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We present a skeleton-based algorithm for intrinsic symmetry detection on imperfect 3D
point cloud data. The data imperfections such as noise and incompleteness make it difficult
to reliably compute geodesic distances, which play essential roles in existing intrinsic sym-
metry detection algorithms. In this paper, we leverage recent advances in curve skeleton
extraction from point clouds for symmetry detection. Our method exploits the properties
of curve skeletons, such as homotopy to the input shape, approximate isometry-invariance,
and skeleton-to-surface mapping, for the detection task. Starting from a curve skeleton
extracted from an input point cloud, we first compute symmetry electors, each of which
is composed of a set of skeleton node pairs pruned with a cascade of symmetry filters.
The electors are used to vote for symmetric node pairs indicating the symmetry map on
the skeleton. A symmetry correspondence matrix (SCM) is constructed for the input point
cloud through transferring the symmetry map from skeleton to point cloud. The final sym-
metry regions on the point cloud are detected via spectral analysis over the SCM. Experi-
ments on raw point clouds, captured by a 3D scanner or the Microsoft Kinect,
demonstrate the robustness of our algorithm. We also apply our method to repair incom-
plete scans based on the detected intrinsic symmetries.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Symmetry is a universal phenomenon in nature, sci-
ence, and art. Recently, symmetry analysis and symme-
try-aware shape processing have been intensively studied
in computer graphics, where the vast majority of existing
works have been on extrinsic symmetry detection over
complete shapes represented by polygonal meshes [1]. In
this paper, we are interested in the problem of intrinsic
symmetry detection over point cloud data. In particular,
the input point cloud is assumed to be imperfect with
noise and missing data, which are typical results of acqui-
sition via 3D capture/scanning devices.

Intrinsic symmetry is defined as a region over a shape
that possesses a self-map that preserves geodesic dis-
tances. Naturally, existing approaches to intrinsic symme-
try detection have relied on geodesic distances in one way
or another and they have all been applied to closed meshes
[2–5]. One exception is the work by Ovsjanikov et al. [6]
which detects symmetries in signature space defined by
the eigenfunctions of the Laplace–Beltrami operator. How-
ever, this method also works on meshes and cannot deal
with substantial topological defects. However, accurate
geodesic distance computation over a point cloud is chal-
lenging in general [7], making it difficult to adapt existing
symmetry detection schemes on meshes to work on
imperfect point clouds.

The key idea in this paper is to take advantage of the re-
cent success on robust curve skeleton extraction from
imperfect point cloud data [8–12] and transform the sym-
metry detection problem from an input point cloud to its
extracted curve skeleton. Given an imperfect point cloud,
we expect curve skeleton extraction to be an easier prob-
lem than that of intrinsic symmetry detection since the
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former relies primarily on local geometry analysis and the
latter is a global problem that is particularly susceptible to
missing data. That being said, imperfect point clouds typi-
cally result in imperfect skeletons, which pose challenges
to the ensuing symmetry analysis. For 3D scans of human
body obtained by a RGBD camera such as Microsoft Kinect,
a pre-computed skeleton is fitted to the scan in real time,
which can be directly used in our symmetry detection
pipeline. The detected symmetry information can in turn
be used to complete the low quality scans of Kinect.

In the paper, we propose an intrinsic symmetry detec-
tion algorithm over imperfect point clouds by exploiting
several properties resulting from robust curve skeleton
extraction [9,10,12]: (i) homotopy to the input shape; (ii)
approximate isometry-invariance; and (iii) skeleton-to-
surface mapping. In our work, by isometry, we mainly refer
to articulated deformation (or skeletal deformation) of the
input shape which is approximately isometric.

Given a point cloud, our algorithm returns a set of self-
symmetric regions, as well as a set of pairs of symmetric
regions, if any. Each detected symmetry represents a par-
tial intrinsic symmetry and together they constitute a glo-
bal intrinsic symmetry of the input shape, see Fig. 1(4). To
accomplish this, we compute symmetry electors, each of
which is composed of a set of node pairs filtered by a cas-
cade of pruning tests. The electors are then used to vote for
symmetric node pairs indicating the symmetry map on the
skeleton. The symmetry map is transferred to the point
cloud, leading to a symmetry correspondence matrix over
which we perform spectral analysis to extract the final
symmetry regions for the point cloud.

2. Related work

We concentrate on the most relevant works in intrinsic
symmetry detection. For comprehensive review, we refer
the reader to the survey [1].

