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Abstract

Monsters and strange creatures are frequently demanded in 3D games and movies. Modeling such kind of objects calls for creativity
and imagination. Especially in a scenario where a large number of monsters with various shapes and styles are required, the
designing and modeling process becomes even more challenging. We present a system to assist artists in the creative design of a
large collection of various 3D monsters. Starting with a small set of shapes manually selected from different categories, our system
iteratively generates sets of monster models serving as the artist’s reference and inspiration. The key component of our system is a
so-called creature grammar, which is a shape grammar tailored for the generation of 3D monsters. Creature grammar governs the
evolution from creatures with regular structures gradually into monsters with more and more abnormal structures through evolving
the arrangement and number of shape parts, while preserving the semantics prescribed as prior knowledge. Experiments show
that even starting with a small set of shapes from a few categories of common creatures (e.g., humanoids, bird-like creatures and
quadrupeds), our system can produce a large set of unexpected monsters with both shape diversity and visual plausibility, thus
providing great support for the user’s creative design.
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1. Introduction

Monsters are imaginary or legendary creatures with abnor-
mal structures or physical deformities, which inspire horror or
disgust. They are vastly found in comic books, movies and
computer games. Some of them are so famous and fascinat-
ing that they keep the audiences or game players intrigued, for
example, the Fate Spinner and Lamassu from Might & Magic:
Heroes, and the Centaur from Harry Potter films (see Fig. 1).
Modeling such kind of objects is a great challenge for artists,
because of their bizarre shapes and structures, calling for cre-
ativity and imagination. Especially in a scenario where a large
number of monsters with various shapes and styles are required,
the designing and modeling process becomes even more chal-
lenging.

Although great strides have been made to assist 3D model-
ing, the support of creativity in 3D modeling process is still an
emerging topic. As pointed out by Shneiderman et al. in [1],
free exploration of alternatives is a key characteristic of cre-
ativity support tools. Thus research on computational creativity
support seeks for techniques for generating customized exam-
ples that allow the user to explore the space of possibilities. For
3D modeling, a popular approach is to provide data-driven sug-
gestions tailored to the user’s current design. Such suggestions,
either relevant parts [2, 3] or complete shapes [4, 5], are usually
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drawn from a set of pre-existing creations. Compared with part
suggesting methods, shape suggesting methods not only can be
used to inspire future creations, but also be used to amplify an
existing shape database efficiently. Such kind of creativity sup-
port is especially useful for monster modeling since the shape
and structure of monsters can be arbitrarily unexpected. How-
ever, existing methods for shape suggestions are more suitable
to generate models belonging to the same category and with
the same structure as input shapes, as they need pre-established
correspondences among the existing creations. Monster mod-
els usually have characteristics from different categories, such
as bird-like creatures, humanoids or quadrupeds. Besides, mon-
sters are characteristic of various unexpected structures.

In this paper, we present an inspiration-oriented procedural
approach to help artists create sets of various monsters from
regular creatures quickly. The key component of our system
is the creature grammar, which formally defines the way of
evolving regular creatures into monsters with abnormal struc-
tures, while preserving the semantics of biological forms. The
semantics consists of part adjacency relations, the number of
parts from each part category, and symmetries. Given a small
set of models from different categories (e.g., humanoids, bird-
like creatures, and quadrupeds), our system adopts the creature
grammar to iteratively synthesize a diverse set of monsters for
artists for reference. The generated monsters become more and
more complex in structure during the iteration, and thus they
provide artists inspirations.

A key observation on monster modeling is that 3D artists
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commonly design monsters by firstly creating a regular creature
and then modifying the shape structure to explore various possi-
bilities to make the shape more and more abnormal. The opera-
tions which artists commonly apply can be classified into three
types: (1) increase, duplicating or triplicating one part (e.g.,
triplicating the arm of a humanoid (Fig. 1(a)1)); (2) combine,
concatenating two torsos together (e.g., attaching the upper part
of a human to the torso of a horse to create a Centaur-like crea-
ture (Fig. 1(b)2)); (3) insert, adding a new type of part to the
current shape (e.g., adding a wing to a quadruped (Fig. 1(c)1)).

Mimicking the modeling process mentioned above, we pro-
pose the creature grammar, a tailored shape grammar for the
generation of monsters. Creature grammar works with a set of
shapes and generates new shapes by combining the configura-
tion of two shapes selected from the current shape set, while
preserving semantics of creatures. There are three types of
rules in our creature grammar: (1) selection rules, which select
shapes (rules) from a shape (rule) set; (2) structure rules, which
alter the topological structure of the shape based on the three
operations mentioned above; (3) geometry rules, which inter-
pret the generated configuration into a geometry instance to get
a monster shape. Based on the creature grammar, our system
could automatically expand the structures of regular creatures,
thus producing visually plausible monster shapes with abnor-
mal structures.

