a mobility model to it following [Reu76]. A trajectory of
length 2 uniquely defines a hinge and slider joint and of length 3 for
a ball joint. Fitted mobilities are tested against the entire dataset,
yielding a set of conforming trajectories, denoted consensus set.
The mobility with the largest consensus set is selected and cor-
responding trajectories are removed. The process repeats until no
mobility models can be found with sufficient support. Assuming
that mobility models always connect between two rigid parts, we
analyze the local motion between pairs of trajectories denoted as
the relative mobility. Given two representative trajectories (or sim-
ply trajectories) TA and TB, we arbitrarily select TA as the reference
and compute the relative trajectory representation of TB w.r.t TA de-
noted TB|A. Let (pB

s , . . . ,pB
s+k) be the points of trajectory TB, then

the relative trajectory representation TB|A = (pB|A
s , . . . ,pB|A

s+k) can be
computed as

pB|A
s = pB

s , (6)

pB|A
s+i = (MB

s→s+i−MA
s→s+i)∗pB

s ,1≤ i≤ k. (7)

Hinge joint. A hinge connects two rigid bodies, allowing a rela-
tive rotational motion between them about a fixed axis defined by
its direction a and position c. The transformation Mh,α = (R, t)h,α,

Figure 6: Excavator motion defined by 4 hinges. Top row are
excerpts from the scanned sequence with correctly reconstructed
hinges. Bottom row is the full motion graph following the recon-
structed joints.

representing the rotation about hinge h = (a,c) by angle α is de-
fined by:

Rh,α = Ra,α, (8)

th,α = c−Ra,αc, (9)

where

Ra,α = cosαI3 +(1− cosα)aaT + sinα[a]× (10)

is the rotation about axis a located at origin, and [a]× denotes the
cross-product matrix.

Given the hinge transformation Mh,α = (R, t) between two
frames { fi, f j}, according to Euler’s rotation theorem, the hinge
direction a is the eigenvector of R with eigenvalue of 1. The
hinge location c can be computed by solving the linear equation
(I−R)c = t. Since, this is under-constrained, the solution could
be any point on the hinge. Thus, we project the centroid of all rel-
ative trajectories onto the hinge axis to obtain the absolute hinge
location.

For a hinge h = (a,c), we compute its support by measuring its
fitting error to the full lifespan trajectory. Thus, taking points from
other frames fk relative to fi, we measure:

Dh( fi, fk) = min
θ
‖Mh,θpi

m−pk
m‖, (11)

where {pi
m} and {pk

m}, m = 1, . . . ,N, are corresponding trajectory
points in fi and fk respectively.

The point pk
m ∈ fk supports h = (a,c) if its fitting error is below

a threshold εh = 0.05. As a fast reject strategy, we discard a hinge
if its supporting points are less than 80% of the trajectory’s lifespan
(see Figure 5).

c© 2016 The Author(s)
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Slider joint. A slider connects two rigid bodies and allows a rela-
tive translational motion between them along a direction v. Suppose
the rigid transformation between two frames { fi, f j} is Mi→ j =
(R, t). Ideally the sliding direction is v = t/‖t‖, and the rotation
component R are the identity matrix.

For a slider joint v, we compute its support by measuring its
fitting error to the full lifespan trajectory. Thus, taking points from
other frames fk relative to fi, we measure:

Dv( fi, fk) = min
v
‖pi

m + tv−pk
m‖. (12)

The point pk
m ∈ fk supports v if the fitting error is below a thresh-

old εv = 0.05. Similarly, slider joints are discarded if their support
is below 80% of the trajectory’s lifespan.

Ball joint. A ball joint connects two rigid bodies and allows a ro-
tation between them about a fixed pivot c. Suppose the rigid trans-
formations between three frames { fi, f j, fk} are Mi→ j = (R1, t1)
and Mi→k = (R2, t2), the pivot point c can be computed by solving
the following linear system:(

I−R1

I−R2

)
c =

(
t1

t2

)
. (13)

For a ball pivot model candidate c, we compute its support by
measuring its fitting error to the full lifespan trajectory. Thus, taking
points from other frames fk relative to fi, we measure:

Dc( fi, fk) = ‖pi
m− c‖−‖pk

m− c‖. (14)

The point pk
m ∈ fk supports c if the fitting error is below a thresh-

old εc = 0.05. Similarly, ball joints are discarded by early rejection
if their support is below 80% of the trajectory’s lifespan.