Existing approaches to intrinsic symmetry detection
have so far been working with closed meshes. To obtain
the geodesic distance preserving self-mapping, Raviv
Fig. 1. The pipeline of our algorithm. (1) In the preprocessing step, the input
symmetry invariant local shape descriptors are pre-computed. (2) A set of sym
electors are used to vote for symmetric node pairs. (4) Based on the symmetric
spectral analysis is performed to extract symmetries.
et al. [2,5] directly minimize distance distortion in the
space of Generalized Multi-Dimensional Scaling (GMDS)
embedding. Ovsjanikov et al. [6] detect global intrinsic
symmetry through exploiting the fact that the intrinsic
symmetries of a shape are transformed into the Euclidean
symmetries in the signature space defined by the eigen-
functions of the Laplace–Beltrami operator. Lipman and
Funkhouser [13] develop the Möbius voting to find near-
isometric correspondence for 3D shapes, which is extended
by Kim et al. [14] in detecting global intrinsic symmetry.
Through defining continuous symmetry as infinitesimal ri-
gid transformations, represented as tangent vector fields,
Ben-Chen et al. [15] detect cylindrical and translational
symmetry on a smooth manifold surface.

Berner et al. [16] detect partial symmetries in 3D ob-
jects through matching graphs of feature lines. Lasowski
et al. [17] propose a probabilistic framework for partial
intrinsic symmetry detection based on Markov random
field model. Mitra et al. [18] detect intrinsic regularity in
3D shapes using multidimensional scaling. Xu et al. [3] de-
tect partial intrinsic symmetries for 3D shapes through di-
rectly voting for intrinsic reflectional symmetry axis
transform on the input surface.

A few works has been devoted to symmetry detection
on imperfect point cloud data. Some researchers [4,19] have
attempted to detect extrinsic symmetry on point clouds.
Their success relies on the robust extraction of symme-
try-invariant features. Lipman et al. [20] propose to detect
symmetry in the space of correspondences. They construct
a random walk matrix for symmetry, called symmetry cor-
respondence matrix (SCM), where each entry measures the
probability of two points being symmetric. Spectral analy-
sis is performed on the SCM to extract the symmetry re-
gions as orbits reflecting the connectedness in the
random walk graph. Due to the robustness of spectral anal-
ysis, the method can be used to detect extrinsic symmetry
on point clouds. Xu et al. [21] extend this approach to de-
tect multiscale partial intrinsic symmetries. However,
none of the above works can detect intrinsic symmetry
on point clouds. Our paper makes it possible through com-
point cloud is uniformly sampled. A curve skeleton is extracted and the
metry electors are selected based on a cascade of pruning tests. (3) The

node pairs, a symmetry correspondence matrix is constructed over which
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bining the framework with a skeleton-based approach. Re-
cently, Berger and Silva [22] propose a method for comput-
ing non-rigid matching for point clouds through deriving
the so-called medial Laplacian and a diffusion process
based on the medial axis.
3. Algorithm

Given a point cloud, we first extract its curve skeleton
using existing approaches [9,10,12]. Some of the existing
skeleton extraction approaches require point clouds with
normals. However, our symmetry detection does not re-
quire normal information. Throughout this paper, we as-
sume that the extracted skeleton is topologically
identical, or homotopic, to the input shape. This assump-
tion is practically reasonable for moderately incomplete
3D point clouds. For Kinect scans of human body, we can
directly use the realtime fitted skeleton provided by the Ki-
nect SDK.

The objective of our algorithm is to find from the input
point cloud a set of non-overlapping regions (not necessar-
ily covering the whole point cloud) each of which pos-
sesses a intrinsic symmetry. All these regions constitute
the intrinsic symmetry of the point cloud. See Fig. 1 for
an example.

3.1. Preprocessing

The curve skeletons extracted by the existing methods
are typically of low resolution (contain a few skeleton
nodes). To achieve a better accuracy of symmetry detec-
tion, we first refine the skeletons by inserting new nodes
on the bones until the prescribed sampling rate is satisfied:
the distance between every two adjacent nodes is about
0.01 times the maximal path length on the skeleton. The
input point cloud is subsampled using the farthest point
sampling approach based on Euclidean distance. In the
preprocessing stage, we also perform some pre-computa-
tion, including geodesic distances on skeleton, symmetry-
invariant local shape descriptors, etc., which will be de-
tailed in the related subsections.

3.2. Overview

Let us denote the sampled point cloud by a set P of M
sample points, and its refined curve skeleton by a set S of
N skeleton nodes.