2. Related work

Grammar-based procedural modeling. Grammar-based
procedural techniques have been vastly adopted in computer
graphics for various applications. Since introduced by Linden-
mayer in [6] for a description of the cellular subdivision and en-
dogenous information exchange between cells, L-systems have
been applied and extended in many different directions such as
plant modeling [7] and urban modeling [8, 9, 10]. As L-systems
are linear, shape grammars [11] were then proposed to deal with
connecting of 2D elements.

The concept of shape grammar was extended into split gram-
mars for urban modeling [12]. Split grammars were further
adapted to urban reconstructions from images and point clouds

1Photos are freely available on: http://might-and-magic.ubi.com/heroes-
6/en-GB/game/creatures/index.aspx.

2The screenshot comes from film: Harry Potter and the Order of the
Phoenix.

(a) Fate Spinner (b) Centaur (c) Lamassu

Figure 1: Three monster characters with abnormal structures from popular com-
puter games or films.

in [13]. The interactive editing of procedural rules in [14]
exploits higher levels of user interactions and allows for an
immediate visual feedback of the results. Finally, several at-
tempts have been made to combine physically-based modeling
and procedural systems [15]. The main difference between the
creature grammar from previous ones is that the creature gram-
mar works on configurations of shapes in a set (to generate new
shape configurations through exchanging and expanding ) while
previous grammars deal with the expanding of an initial simple
configuration (consisting of none or few basic primitives) into a
complex one. To some extent, the creature grammar is tailored
to design monsters (a special kind of freeform objects with ab-
normal structures) while previous grammars are designed to
generate objects with repetitive primitives (trees or man-made
objects).

For L-systems and shape grammars, one has to employ con-
text sensitive rules [8] or place extra conditions [9, 12] into
the grammar system to encode structural constraints. Monster
modeling involves several structural constraints, which are en-
coded with some context sensitive rules in our shape grammar.

Data-driven object modeling. As an easy-to-use way for
the 3D object creation, assembly-based modeling techniques
become popular since the pioneer work of Funkhouser et
al. [16]. Recent works focus on high-level tasks such as ensur-
ing compatibility between replaceable parts [17] or determining
the most suitable parts for composition [2, 3, 4, 5, 18]. In [4],
a probabilistic model of component-based shape structure was
trained on a set of examples. This learned model was used
to synthesize new shapes by recombining various components
from input shapes. In [5], the fit and diverse technique was de-
veloped to evolve a whole population of 3D models generation
by generation. These methods focus more on generating shape
variations sharing the same class and with the same coarse-
level structure as input shapes. Different from them, our goal
is to produce monsters by expanding the structures of regular
creatures from different classes. In [19], parts were exchanged
among shapes across different family classes by matching sub-
structures with the same functionality. This technique was de-
signed for man-made objects and emphasized on shuffling parts
among different shape classes, while our method focuses more
on synthesizing monsters from regular creatures by generating
new structures.

Sketch-based modeling. There are a large volume of re-
search on sketch-based modeling (see [20] for a comprehen-
sive survey). In most sketch-based modeling systems, user-
drawn 2D strokes are used for recovering the shapes of 3D
models. The systems in [21, 22, 23, 24] create 3D shapes from
user-input sketches via inflation. SmoothSketch [25] infers 3D
shapes from complex sketches, which may have cups and T-
junctions. Other systems [26, 27] take 2D strokes as handles
to control the geometry of 3D models. The ILoveSketch sys-
tem [28] allows professional product designers to create com-
plicated concept 3D curves.

The models produced by these sketch-based modeling sys-
tems are generally with limited geometry details and relatively
simple structures. Besides, the modeling process is completely
controlled by users. Different from these approaches, our

2



Labeling

Orientation

Creature Grammar

S
e

le
ctio

n
 R

u
le

S
tru

ctu
re

 R
u

le

G
e

o
m

e
try

 R
u

le

User Interaction

No

Preprocessing Evolving

Yes

Symmetry

Segmentation

Satisfied?Monster SetShape Set
Shape Database

Figure 2: Pipeline of our inspiration-oriented 3D monster modeling framework. In the preprocessing stage, we classify regular objects into different categories,
co-orient, semantically segment, and label objects. The symmetry and proximity relations between the parts per shape are pre-analyzed and stored. The evolving
stage then iteratively generates sets of monsters starting from several regular objects chosen by the user.

method, which falls into the category of assembly-based mod-
eling, automatically generates a diverse set of monster shapes
with geometry details and various structures for users.