Consensus voting. We fit a joint to a new trajectory candidate us-
ing the respective fitting error minimization equations 11, 12, 14
corresponding to hinge, slider and ball joints. For generality, we
refer to these joints as RTM’s denoted M. For each joint, we test
it against all the trajectories in the data and considering their full
lifespan.

Thus, for a given mobility model M and a trajectory Tk we mea-
sure its fitting residual r(Tk,M) using equation 3. A trajectory is
added to the consensus set of a joint M if the majority of points a-
long its lifespan (here 80%) are within the error fitting threshold of
M. Only mobility models with a consensus set larger than certain
threshold (here 10% of all raw trajectories) are selected and their
corresponding consensus trajectories removed from the dataset.

If two mobility models are identical, we merge their consensus
set. Hinges are identical if they share the same axis; sliders are
identical if their directions are the same; ball joints are identical if
they share the same pivot. The process repeats until no model with
sufficient support can be found, yielding a set of mobility models
associated with their supporting 4D trajectory points.

Mobility graph. A by-product of our mobility fitting is a joint
based skeleton which connects adjacent joints, yielding a global
kinematic chain that governs the articulated motion. The skeleton

Example Seq Traj (ms) Fit(ms) Joints#
Robot 69 6,112 876 7H
Excav. 155 12,875 288 4H
Crane 167 13,574 344 1H, 1S
Tripod 101 9,547 234 1B
Chair 26 5,984 46 1H
Human 169 13,632 587 2B, 2H
Arm 26 6,145 74 3H, 1S
Chain 16 1,608 89 10H
Hand 151 12,755 1,672 14H
Two obj. 96 9,653 458 3H, 1S
Comp. robot 90 417,600 943 6H
Comp. car 90 846,000 327 1B, 2H

Table 1: Summary of experiments presented in this paper: se-
quence length in frames (Seq), trajectory processing time (Traj),
joint fitting time (Fit), and joints numbers for each type – hinge(H),
slider(S), ball(B).

graph is an abstract representation encoding joints and trajectory
clusters as two types of nodes and their mobility relations as edges
(in Figure 6 joints and red nodes connected by blue edges).

To compute the skeleton, each joint node connects to trajecto-
ry clusters in its consensus set. Naturally, these clusters define a
piecewise rigid motion of shape parts (red nodes in our graph).
Thus, each joint node connects to two or more rigid nodes form-
ing a graph structure.

5. Results and discussion

To demonstrate our method, we experiment with different object-
s performing various articulated motions. To evaluate performance
and scalability we show different kinematic configurations, rang-
ing from simple motions to more complex combinations of joints
which generate compound motions.

In our tests, dynamics are captured using a standard Kinect de-
vice, which captures both depth and color frames of the dynamic
sequence. In the preprocessing step, we use the scene flow algo-
rithm of [JSGJC15] to extract dense trajectories from the dynamic
sequence.

We test our method on an Intelr i7-6700K 4.00GHz with 16GB
RAM. Experiments information is summarized in Table 1. Note
that in all our experiments, processing times are very fast staying
below 200ms per frame. In fact, trajectory processing (Traj. col)
took the majority of time in comparison to 4D RANSAC (Fit col.).
Thus, our method is very efficient, making it a good candidate in
the future for achieving real-time performance rates.

In Figure 1 we capture the motion of a toy robot, whose parts
move simultaneously, as seen in the top row. Articulated motion is
defined by a 7 joint skeleton, generating intricate trajectories due to
the simultaneous motion. Our method has managed to reconstruct
the 7 hinge joints that define this motion (see accompanying video
for full sequence). The bottom row demonstrates the reconstructed
mobilities by positioning the joints in their correct 3D positions and
orientations in each frame.

c© 2016 The Author(s)
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Figure 7: Mobility reconstruction of a manually operated tripod.
Top row are three frames from the scanned tripod articulation. Bot-
tom row shows the fitted ball joint with the scanned point clouds.