Algorithm 1 gives the pseudocode of our algorithm.
Fig. 1 shows the pipeline of our algorithm. Our algorithm
operates in four steps.

First, it constructs a set of symmetry electors from the
skeleton nodes through a cascade of filtering tests and a
voting based aggregation process (SymmetryElectors);
see SubSection 3.3. This step is elaborated in Algorithm 2.
Second, the electors cast votes on individual candidate
node pairs to establish the symmetry correspondences on
skeleton nodes (VoteNodePairs); see SubSection 3.4.
Third, the symmetry correspondences on the skeleton are
transferred onto the point cloud, leading to a symmetry cor-
respondence matrix (SCM) (BuildSymCorrMat); see Sub-
Section 3.5. In the last step, we perform spectral analysis
over the SCM to extract symmetry clusters on the point
cloud (SpectralAnalysis); see SubSection 3.6.

Algorithm 1. Symmetry detection via electors voting.
REQUIRE Input a point cloud P and its curve skeleton
S.

ENSURE Output symmetry regions
X ¼ fCiji ¼ 1; . . . ;ng.
E  SymmetryElectorsðSÞ; /* construct
symmetry electors */
Pnode  VoteNodePairsðEÞ; /* vote for node pairs
*/
M BuildSymCorrMatðPnodeÞ; /* build SCM
from node pairs */
X SpectralAnalysisðMÞ; /* spectral analysis on
SCM */
Algorithm 2. Symmetry electors selection.

E ¼ SymmetryElectorsðS ¼ fniji ¼ 1; . . . ;NgÞ
E ¼£.
forni;nj 2 Sdo

/* filters below executed sequentially */
if Similarity-Filterðni;njÞ passed and

Branch-Filterðni;njÞ passed and
Dist-Profile-Filterðni;njÞ passed
Rij  Symmetry-Supportðfni;njgÞ
ifjRijj > pd � N

2

� �
then

/* filter of symmetry support */
E ¼ fnj;njg [ Rij;
E[ ¼ fEg;
end if

end if
end if
return E.
3.3. Selection of symmetry electors

Since computing intrinsic symmetry map directly on
point cloud is prohibitive, we opt to do so on its skeleton.
Specifically, we seek for a set of symmetry correspon-
dences over the skeleton nodes, which we call symmetric
node pairs. However, detecting symmetric node pairs is dif-
ficult since skeleton is a reduced representation of the in-
put shape which may lose the important geometric
information useful to symmetry detection.

To this end, we adopt the electors voting scheme [23]. A
symmetry elector contains a set of pairs of skeleton nodes,
which represents a potential intrinsic symmetry of the in-
put point cloud. Since an individual elector may not con-
tain full information about the intrinsic symmetry of the
point cloud, we let the electors cast votes to all node pairs
and extract the symmetry correspondence from those node



Fig. 2. Illustration of symmetry criteria on skeleton nodes.
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pairs receiving sufficient supports from the electors
(Section 3.4).

Specifically, we compute symmetry electors through fil-
tering the bad correspondences according to a serial of
intrinsic symmetry criteria tailored for skeleton nodes.
Starting from a pair of nodes, we test it against four care-
fully designed symmetry filters: Similarity, Branch, Dis-
tance-Profile and Symmetry-Support. The four filters are
applied in the ascending order of computational cost, for
the efficiency consideration; see also Algorithm 2.

3.3.1. Similarity filter
The first filter compares the isometry-invariant local

feature computed around the two nodes. Specifically, we
compute the approximate Shape Diameter Function (SDF)
[24] for the skeleton nodes. Most existing approaches to
skeleton extraction naturally provide skeleton-surface
mapping [12]. Thus the approximate SDF of a given skele-
ton node can be simply computed as the averaged Euclid-
ean distances from the node to all its associated surface
points according to the skeleton-surface mapping.

A pair of nodes passes the filter if the difference be-
tween their approximate SDF values is less than a thresh-
old. We use 0:05SDFmax where SDFmax is the maximum
SDF value of all skeleton nodes. To speed up the online
comparison, we can pre-compute and store the approxi-
mate SDF values for all skeleton nodes.

3.3.2. Branch filter
Roughly speaking, a skeleton branch can be seen as the

rotational symmetry axis of local geometry. This observa-
tion has been exploited by Tagliasacchi et al. [9] for curve
skeleton extraction from point clouds. Knowing the skele-
ton of a point cloud, it is trivial to recover the local rota-
tional symmetries based on the skeleton-surface mapping.

