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Abstract
Moving least squares (MLS) surfaces representation directly defines smooth surfaces from point cloud data, on
which the differential geometric properties of point set can be conveniently estimated. Nowadays, the MLS surfaces
have been widely applied in the processing and rendering of point-sampled models and increasingly adopted as
the standard definition of point set surfaces. We classify the MLS surface algorithms into two types: projection
MLS surfaces and implicit MLS surfaces, according to employing a stationary projection or a scalar field in their
definitions. Then, the properties and constrains of the MLS surfaces are analyzed. After presenting its applications,
we summarize the MLS surfaces definitions in a generic form and give the outlook of the future work at last.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representation

1. Introduction

The problem of defining surfaces out of point samples has
been actively researched for many years. With the devel-
opment of Point-Based Graphics [KB04][GP07], it is nat-
ural to consider the more general approach of defining sur-
faces directly from point set. Point set surfaces, proposed
by Alexa et al. [ABCO*01], is the seminal paper in this
area. It presents how a simple and effective representation
could be achieved by the use of moving least squares (MLS)
[MaL76][Lev03] technique. And now, the MLS surface is
being increasingly adopted as the standard definition of point
set surfaces. In addition to the principal smoothing repre-
senting function, the advantages of the MLS surfaces have
many others, such as the intrinsic ability to handle noisy
input, the simplicity to compute the differential geometric
properties of the surface (e.g., normal, curvature).

Until now, there are many variations and extensions to the
original MLS surface approach [ABCO*01]. According to
whether the definition is treated as a fixed projection opera-
tor or a scalar field, existing algorithms can be mainly classi-
fied into two categories (Section 3): projection MLS surfaces
and implicit MLS surfaces. A projection MLS surface is de-
fined as a set of stationary points of a projecting operator,
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while an implicit MLS surface is defined by the zero isosur-
face of a level set function.

However, original approaches sometimes exhibit unde-
sirable behaviors for sharp features and complex output
meshes. So, Amenta and Kil [AK04b] raise the analysis of
the properties and constraints of the MLS surfaces. The basic
practical and theoretical issues, e.g., the domain of the MLS
surfaces, sampling condition, and the limitations in handling
sharp features, are further discussed in Section 4.

The applications of the MLS surfaces, such as other
reconstructions, processing (e.g., deformation, animation,
similarity marching, editing, and simplification), and the
high-quality and efficient display of the MLS surfaces, are
presented in Section 5. Then, we summarize the MLS sur-
faces definitions in a generci form (Section 6), and give the
outlook of the further work at last.

2. Preliminaries

Problem Formulation. Suppose that the discrete point set
P = {pi ∈ RD,D = 3}, i ∈ {1,2, . . . ,n}, pi is the positional
information, is sampled from an unknown surface S. The
goal of the MLS surfaces is to find a computational method,
which directly defines a reconstructed surface from P . As-
suming that the surface function f (x) is defined in arbitrary
parameter domain Ω, which approximates the given scalar
values fi for a moving point x ∈ RD in the MLS sense
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[MaL76][Nea04]. f is taken from ∏
D
r , the space of polyno-

mials with total degree r in D spatial dimensions. The idea
is to start with a weighted least squares (WLS) formulation
f ′(x) for an arbitrary fixed point in RD, and then move this
point over the entire parameter domain, where a WLS fit is
evaluated for each point individually. Then, the fitting func-
tion f (x) is obtained from a set of local approximation func-
tions f ′(x).

f (x) = argmin f ′∈∏
D
r ∑

n
i=1 wi(‖x− pi‖)‖ f ′(pi)− fi‖ (1)

f ′(x) = gT (x)c(x) = ∑ j∈[1,m] g j(x)c j(x) (2)

then, f (x)can be expressed as

f (x) = min∑i wi(‖x− pi‖)‖gT (pi)c(x)− fi‖2 (3)

where, g(x) = [g1(x),g2(x), ...,gm(x)]T is the polynomial
basis vector and c(x) = [c1(x),c2(x), ...,cm(x)]T is the vector
of unknown coefficients, which we wish to resolve to satisfy
Equation 3. The number m of elements in g(x) and c(x) is
m = (D+ r)!/(D!r!). wi(‖x− pi‖) is the weighting function
by distance to x, and has the following characteristics: com-
pact support, non-negative, and monotone decreasing. Many
choices for the weighting function have been proposed, such
as the Gaussian

wi(d) = e−d2/h2
(4)

where h is a spacing scalar parameter, which can be used to
smooth out small features in the data, and can be also called
as the radius of supporting region or bandwidth.

Equation 3 can be equivalently expressed as a linear sys-
tem of equations (LSE) in matrix and vector form.
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 (5)

Solution 1. By setting the partial derivatives of f (x) to zero,
i.e., ∇ f (x) = 0 where ∇= [∂/∂c1, ...,∂/∂cm]T , we obtain

∂ f (x)
∂c j(x)

=2∑i wi(||x− pi||)g j(pi)[gT (pi)c(x)− fi]= 0 (6)

where j = 1, ...,m, and we can get

∑iwi(||x−pi||)g(pi)gT(pi)c(x)=∑iwi(||x−pi||)g(pi) fi (7)

If the matrix Mg = ∑i wi(||x− pi||)g(pi)gT (pi) is not singu-
lar, i.e., its determinant is not zero, c(x) is solved as

c(x) = Mg−1
(
∑i wi(||x− pi||)g(pi) fi

)
(8)

As a result, f (x) can be expressed as

f (x) = gT(x) Mg−1
(
∑i wi(||x− pi||)g(pi) fi

)
(9)

The method of Normal Equations also computes the identi-
cal solution for c(x) and f (x) in the MLS sense.