Figure 8: Mobility reconstruction of a manually operated rotating
chair. Top row are three frames from the scanned motion. Bottom
row shows the reconstructed hinge joint fitted to scans.

Figure 6 (top) shows a complex motion of a toy excavator per-
forming common excavation actions. Motions are generated by 4
simultaneously operating hinges. The base and the excavator’s ar-
m are rotating together. Furthermore, the excavator base defines
a compound joint consisting of two hinges with different orienta-
tions: one defining the rotation w.r.t the excavator’s base and an-
other the arm’s lift. Note that reconstructed joints have the correct
position and orientation w.r.t. the scanned data (top). Joints stay
coherent over time, maintaining their relative position and only ad-
justing their angle. In the bottom row we show the reconstruction
of mobility joints together with their kinematic graph.

In Figure 7, we show mobility reconstruction of a ball joint of
a tripod motion. In contrast to the above toy examples operated by
a remote controller, this object’s articulation is manually operated.
Therefore, articulation speed is non-constant adding a noise factor
to trajectory data. Our method reconstructs the accurate joint posi-
tion in the model as well as coherently tracks its articulation.

Figure 8 shows our mobility reconstruction on a scanned of-
fice chair with the back seat rotating around its axis. Although the
chair seat is almost completely missing due to material reflection-
s, we correctly fit the hinge there. This example is an excellen-
t demonstration of our direct mobility reconstruction idea. While

Figure 9: Mobility reconstruction of a scanned human while mov-
ing hands, arms and shoulders.

Figure 10: Mobility reconstruction of a crane and an excavator
moving simultaneously in the scene.

reconstruction of the surface geometry would fail here, we direct-
ly compute the articulated motion parameters using our robust 4D
RANSAC.

We experiment also with organic data, reconstructing the mobil-
ity from a scanned human motion, see Figure 9. Here, we capture
a motion sequence of the upper torso of a human. Since human
motion is closely related to articulated motion due to human bone

c© 2016 The Author(s)
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(a) (b) (c)

Figure 11: Synthetic mechanic arm motion. (a) is the 3D animation
with ground truth joints (green). (b) is the virtually scanned motion
with reconstructed mobilities (red). (c) is a comparison between
ground truth and reconstructed joints in terms of their position and
orientation.

Figure 12: A 3D chain model defined by 10 hinges which operate
simultaneously and generate a complex compound motion. Top row
shows frames from the ground truth animation and bottom row de-
picts our reconstructed hinges positioned in the virtually scanned
data.

structure, we correctly reconstruct joints using our robust tech-
nique.

Finally, our method is not limited by the number of operating
objects in the scene nor their joints as long as they are captured
properly. In Figure 10 we show a case of two articulated objects,
a crane and an excavator, operating simultaneously in a scene with
their mobility reconstructed.

Quantitative evaluation. We employ a virtual scanner and scan
articulated 3D animations, yielding a raw dynamic point set. This
yields a full simulation and proper evaluation of our result accura-
cy against ground truth. For a quantitative evaluation, we use 3D
models with predefined ground truth mobilities. We save the mod-
el’s joints positions and angles through the animation and compute
new mobilities from the scanned points, using our method.

In Figure 11, a mechanic arm motion shows a comparison be-
tween ground truth joints (left col., green) and ours reconstructed
from the virtual scanned motion (mid col., red). Qualitatively, our
algorithm is accurate as both ground truth and reconstructed joints
perfectly overlap (right col.).

In Figure 12 we demonstrate the scalability of our method using
a virtual scan of a motorcycle chain with 10 hinges operating simul-

Figure 13: Mobility reconstruction of a complex robot hand motion
composed of 15 different joints.