In this work, we wish to extract more prominent and
nontrivial symmetries, e.g., the left–right reflectional sym-
metry of a human body. Therefore, we can filter the node
pairs whose two nodes are from the same skeleton branch.
To this end, we detect branches through extracting all
junction nodes (with at least three incident bones) and
tracing the branches one by one between every two adja-
cent junction nodes. The branch detection can be done
off-line prior to the online filtering.

3.3.3. Distance-Profile filter
For a shape with global intrinsic symmetry, a pair of

symmetric points should have similar configuration of
intrinsic distances from the point to all other points, up
to a symmetric permeation. If the distances are sorted into
a vector, we obtain a more global feature, the distance pro-
file, to filter erroneous point pairs.

This observation can be extended to skeleton nodes
since skeleton is isometry invariant. Given two nodes, we
can compute a similar vector to test if they are symmetric
according to the global intrinsic symmetry of the input
shape. Specifically, for each of the two nodes, we compute
all distances from that node to all terminal nodes (with
only one incident bone) and sort them in the ascending or-
der, forming a Nt-dim vector (Nt is the number of terminal
nodes). We then compare the two nodes by computing the
L2 difference between their distance profile vectors. The
node pair passes this filter if the difference is less than a
prescribed threshold, i.e. 0.1 times the maximum profile
difference between all pairs of nodes.
3.3.4. Symmetry-Support filter
The fourth filter examines whether the current node

pair indicates a real intrinsic symmetry through testing
whether the symmetry support for that node pairs is suffi-
ciently strong. The intrinsic symmetry support between
two pairs of nodes is defined similar to the symmetry cri-
teria of Xu et al. [21]. Given two pairs of nodes, fnp;nqg and
fns;ntg, we test whether the two pairs are supporting the
same intrinsic symmetry (or say another way, they are
supporting each other) with the following necessary condi-
tion of intrinsic involute symmetry

dSðnp;nsÞ ¼ dSðnq;ntÞANDdSðnp;ntÞ ¼ dSðnq;nsÞ; ð1Þ

where dS is geodesic distance on skeleton. Fig. 2 illustrates
the criteria on the skeleton nodes. If the number of sup-
porting pairs a node pair received reaches a fraction pd of

N
2

� �
, the node pair passes the filter. We use pd ¼ 0:01% for

all our experiments.
Once passing all the four filters, the current node pair,

as well as its supporting node pairs, form a new symmetry
elector. For each elector, we can measure its degree of sym-
metry by computing its intrinsic deviation defined based
on the symmetry criteria (1):

DEi
¼
P
fnp ;nqg;fns ;ntg2Ei

dðfnp;nqg; fns;ntgÞ
NEi
2

� � ; ð2Þ

where NEi
is the number of node pairs in elector Ei. The dis-

tance between two node pairs is defined as

dðfnp;nqg; fns;ntgÞ ¼maxfdSðnp;nsÞ � dSðnq;ntÞ;dSðnp;ntÞ
� dSðnq;nsÞg:

The node pairs from all the electors are referred to as
elector node pairs, denoted as Pe ¼ [Ei2EEi. In Fig. 3, we
show the effects of the different filters on the node pairs.
With more filters applied, the node pairs left better reveal
the intrinsic symmetry of the input shape.



Fig. 3. The four symmetry filters at work. (a) The input point cloud and the skeleton. The figure shows the symmetric node pairs (indicated as blue lines)
after the four filters are applied progressively: Similarity filter (b), Branch filter (c), Distance-Profile filter (d) and Symmetry-Support filter (e). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

W. Jiang et al. / Graphical Models 75 (2013) 177–188 181
3.4. Electors voting for symmetric node pairs

We have selected a set of symmetry electors indicating
potential symmetries. To accentuate the node pairs sup-
porting the prominent intrinsic symmetry, we let the elec-
tors vote for the individual node pairs. The process is rather
simplistic. The votes are casted into a N � N vote matrix as
demonstrated in Fig. 4, where each entry corresponds to a
node pair. Finally, those node pairs (corresponding to the
entries in the vote matrix) whose value is greater than a
threshold (0.1 times the maximum value in the vote ma-
trix) is selected as symmetric node pairs, which will be
use to find symmetry correspondence on the point cloud
in the next subsection.

3.5. Symmetry correspondence matrix for point cloud

Since our ultimate goal is to find symmetry map on the
point cloud, we need to transfer the symmetry map found
on the skeleton, i.e., the symmetric node pairs to the sam-
ple points on the input point cloud, leading to a symmetry
correspondence matrix (SCM) for the input point cloud.