3. System overview

Fig. 2 illustrates the pipeline of our system. The input
of our system is a set of pre-segmented and labeled regular
creature shapes from different categories (we classified shapes
into several categories such as bird-like creatures, humanoids,
quadrupeds, etc.). They are normalized and co-oriented. The
symmetry and proximity relations between the parts per shape
are pre-analyzed and stored. The output is sets of monster mod-
els.

For each shape set, our system employs the creature gram-
mar to generate a group of shapes from the current shape set
with a subset selected to be presented to the user. User marks
shapes according to their preference. The unaccepted shapes
are moved to the background set. This process is repeated until
the desired number of left shapes have been selected. The next
shape set is produced by selecting a subset from the left shape
set, current shape set and background shape set. The back-
ground shape set is produced by selecting a subset from the next
shape set and the current background shape set. Fig. 3 shows
the input shapes and some of the generated monster shapes. No-
tice that in order to preserve symmetry constraints, we apply the
same rules to parts in the same symmetry group.

4. Monster generation with procedural evolution

4.1. Terminologies
Shape. The shape here is different from the one presented

in [8, 29], which refers to some basic primitives (e.g., cube,
sphere, cylinder, etc.) composing the final object (buildings for
example). Here, shape refers to the geometry instance, the mon-
ster model.

Abstract shape is the 3D layout of a shape, a descriptive
string. Each abstract shape can be considered as a configuration
of meta-parts, which is defined below.

Meta-part is a logical entity of semantic significance [5, 30],
e.g., a leg or an arm. A meta-part can be represented as:

M (m0,m1,m2,m3,m4)

where m0 is the type of this meta-part, m1 is its id in the abstract
shape, m2 is the id of the geometry instance corresponding to
this meta-part, m3 is its position, and m4 is the torso super-part
(which will be defined below) it attaches to. A different config-
uration of these attributes indicates a different meta-part. The
consubstantial meta-parts form a meta-part family. We arrange
meta-parts in super-part.

Super-part is a set of meta-parts, which are consubstantial
and positioned in the same region. For example, there is a two-
headed humanoid. Each head is a head meta-part. The two
heads make a head super-part. A super-part can be represented
as:

S (s0, s1, s2)

where s0 is the type of this super-part, s1 is the set of meta-parts
belonging to this super-part, and s2 is the arrangement mode
of this super-part. A different configuration of these attributes
indicates a different super-part. The consubstantial super-parts
form a super-part family.

Allelic super-part represents the replaceability among
super-parts. We define the allelic super-part according to func-
tionality and position. Super-parts from the same family are
allelic super-parts. head super-parts from bird-like creatures,
humanoids and quadrupeds are allelic super-parts. Since wings
locate in the front region of birds’ torso and arms locate in the
upper part of humanoids’ torso, wing and arm super-part fam-
ily are allelic super-parts. lowerlimb super-part from bird-like
creatures, hindleg super-part from quadrupeds and leg super-
part from humanoids are allelic super-parts.

Shape structure. The definition of shape structure is exactly
the same as the one introduced in [30]. Shape structure consists
of parts and relations. A part, with multiple parameters, is a
logical entity of semantic significance, which defines the geom-
etry of the part. A collection of parts capture the appearance of
the whole shape geometry. Relations define how the parameters
of parts are correlated.

Regular structure is the shape structure of common crea-
tures (bird-like creatures, humanoids, and quadrupeds).

Abnormal structure is the shape structure, which is a com-
position or modification of regular structures.
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(a) Input shapes (b) Generated shapes

Figure 3: Given several regular shapes from different categories (with regular structure), our system can iteratively generate sets of monsters with abnormal structure
as revealed by the inset on the right bottom side of each model.

4.2. Production process
Different from previous grammars for shape modeling [8,

29], our creature grammar works with a set of shapes. Dur-
ing the evolving process, the grammar tries to generate new
shapes by combining the configurations of every two shapes
selected from the current shape set with the process: (1) se-
lect two shapes (base shape and assist shape) from the shape
set by selection rules; (2) apply structure rules to base abstract
shape and get the 3D layout of the generated shape; (3) apply
geometry rules to the generated abstract shape to get its geom-
etry instance. The process continues with step (1) until enough
monster shapes are generated.