Figure 14: Error fitting of our method compared with ground truth
( in robot-arm example). Graphs measure average error per se-
quence for each of the 3 hinges and 1 slider. y-axis is the measured
error, x-axis is the noise in position in % of bounding box diagonal.
Top is average angle error and bottom is position distance error.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Hao Li & Guowei Wan / Mobility Fitting using 4D RANSAC

Figure 15: Robustness to random selection.

taneously. Hinges are green in the ground truth simulation in the top
row. Our method has successfully reconstructed all hinges accu-
rately (bottom row, in red) without a significant increase in the pro-
cessing times per frame. Similarly, we demonstrate our method’s
scalability to both joints size and motion length on a complex ar-
ticulated robot hand (Figure 13). The hand consists of 15 different
joints operating simultaneously in a motion sequence of 15sec (150
frames at 10fps).

We measure the algorithm’s accuracy, as the sum of distances
in terms of vector orientation and angle between the reconstructed
and ground truth joints. To evaluate robustness, we measure the ac-
curacy with increased noise using our virtually scanned data. Thus,
we gradually insert noise in the scanned points position (percent-
age of the bounding box diagonal) and measure the accuracy of
mobility reconstruction w.r.t. ground truth. The results of these ex-
periments are summarized in Figure 14. The plots show that our
method is robust as accuracy error grows slowly with increasing
noise-level. Our system was able to detect the correct joints with
sufficient consensus up to 2% noise. Furthermore, to evaluate the
method’s robustness to random selection, we run our method with
different random selections for 100 times (see Figure 15). The ac-
curacy w.r.t. ground truth stayed nearly constant with position error
staying below 4mm and angle error below 0.8 degrees.

Comparison. To evaluate our work, we compare the results with
that of Chang and Zwicker’s global registration approach, which
utilized a reduced deformable model to simultaneously optimize s-
can alignment and model reconstruction. We run our algorithm on
the same data sets of articulated robot and truck as in [CZ11]. Our
mobility reconstruction is qualitatively compared to theirs in Fig-
ure 16. We found that both methods reconstruct mobility joints in
these examples with equivalent quality. Nevertheless, our method
is more efficient due to the fact that our algorithm avoids the ex-
pensive coherent geometry reconstruction. Since authors in [CZ11]
did not provide any accuracy and scalability evaluation, we could
not compare these terms.

Limitations. In terms of limitations, our method assumes an artic-
ulated type of motion where parts transform rigidly. Thus, an exten-
sion to elastic deformations seems non-straightforward. In the case
of the stuffed animal toy in Figure 17, our approach fails to discov-
er the rigid segments, as well as the mobility joints. The reason lies
in the fact that there are no obvious articulations in the motion se-
quence and joints can not fit reliably. Furthermore, the performance
bottleneck of our algorithm is the trajectory size. We are required

Figure 16: Comparison of Chang and Zwicker [CZ11] (top tow)
and our method (bottom row).

Figure 17: Applying our method on a hand puppet motion with no
clear articulation yields no significant joints and consensus trajec-
tory sets (right).

to significantly simplify trajectories in the preprocessing step for
efficiency.

6. Conclusions and future work

In this paper we introduce a method for mobility reconstruction
from scanned dynamic points. Our algorithm takes a random sam-
pling approach (4D RANSAC) which robustly reconstructs the mo-
bility joints in the data. Typically, articulated motions are defined
by a discrete set of piecewise-rigid transformations. Our algorithm

c© 2016 The Author(s)
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leverages this fact by searching a restricted space of deformations.
Thus we pre-define a discrete set of mobility joints which we fit
to the 4D data. A key observation in our approach is to avoid the
common pitfall of reconstructing the transforming surface geome-
try. Instead, we directly reconstruct mobilities from point trajecto-
ries. Results show the ability to reconstruct a variety of articulated
motions of various objects. Additionally, evaluation shows the ac-
curacy of our method and its robustness to noise and scalability.

In the future we would like to further advance this technique in
two ways. First, we would like to explore accelerations of our tech-
nique using modern GPU parallel computations. Second, we would
like to adapt the 4D RANSAC for online processing of streaming
data. This fits well in the state-of-the-art real-time scanning of dy-
namic activities. In this context it would require turning our random
sampling and consensus voting scheme into a progressive one.
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