Symmetry correspondence matrix is a symmetry affin-
ity matrix where each entry measures the dissimilarity be-
tween the corresponding two sample points in the sense of
symmetry, or say another way, the degree to which the
Fig. 4. Electors voting for symmetric node pairs (indicated as blue lines). Each en
references to color in this figure legend, the reader is referred to the web versio
two sample points are asymmetric [20]. We compute
SCM for the sample points through interpolating the sym-
metry dissimilarity of the skeleton nodes which is com-
puted as follows. Given a pair of skeleton nodes, we first
collect all the electors that contains the node pair. Since
we have computed an intrinsic deviation for each elector,
the symmetry dissimilarity between a pair of nodes is sim-
ply the minimal intrinsic deviation among all the electors
containing the node pair:

Dfnp ;nqg ¼ min
fnp ;nqg2Ei

fDEi
g:

We then convert the symmetry dissimilarity of the node
pairs to that of the sample point pairs through linear inter-
polation. To this end, we first compute for each skeleton
node np a neighborhood gp containing a set of k sample
points using k-Nearest Neighbor (kNN) search. Given a pair
of sample points fxi; xjg, we collect its relevant node pairs
into Cij.

Cij ¼ ffnp;nqgjfnp;nqg 2 Pe ^ ðxi 2 gp ^ xj 2 gqÞ _ ðxj

2 gp ^ xi 2 gqÞg;

where ^ and _ denote relation AND and OR respectively.
Intuitively, an node pair is relevant to a point pair if it is
an elector pair and each of its two neighbors contains ex-
try of the vote matrix corresponds to a node pair. (For interpretation of the
n of this article.)



Fig. 5. The result of spectral clustering (b) on the input point cloud (a).
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actly one of the two points in an exclusive manner. The
symmetry dissimilarity of a point pair can be computed
as the linear blending of the deviations of its relevant node
pairs:

Dfxi ;xjg ¼
X

fnp ;nqg2Cij

wpqDfnp ;nqg: ð3Þ

The linear blending weight is computed as:

wpq ¼ 1� ~dðfxi; xjg; fnp;nqgÞ ~dmax
ij

.� �2
;

where ~d is the distance between a point pair and its rele-
vant node pair

~dðfxi; xjg; fnp;nqgÞ ¼

maxfkxi � npk2; kxj � nqk2g
if xi 2 gp and xj 2 gq;

maxfkxi � nqk2; kxj � npk2g
if xi 2 gq and xj 2 gp;

8>>><
>>>:

and ~dmax
ij is the maximum distance between point pair

fxi; xjg and all its relevant node pairs. Note that there is
the case where a point pair may not have a relevant node
pair. In this case, we simply set the symmetry dissimilarity
of that point pair as infinite.

The symmetry dissimilarity between any pair of points
is then converted to a symmetry correspondence matrix
(SCM) C 2 RM�M using a Gaussian kernel
Cij ¼ e�ðDfxi ;xjg=ðr�DmaxÞÞ2 ,where we use r ¼ 0:01, and Dmax is
the maximum value of all Dfxi ;xjg. With the SCM, we per-
form spectral analysis to extract the symmetry regions
[20,21], which we briefly review for completeness.

3.6. Symmetry extraction through spectral analysis

We perform eigendecomposition over the SCM and
compute the symmetry factored embedding (SFE) for a
sample point as

SFEtðxiÞ ¼ ðkt
1w1ðxiÞ; . . . b; kt

nwnðxiÞÞ;

where wk is the kth eigenfunction and kk the associated
eigenvalue. We take the diffusion time t ¼ 20 for all exam-
ples in this paper. The symmetry factored distance can be
defined as the Euclidean distance within the space of SFE:

SFDtðxi; xjÞ2 ¼
Xn

k¼1

k2t
k jwkðxiÞ � wkðxjÞj:

With the SFE and SFD in hand, we can perform the stan-
dard K-means clustering in the space of SFE. To automati-
cally determine the number of clusters, we employ the
self-tuning spectral clustering [25], where the eigen-
decomposition of the symmetry scale matrix is computed
with ARPACK [26]. After clustering, the set of sample
points is divided into k clusters where each represents a
symmetry orbit. Fig. 5 demonstrates the result of spectral
clustering on the input point cloud based on SCM.

4. Results and discussion

In this section, we demonstrate and discuss results ob-
tained by our skeleton-based intrinsic symmetry detection
algorithm on a variety of imperfect point clouds. We also
compare our detection method with other ones including
those both for meshes and for point clouds. As a major
application of our method, we demonstrate how the de-
tected symmetries can be utilized to fill the missing re-
gions of the incomplete point clouds.