4.3. Production rules
4.3.1. Selection rules

We use the selection rule to either select a pair of shapes from
the shape set or select a structure rule to apply. Our system
supports three different selection strategies:

Rank selection selects the best shape (most appropriate
rules) from the shape set (rule set) according to a certain metric
of the shape (rule).

Uniform selection randomly selects a shape (rule) from the
set.

Roulette wheel selection searches the members of the shape
(rule) set using a weighted roulette wheel. Likelihood of selec-
tion is proportionable to the metric of the shape (rule).

Both strategies 1 and 3 require a metric defined on the shape
(rule). For shape, we use the structure complexity as the metric,
which is defined as the weighted sum of the edge number and
the variation of the node valency on the structure graph of the
shape (the insets of Fig. 3):

Cs = ωne +
∑

i

(vi − v̄)2

where ne is the number of edges, vi is the valency of node i, and
v̄ is the average valency of nodes from the structure graph of the
current shape. In our experiments, we set ω = 0.95.

For rules, we assign different constants according to their
contributions to the structure and the structure complexity of
the current shape pair. To be specific, for the increase rules, the
metric is defined as:

Cr =

{
w1 C1

s +C2
s ≤ δ

w2 C1
s +C2

s > δ

where w1 = 0.5, w2 = 0.1, and δ = 63.33. C1
s and C2

s are
the structure complexity parameters of the base shape and the
assist shape, respectively. For the combine and insert rules, we
set w1 = 0.4, w2 = 0.1, and δ = 72.3. For the replace rules, the
metric is defined as:

Cr = w

where w = 0.35.

4.3.2. Structure rules
Structure rules are used to generate new shape configura-

tions through exchanging or expanding configurations of two
selected shapes. These rules are derived from the common op-
erations adopted by 3D artists when designing monsters.

Notation: Structure rules have the following form:

PRIORITY number

id : predecessor : cond

 successor : prob

 predecessor : (1 − prob)

where id is a unique identifier. predecessor is one or a
list of symbol (s), representing the super-part (s) which will
be replaced. The first branch replaces predecessor with
successor with a probability of prob. This branch is called
f unction branch. The second branch rewrites predecessor
with its exact copy with a probability of 1 − prob. This branch
is called identity branch. cond is a Boolean expression, which
must be true in order to apply the production. number is the
priority of the rule defined by the ‘PRIORITY’ keyword.
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Figure 4: An example of the increase rule. The function branch adds a copy
of the head meta-part in the head super-part and set arrangement mode for the
super-part, resulting in a two-headed quadruped.

Increase rules have the function of adding a copy of meta-
part in the super-part and assigning the arrangement mode for
the new super-part. All the rules, belonging to this family, have
similar ability with the only difference that they can be applied
to different kinds of super-parts. This type of rules are context
sensitive rules. An example of the increase rules is as follows:

0 :SH
(
headq,

{(
headq, 0, h0, de f ,ST

)}
, de f
)

: cond

 SH
′
(
headq,{(
headq, 0, h0,midl,ST

)
;
(
headq, 1, h0,midr,ST

)}
,

midl midr) : p

 SH
(
headq,

{(
headq, 0, h0, de f ,ST

)}
, de f
)

: 1 − p

where cond is as follows:

shape.superpart.num <= N

and p is defined as follows:

p =
{
α g ≤ 3
αe(βg) g > 3

where g is the number of generation. The function branch re-
places a one-headed super-part SH by a two-headed super-part
SH
′ with a probability of p. The second head is the same as

the first one. Its arrangement mode is midl midr, which means
that two heads locate in the upper region of the torso and are ar-
ranged in the left side (midl) and right side (midr), respectively
(see Fig. 4). headq means that the type is head from quadrupeds.
de f indicates that the head locates in the default head position.
ST is the super-part, in which the torso meta-parts are included.
h0 is the id of the head geometry instance. cond means that the
number of super-parts in the abstract shape should be less than
or equal to N. N is set to 6, α is set to 0.4, and β is set to −0.1.

Insert rules have the function of adding a new super-part to
a torso super-part. These rules can work on the torso super-part
only. This type of rules are context sensitive rules. An example
of the insert rules is as follows:

0 :ST
(
torsoq, . . .

)
: cond

 ST
(
torsoq, . . .

)
SW (wing, . . .) : p

 ST
(
torsoq, . . .

)
: 1 − p

Figure 5: An example of the insert rule. The f unctionbranch adds a wing
super-part for a quadruped.