4.1. Intrinsic symmetry detection

The ability of our method to identify intrinsic symmetry
from the input point clouds is evident. Figs. 1 shows the
detection result on a raw scan. In Fig. 6, we show the re-
sults on a gallery of eight point clouds. For each model,
we show the input point cloud, the extracted skeleton, as
well as the symmetric node pairs on the skeleton. The de-
tected symmetries on the point cloud are shown as a set of
self-symmetric regions, as well as a set of pairs of symmet-
ric regions, if any. Each of the symmetric regions is shaded
with a unique color. It should be noted that for each model,
the symmetric regions together constitute the global
intrinsic symmetry of the model. Say another way, they
share the same global intrinsic symmetry of the input
point cloud. Our method cannot detect partial symmetries
such as the self-symmetries of the human body and the tri-
dent of the Neptune model shown in Fig. 15a. On the Gir-
affe model in the gallery, there are a few node pairs
connecting the head and feet of the giraffe. Our method
failed to filter these erroneous pairs since the head and
feed part have similar local thickness (SDF) and the related
branches have almost the same length. However, these
sparse wrong pairs did not affect the clustering result as
shown in the figure.

4.2. Pose invariance

By using the consistent skeletons [27] extracted for
point clouds of the articulated shape in different poses,
our method returns consistent symmetry detection results
for different poses. Fig. 7 demonstrates the effectiveness of
our method on consistent symmetry detection on a set of
scans of an articulated shapes captured in different poses,
due to its intrinsic nature. This feature is potentially useful
for cross-completion between different frames of an ani-



Fig. 6. A gallery of 3D symmetry detection results on eight point clouds. From top-left to bottom-right: Wooden doll, Dragon, Armadillo, Raptor, Woman,
Horse, Eagle, and Giraffe. For each model, we show the input poind cloud, the extracted skeleton, the detected symmetric node pairs indicated as blue lines,
as well as the detected symmetries as colored regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Pose-invariant symmetry detection for an articulated Wooden doll. Our method returns stable results for the three different poses.
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mated mesh sequence, which can be achieved by a trivial
extension of the hole filling for single meshes proposed
in SubSection 4.6.

4.3. Handling of low-quality and imperfect data

Most existing approaches to intrinsic symmetry detec-
tion rely on geodesic distance computed on the input sur-
face. The imperfection of real world data, especially raw
scans, often makes the estimation of geodesic distance pro-
hibitive. In this case, extracting a skeleton first would help
much in symmetry detection.

For the single-frame low-quality data captured by a Ki-
nect, our algorithm produces reasonable results. In Fig. 8,
we show our method can detect symmetries from a raw
scan obtained by a Kinect camera. Although in very low
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quality, the Kinect scan of a human body comes with a pre-
computed skeleton which can be utilized by our method
for symmetry detection. To the best of our knowledge,
our method is the first one that detects intrinsic symmetry
from such low quality point clouds.

Fig. 9 demonstrates the symmetry detection results on a
Camel model with the number of scans is progressively re-
duced. The skeletons are extracted using the method of
Tagliasacchi et al. [9]. Our method can detect the symme-
try regions reasonably even for a partial scan with a large
portion of missing data. When the data miss significantly
and the global symmetry is broken, our method breaks
down as expected (Fig. 9d).

In Fig. 10a–c, we demonstrate the robustness of our
method against uniformly distributed Gaussian noise.
Our method runs mainly on skeleton, the major step that
relies on the point cloud is skeleton extraction. Base on
the skeletons extracted by the noise-insensitive methods
such as [12], our symmetry detection results are quite sta-
ble. The other two components of our algorithm which de-
pend on point cloud are the computation of SDF for point
cloud and the transfer of symmetry map from skeleton to
point cloud. The latter does not affect the detection of sym-
metric node pairs and hence does not affect the symmetry
detection significantly even if the noise is non-uniformly
distributed. However, it may not be reliable to use SDF
for node pair filtering in the case of non-uniform noise.
For example, in Fig. 10d, the legs of the horse have different
levels of noise. For this example, we increase the threshold
of the Similarity filter (using 0:1SDFmax) and our method
still produces reasonable result.

4.4. Timing and statistics

Our experiments were performed on an Intel (R) Core
(TM) Quad CPU 2.4 GHz machine with 2 GB RAM. For all
3D models, the number of sample points is about 2 K with
Fig. 8. Intrinsic symmetry detection results on a raw Kinect scan. (a) Input scan
regions.
small discrepancies due to criteria employed by the Mesh-
Lab sampling routine. Table 1 reports various statistics
including timing. The most time-consuming parts are the
construction of SCM and the symmetry extraction through
spectral analysis.
4.5. Comparison

We compare our method to those both for meshes and
point clouds. Our method naturally extends to surface
meshes. In Fig. 11, we qualitatively compare the symmetry
detection results on the Momento model with the other
two methods for global intrinsic symmetry detection on
surface meshes, i.e. [3,20]. Quantitative evaluation of the
quality of symmetry detection results is out of the scope
of this paper which we leave for future work. It can be seen
that our method produces similar result to [20] where the
global symmetry between the three human bodies are de-
tected. Again, our method does not detect the partial sym-
metries of each human as is done by [3].

To the best of our knowledge, the only existing work
that detects intrinsic symmetry on point clouds is pro-
posed by Berger and Silva [22]. We make a comparison
with their method on both a full and a partial scan of the
Camel model (Fig. 12). In [22], although the medial diffu-
sion is defined based on media structure, the method does
not extract a skeleton explicitly. Therefore, we do not show
the skeleton but only the symmetric maps (point pairs)
found by each method. On the full scan (a), the two meth-
ods produce similar symmetry maps which mainly appear
on the leg parts. On the partial scan (b), our method pro-
duces more accurate symmetry maps on the forelegs. The
symmetry of the hindlegs is broken due to the large por-
tion of missing data. Our method does not produce sym-
metry maps for the torso since the symmetric pairs are
computed only on skeleton.
and skeleton. (b) Detected symmetric node pairs. (c) Extracted symmetry



Fig. 9. Symmetry detection results on a Camel model with the virtual scans are progressively added. From (a) to (d), the number of scans are 5, 3, 2 and 1,
respectively.

Fig. 10. Robustness against random noise. (a) Symmetry detection results on the original point cloud. (b and c) Results on the point cloud with different
levels (0.2 and 0.5) of synthetic Gaussian noise added. The noise level is the ratio of the average vertex displacement over the average edge length in the
original meshed model. (d) By relaxing the Similarity filter, our method still works when the global symmetry is broken by the severe non-uniform noise.

Table 1
Various statistics from our experiments. #Samp. denotes the number of
sampling points; Running times are reported in seconds for skeleton
refinement in the preprocessing step (‘‘Preproc.’’), symmetric pairs electors
voting (‘‘Vote’’), SCM matrix building (‘‘SCM’’), and symmetry extraction
through spectral analysis (‘‘Spect.’’).

Models #Samp. Preproc. Vote SCM Spect.

Armadillo 2243 0.5 2.4 45.1 64.2
Camel 2182 0.4 2.4 44.7 43.7
Dragon 2491 0.2 1.5 59.3 68.0
Eagle 2775 0.3 3.1 77.3 79.0
Giraffe 2042 0.5 5.0 36.8 37.3
Horse 2149 0.3 2.7 42.4 44.8
Wooden doll 2826 0.4 2.3 79.3 107.3
Momento 2517 0.8 8.1 57.1 59.8
Raptor 2484 1.3 18.5 56.8 61.4
Woman 1458 0.4 3.2 16.3 15.7
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In order to reveal the effect of skeletons on the symme-
try detection results, we evaluate our method on the skel-
etons extracted by different methods; see Fig. 13. On the
two scans of the Camel model, we extract skeletons using
three methods including those from [9,10,12], and for each
skeleton we run our method to detect the symmetry node
pairs as well as the symmetry regions. Our method works
well with all the three types of skeletons while producing
the most accurate results for the high quality curve skele-
tons produced by [9].

4.6. Application: filling the missing regions

Symmetry induces redundancy. Such redundancy al-
lows for filling the input point clouds in the presence of
missing parts. In Fig. 14, we demonstrate the application
of our symmetry detection method in the completion of
imperfect point clouds. In a preliminary implementation,
we employ a straightforward method where we utilize
the detected symmetric node pairs, as well as the skele-
ton-to-surface mapping, to perform surface completion.
Specifically, we transform the surface points associated
with one of a pair of symmetric nodes along the skeleton
to align them with those associated with its counterpart.