Figure 6: An example of the replace rule. The function branch replaces the leg
meta-part of a humanoid with a lowerlimb meta-part from a bird-like creature.

where cond is as follows:

no wing superpart attached to ST

&& Shape.superpart.num > N

and
p = e(βg)θ(t+1)

where g is the number of generation, t =

Shape.metapart.num − N. The function branch adds SW
to ST with a probability of p (see Fig. 5). torsoq indicates
that the type of ST is quadrupeds’ torso. wing indicates that
the type of SW is wing from birds creatures. cond means that
there should be no wing type super-part attached to ST and the
number of super-part in this abstract shape should be greater
than N. N is set to 7, β is set to −0.05, and θ is set to 0.5.

Replace rules have the function of exchanging meta-part be-
tween allelic super-parts. All the rules, belonging to this family,
have similar ability with the only difference that they can be ap-
plied to different kinds of super-parts. An example of replace
rules is as follows:

0 :SL (leg, . . .)

 SM (lowerlimb, . . .) : p

 SL (leg, . . .) : 1 − p

The function branch replaces SL with SM with a probability of p
(see Fig. 6). leg indicates that the type of SL is the humanoids’
leg. lowerlimb indicates that the type of SM is the birds’ leg. p
is set to 0.5.

Combine rules have the function of combining the upper or
lower part of the current shape with a lower or upper part from
another shape, resulting in a Centaur-like creature. An example
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Figure 7: An example of the combine rule. The function branch combines the
lower part of a humanoid with the lower part of a quadruped, resulting in a
Centaur-like monster.

of the combine rule is as follows:

0 :ST (torsoh, ...) SL (leg, ...)

 ST (torsoh, ...) ST
′
(
torsoq, ...

)
SF ( f oreleg, ...)

SD (hindleg, ...) SI
(
tailq, ...

)
: p

 ST (torsoh, ...) SL (leg, ...) : 1 − p

where p is defined as follows:

p = αe(βg)

where g is the number of generation. The function branch re-
places the lower part of the current shape SL with the super-
parts ST

′SFSDSI from another shape, resulting in a Centaur-like
monster, with a probability of p (see Fig. 7). torsoh indicates
that the type of ST is humanoids’ torso. hindleg indicates that
the type of SD is quadrupeds’ hind leg. f oreleg indicates that
the type of SF is quadrupeds’ foreleg. tailq indicates that the
type of SI is quadrupeds’ tail. α is set to 0.2, and β is set to
−0.01.

4.3.3. Geometry rules
Geometry rules are used to adjust parts’ scale and place them

in an appropriate position and orientation. Similar to [4], we
employ “slots” to specify where this part can be attached to
other parts. Slots are extracted automatically using the method
proposed by [4]. But for some slots, for example, the wing slot
in the torso meta-part of humanoids, cannot be extracted using
this technique. In this case, we label it manually. The “bound-
ary” of a slot is the convex hull of all the vertices belonging to
the slot.

Translate rule. T (ST) translates the current meta-part to a
torso meta-part included in ST by overlapping the correspond-
ing slot center of the two meta-part geometry instances. The
center of the slot is the average of the boundary vertices.

Scale rules. S (s) scales the current meta-part geometry in-
stance by a scale factor s. S (ST) scales the current meta-part
geometry instance to make it compatible with the torso meta-
part geometry instance included in ST in terms of slot length.
To be specific, we first project the boundary vertices of the slot
to a 2D plane [31]. Then we calculate the convex hull of the
projected vertices. The slot length is the perimeter of this poly-
gon.

Figure 8: The Centaur-like shape generated by geometry rules. The shape in
the middle is the generated model. The shape in the top left corner is the base
shape. The shape in the top right corner is the assist shape.

Rotate rules. R (ST) rotates the current meta-part geometry
instance to make it compatible with the torso meta-part geome-
try instance included in ST in terms of direction. Rx (angle, ST),
Ry (angle,ST) and Rz (angle,ST) rotate the current meta-part
geometry instance in the local coordinate system of ST around
x, y, and z axis by angle, respectively. We use these three com-
mands to fine-tune the direction between the current meta-part
and the torso meta-part.

Instance rule. I (ki) replaces the meta-part with its geome-
try instance ki. ‘[’ and ‘]’ are used to push and pop geometry
rules on a stack. Note that, we do not delete any meta-parts dur-
ing the production process of geometry rules, but mark them as
terminated, after they are interpreted into geometry instances.
The process starts with torso meta-parts. Other parts are in-
terpreted and attached to its torso meta-part in sequence. In
order to simplify the transform process, all the meta-part ge-
ometry instances we manipulate come from its original shapes.
The example below illustrates the composition of a Centaur-like
monster (see Figure 8).