Given an input point cloud with missing data, we first
let the user to identify the holes interactively using surface
painting. Then our system automatically detects the rele-
vant symmetric node pairs around the hole regions. Based
on the node pairs, hole filling is performed through trans-
forming the surface points associated with one node to the



Fig. 11. Comparison of intrinsic symmetry detection on the Momento model (surface mesh) with different methods: (a) Xu et al. [3], (b) Lipman et al. [20]
and (c) Ours.

Fig. 12. Comparison of symmetry detection on point clouds between (1) our method and (2) the method of Berger and Silva [22]. For each point cloud, the
detected symmetric point pairs (not on the surface) are shown.

Fig. 13. Comparison of intrinsic symmetry detection results on two point clouds (a and b) using different skeleton extraction methods by: (1) Cao et al. [10],
(2) Jiang et al. [12], and (3) Tagliasacchi et al. [9].
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other. Suppose we want to complete a hole based on a
symmetric node pair fns;ntg. Without loss of generality,
let us assume that we use the surface points associated
with ns, denoted as set Ps, to complete the surface around
nt , denoted as Pt . We first perform a mirror transformation
for Ps along any plane whose normal is perpendicular to
the tangent of the curve skeleton at node ns, resulting in
P0s. P0s is then transformed along the geodesic path on the



Fig. 14. For hole filling examples. For each example, the input scans containing missing parts (marked in red circles) is shown in the left, the detected
symmetric node pairs on the skeletons in the middle and the pair-wise filling result in the right (newly filled point sets are colored in red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Three failure cases. (a) Our method fails to detect the two self-symmetric regions of the Neptune model: the human body and the trident. (b) Our
method fails to detect the partial symmetries of the incomplete Wooden doll model. (c) Our method fails since the model contains too few terminal nodes.
For each example, the symmetric node pairs are shown in the left and the clustering result in the right.
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skeleton connecting ns and nt in a rotation minimizing
fashion [28], leading to a rough alignment between the
two P0s and Pt . If a surface point is associated with multiple
skeleton nodes, its final position is computed as the
weighted average of the target positions transformed by
each of the skeleton nodes, using a Gaussian kernel. Finally,
we refine the alignment using the Iterative Closest Point
(ICP) method [29] with the help of the partial overlap be-
tween the two point sets. As shown in Fig. 14, our method
can robustly fill the small holes in the point clouds of hu-
man bodies taking various poses.

4.7. Limitations

Perhaps the most fundamental limitation of our ap-
proach is its reliance on geodesic distances on skeleton,
which is topologically sensitive. In the case of a composite
shape with several self-symmetric objects, as shown in
Fig. 15a, the partial symmetries on each object cannot be
detected correctly. This is a fundamental limitation of
any approach that relies on intrinsic distances for shape
analysis.

In Fig. 15b, we show another type of partial symmetry
where some parts of the Wooden doll model are missing.
Although the global symmetry is broken, partial symme-
tries (such as the upper parts of the two legs) remain.
Our method failed to detect such symmetries due to the
Distance-Profile filter we employed in the node pair detec-
tion: The missing parts cause the skeleton has different
lengths of branches. Furthermore, our method cannot de-
tect symmetry for shapes whose skeleton contains too
few terminal nodes (only one for the example in Fig. 15c)
so that the Distance-Profile filter cannot be applied.

Another limitation of our method is the dependence on
the topologically correct skeletons. Therefore our method
must work with an existing method for point cloud skele-
ton extraction. However, our method can seamlessly work
with a Kinect system where the RGBD image of a human
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body is fitted with a pre-computed skeleton in real time,
showing the potential in augmenting the low quality scans
of Kinect.

5. Conclusions

We have presented a novel and practical algorithm for
intrinsic symmetry detection on imperfect point clouds
based on accurate curve skeletons. The various experi-
ments demonstrate the robustness of our method in terms
of handling raw point clouds with severe noise, under-
sampling, and missing data. The detected symmetry can
be applied to repair the scanned data by filling the missing
regions.

Our current algorithm and implementation still leave
much room for improvement. First and foremost, we
would like to investigate how to detect symmetric node
pairs for the independent partial intrinsic symmetries
appearing on a shape, e.g. the Neptune model in Fig. 15.
Another interesting venue is finding more efficient filtering
mechanisms for the symmetry electors tailored for curve
skeletons. We would also like to improve the performance
of our algorithm, especially for the construction of SCM.
Parallelization is obviously possible since the entries in
the SCM can all be computed in parallel. Finally, it is desir-
able to more intelligently combine the symmetry criteria
(Eq. (1)) with the conventional measures used in mesh seg-
mentation problem, and develop an optimization-based
framework for symmetry detection.
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