A 
I (t0) [T (ST) S (ST) I (t1)]
[T (ST) S (0.6) S (ST) R (ST) I (h0)][
T (ST) S (0.6) S (ST) Ry (180,ST) R (ST) I (h0)

]
[T (ST) S (ST) I (a0)]
[T (ST) S (ST) R (ST) I (w1)][
T
(
ST
′)S (ST

′) I ( f1)
][

T
(
ST
′)S (ST

′) I (w1)
][

T
(
ST
′)S (ST

′) I (hl1)
][

T
(
ST
′)S (ST

′) I (ta1)
]

where t0, t1, h0, a0, w1, f1, hl1, and ta1 are the geometry in-
stances corresponding to torso super-part, head super-part, arm
super-part, wing super-part, and tail super-part, respectively.

4.4. Monster generation
We use the creature grammar in an iterative manner to gen-

erate monsters. Beginning with an initial small set of regular
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shapes selected by the user from different categories, the system
firstly picks up two shapes with the shape selection rules, then
structure rules are applied for several times to expand the struc-
ture of the base shape into a valid monster shape with abnormal
structures. Each structure rule is accompanied with a geometry
rule to adjust the meta-parts’ scale and put them in an appropri-
ate position and orientation. The selection-structure-geometry
procedure is continuously repeated to generate a monster set
from the initial shape set. We can finally evolve the initial set
of regular shapes into generations of monsters by iteratively ap-
plying the whole process from the previous set of shapes (see
Algorithm 1). A key criteria to evaluate the validity of a mon-
ster is whether it can stand upright. We take a similar strategy
as [5] to check whether the projection of the center of mass is
falling into the convex hull of the supporting points.

Algorithm 1: Monster Generation with Creature Gram-
mar

Input: Regular shape set R; Monster set G0; Background
set B; Desired number of shapes in each set Ns;
Maximum number of shapes in each group Ng;
Base shape b; Assist shape a; Generated monster
shape m;

G0 ←− R;
B ←− G0;
i = 0;
while the user is not satisfied do
Gi+1 = ∅;
while |Gi+1| < Ns do

for i← 1 to Ng do
b S hapeS election (Gi);
a S hapeS election (Gi);
m S tructureRules (b, a);
m GeometryRules (b, a);
D = D∪ {m};

D ←− SelectStandUpright (D);
for i← 1 to |D| do

if D [i] is disliked by the user then
B = B ∪ {D [i]};
delete D [i];

Gi+1 = Gi+1 ∪D;

Gi+1 ←− DiversityControl (Gi+1,Gi,B);
B ←− DiversityControl (B,Gi+1);
Gi ←− Gi+1;
i = i + 1;

Diversity control. It is very important to allow users explore
various possibilities in a creative support system. For monster
modeling, we would expect the system to generate a set of di-
verse monsters with various unexpected structures in each it-
eration. To this end, we introduce a shape structure-based di-
versity control mechanism. For a shape set, we extract all the
meta-parts of different types and different positions. Each meta-
part is an element of the shape structure vector. We first cluster
shapes according to its shape structure vector. Inside each struc-

ture cluster, we use the diversity control mechanism proposed
by [5] to sample shapes. The number of sampled shapes is in
proportion to the number of shapes in the structure cluster. This
shape structure-based diversity control mechanism is used to
automatically select shapes from each group and keep a diverse
set of shapes for the current set and background set.

5. Experimental results

We have implemented a prototype system with C++. Exper-
iments have been performed on a desktop computer equipped
with Intel R⃝ Core i7 clocked at 3.77 GHz, 8 GB of RAM and
NVIDIA R⃝ Geforce GTX 660 GPU. Fig. 9 shows two monster
design examples produced by our system. Fig. 10 shows the
design result and the background sets. The preprocessing of
each shape consists of segmentation, labeling, normalization,
co-orientation and symmetry group detection. It costs 20 min
on average. The creation of an offspring includes rule selection,
structure evolution and shape synthesis. Generally, it takes 0.5
s. We use the openMT R⃝ technique to parallel the creation of
shapes.

As mentioned before, diversity of the monster set in each
generation of the evolution process is a critical metric for the
system. We use a hierarchical diversity metric to quantitatively
evaluate the structure diversity of the monster set. Given a set
of shapes S, the HDM is defined as

HDM (S) = N +
N∑

i=0

Di

where N is the number of structure cluster among S, Di is the
normalized shape diversity in structure cluster i. We define Di

as
Di =

S Di

max
{

N∑
i=0

S Di

}
where S Di is the standard derivation of LFD for shapes in
structure cluster i. Fig. 11 plots the diversity of the evolution
sets generated by our structure-based diversity control mecha-
nism (Structure-based) and diversity control mechanism (LFD-
based) proposed by F&D [5]. It is easy to find that our diversity
control mechanism can generate more diverse shape sets. The
reason is that our mechanism emphasizes on shape structure
while the mechanism proposed by F&D has the limitation in
capturing the structure difference among shapes in a set. We
compare our system with F&D in structure diversity. As is
shown in Fig. 12, the diversity of the generated shape sets is
nearly 8 times that of F&D. The reason is that F&D gener-
ates shape variations mainly through exchanging parts between
shapes, while our system not only shuffles parts but also reason-
ably expands structures of the input set by the structure rules.

The probabilistic model introduced in [4] could also be
used to synthesize sets of creature shapes. This technique is
mainly designed for shapes belonging to the same class (e.g.,
quadrupeds, battleships, etc.) and aims to synthesize shapes by
recombining parts among different input shapes. The result-
ing shapes are all with the same coarse-level structures as input
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Figure 9: Some monster examples designed with our system. For each session, we show the input shapes and randomly selected shapes from three generations and
background sets.

shapes. Starting with shapes of regular creatures, this technique
can generate monster models as our system, if augmented by
prior knowledge about monsters. However, our creature gram-
mar is exactly a formal description of the prior knowledge about
monsters.

5.1. Production rules

The increase rules contribute most to the shape diversity.
Fig. 13 shows the different shape diversity plots with and with-
out increase rules. Obviously, a lack of increase rules would
lead to nearly a half decrease in shape diversity. Notice that
other rules are not dispensable, since they can generate new
structures and contribute to the shape diversity. For example,
the combine rules have the ability to create Centaur-like mon-
sters, the insert rules have the ability to add wings to humanoids
and quadrupeds, and the replace rules can exchange parts. A
subset of generated shapes are shown in Fig. 14. It is easy to
find that a lack of increase rules will lead to shapes with only
one meta-part super parts. On the contrary, our approach can
produce a more diverse shape set by applying all the rules.

5.2. Expert review

We invited four 3D artists to evaluate our monster suggesting
system. Three are with 4 years 3D modeling experience. The
other one are with 7+ years 3D modeling experience. Firstly,
the experts watched a 10 min tutorial about our system. Then,
they were given 15 min to try our system to familiarize them-
selves with it. Next, each of them had 30 min to freely cre-
ate monster models using our system. Lastly, each of the par-
ticipants was asked to complete a questionnaire (see Fig. 15).
Fig. 16 shows some shapes generated during expert review pro-
cess. The feedback from the participants was quite positive.
They all agreed that majority of the shapes generated by our
system were monsters. Many shapes were really unexpected,
especially in terms of the abnormal structures. They would def-
initely use a tool like this in the conceptual stage. One expert
suggested that it would be better, if the system was augmented
with the ability to analyze users’ operations and evolve shapes
according to their preference.

5.3. User study

To quantitatively evaluate the effectiveness of our technique
in inspiring users during the modeling of monsters with abnor-

8



Figure 10: The monster example designed with our system. We show the input shapes (in gray color), design results randomly selected from three generations and
background sets (in green color), and the background sets (in blue color).
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Figure 11: Plots of set diversity for our structure-based diversity control mech-
anism (red) and diversity control mechanism proposed by F&D (blue).

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

D
iv

e
rs

it
y

Generations

Our system

F&D

Figure 12: Plots of set diversity for ours (red) and F&D (blue).

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

D
iv

e
rs

it
y

Generations

All rules

Turn off increase rules

Figure 13: Plots of set diversity, when applying all the rules (red), turning off
increase rules (blue).

mal structures, we compared our technique with F&D. We re-
cruited twenty participants, 10 males and 10 females aged from
18 to 26. Four of them were art students. The other participants
were all graduate students in the graphics lab in our university.
We divided the participants into two groups, group A and group
B, each including 5 males and 5 females. There were two art
students in each group. The participants were asked to tackle
the monster modeling task as follows:

• You are a creature designer for the Half-Life 3 computer
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game in Valve Corporation R⃝. In the game, Gordon Free-
man will lead a Special Operations Group to enter a planet
in Sirius galaxy surreptitiously. In the planet, there is com-
pletely different natural order compared with the earth, re-
sulting in a fantastic world with fantastic creatures. Please
use the two set evolution systems and mark the shapes
which gave your inspiration.

The experiment was designed as follows: the participant ran
the two systems one after the other. In each generation, they
were asked to rate the presented 18 shapes (9 shapes in each
group) into 5 levels: 1 for banal, 5 for inspiring. Participants

(a) Input shapes

(b) Shapes generated by turning off increase rules

(c) Shapes generated by applying all rules

Figure 14: Shapes generated by applying all rules and turning off increase rules.
(a) Input shapes. (b) Shapes generated by turning off increase rules. Notice that
the pink shape is with one bird-like head and one pair of wing. (c) Shapes
generated by applying all rules. Notice that the pink shape is with two bird-like
heads and two pairs of wings. This shape is created by the application of the
head increase rule and the wing increase rule.

from group A used our system first and F&D latter. Participants
from group B used F&D first and ours latter. Before running
each system, the participants watched a 10 min tutorial and then
were given 15 min to familiarize themselves with the system.

1 2 3 4 5

Are the shapes generated by our system monsters? (5 for definitely yes and 1 for definitely no)

Do the shapes generated by our system give your inspiration? (5 for definitely yes and 1 for definitely no)

Do you want to apply our system in the conceptual design stage of monster modeling? (5 for definitely and 1 for impossible)

Figure 15: Questionnaire in the expert review. The black horizontal line on
each bar is the standard deviation.

Figure 16: Shapes randomly selected from the shape set generated during the
expert review.

We added up the number of shapes rated as 4 or 5 and called
them inspiring shapes. The shapes rated as 1 or 2 were pro-
cessed in the same way and called banal shapes. We averaged
the percentage of inspiring shapes in each generation over all
users (see Fig. 17). The percentage of banal shapes averaged
over all participants was shown in Fig. 18. We plotted the sum
grade of all shapes in each generation averaged over all partic-
ipants (see Fig. 19). We presented three generations of shapes
and their grades rated by a participant for the two systems (see
Fig. 20). As shown in the figures above, the percentage of
inspiring shapes generated by our system is almost 3 times that
of F&D. The percentage of banal shapes generated by our sys-
tem is nearly one third that of F&D. The total score of each
generation is almost 2 times that of F&D. Statistics show that
our system outperforms F&D in generating inspiring shapes, as
well as presenting less banal shapes. The reason is that our sys-
tem expands the structures of the input shape set by our creature
grammar, while F&D could only generate shapes by shuffling
and warping parts.

6. Conclusions

We have presented an inspiration-oriented system for cre-
ative modeling of 3D monsters. Given a set of pre-segmented
and labeled shapes from several different categories, our sys-
tem can iteratively generate sets of monsters allowing users to
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Figure 17: Plot of percentage of in-
spiring shapes, which are rated as 4
or 5.
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Figure 19: Plot of sum grade averaged over all participants in each generation.

explore various possibilities. The core of our system is the
creature grammar, a tailored grammar, which we use to capture
the way of evolving creatures with regular structures into mon-
sters with abnormal structures, while preserving the semantics
of creatures.

Limitations. Although the ini-
tial results are encouraging, there
is still room to improve our cur-
rent approach. First, our technique
produces monster shapes mainly by
generating new structures, which does not produce geometric
variations or new non-existed parts. Second, our method does
not take the compatibility of geometry style among assembled
parts into account. Sometimes our system could generate fail-
ure shapes with a set of extremely incompatible parts (see the
right figure). Finally, as the paper focuses on creative support
of monster modeling, we synthesize shapes by simply posi-
tioning parts together. The boundary smoothness is not taken
into account. Compositing parts into a manifold shape seam-
lessly [32, 33] will be explored in the future.

Future work. First, we would like to develop techniques,
which can produce shape variations by semantically exaggerat-
ing the geometry or new parts by sketch-based methods. Sec-
ond, we will enrich our creature grammar to make it generate
more inspiring structures. Also of interest is to augment our
creature grammar with the knowledge about geometric styles
among shape parts. Third, it is interesting to investigate intu-
itive control methods of production process. Fourth, we will de-
velop a formal definition of semantics of biological forms using
the framework introduced in [34]. Finally, although our paper
focuses on the modeling of monsters, we believe our grammar
can be extended to the modeling of other kinds of objects, for
example, trees, buildings and so on. We will investigate the
possibility of the application of our grammar to other modeling
domains in the future.
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