Solution 2. The MLS function can also be given in terms
of polynomial reproduction property [Lev98]:

f (x) = ∑i fiL
P,r
i (x) (10)

where shape function LP,r
i (x) minimizes the quadratic form,

Q = ∑i

∣∣∣LP,r
i (x)

∣∣∣2
w(‖x− pi‖) (11)

subject to the linear constraints of polynomial reproduction.

∑i LP,r
i (x)g j(pi) = g j(x), j = 1, . . . ,m (12)

The minimization is computed by solving a linear system
derived by Lagrange multipliers.

3. MLS Surfaces Definition

For existing MLS surface algorithms, we classify them into
two categories. The first type is referred to as the projection
MLS surfaces definition, where the MLS method is used to
define a surface as the stationary points of an iterative para-
metric fit procedure. The second type, namely the implicit
MLS surfaces definition, employs MLS technique to solve an
implicit function under some constraints. These constraints
include the positional constraint, which enforces exactly in-
terpolation/approximation at the sample points, and even
derivative constraint, which enforces the matching between
the gradients of the implicit function and the normals of cor-
responding sample points.

3.1. Projection MLS Surfaces

Levin [Lev03] generalizes his previous work [Lev98] in
function approximation theory to adapt for manifold by in-
volving a non-linear optimization for each point projec-
tion. The MLS stationary projection operator f : Ω → R3

projects points from a vicinity Ω of the MLS surface onto
the surface itself.

S = {x ∈ Ω : f (x) = x}= range( f ) (13)

Besides the intact projection procedures described in Sec-
tion 3.1.1, there is another popular reduced version (Section
3.1.2), which simply defines the point projection in terms
of a combination of the weighted centroid and a normal
field. This later function can be evaluated very efficiently,
and its simplicity makes it more suitable for analysis that
gives strong theoretical guarantees.

3.1.1. Point Set Surfaces

The MLS surface of Levin [Lev98][Lev03] is first intro-
duced to 3D computer graphics by Alexa et al. [ABCO*01],
and named as point set surfaces. The domain Ω is the
neighborhood of the input points. For the irregular sampling
point set, the domain is generated from k-nearest neighbor-
ing points, while for regular samples, it can be defined by a
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union of balls centered at each point pi :

Ω =
⋃

i
{x ∈ R3| ‖x− pi‖< rΩ} (14)

The computation of the projection x 7→ f (x), detailed in
[ABCO*03], is carried out by two steps:

(1) Local reference domain Hx = {z ∈ R3 : nT z = nT q}is
computed by minimizing the non-linear energy function,

eMLS(q,n) = ∑i w(‖pi−q‖ )(nT pi−nT q)2 (15)

for any n,q ∈ R3,||n||=1,with n = n(q) = (x− q)/||x− q||,
where w is the Gaussian weighting function (Equation 4).
The scalar parameter h should be set to reflect the anticipated
spacing between neighboring points, since the surfaces can
be tuned to smooth out features of size < h in S.

Setting q = x+tn for t ∈ R, Equation 15 becomes:

eMLS(x,n) = ∑i w(‖pi− x− tn‖)〈 n, pi− x− tn〉2 (16)

By iterative non-linear minimization, Alexa et. al. find the
local minimum of Equation 16 with smallest t and the local
tangent plane Hx near x accordingly (Figure 1.a). The local
reference domain is then given by an orthonormal coordinate
system on Hx so that q is the origin of this system.

Figure 1: The two step projection (Taken from [GP07]). (a)
The reference plane for the first step of the MLS projection is
found by optimizing over all normal direction n and offsets
t. (b) The reference plane is used to compute a polynomial
least square approximation. The value at the origin of the
reference frame is used as q.

(2) Find a local bivariate polynomial approximation
g:Hx → R3 by a standar least squares fit to the points pi
in the neighborhood of q. Once the plane Hx is computed,
the weights w(||pi − q||) are known. Polynomials of de-
gree 3 to 4 have proved to be appropriate, as they produce
good fits of the neighborhood without oscillation and can be
computed efficiently. Let qi be the orthogonal projection of
pi onto Hx , (xi, yi) be its local 2D coordinates, and gi =
nT (qi− pi) = ||qi− pi|| be its height over Hx. Then the error

∑i w(‖pi−q‖)( g(xi,yi)−gi )2 (17)

is to be minimized (Figure 1.b). And the projection of x is
finally defined by

f (x) = q+g(0,0)n = x+(t +g(0,0))n (18)

In particular, The normal of point x might be given or
could be computed by refining a point set surface (e.g., from
close points in the already processed point set). In the later
case, the normal of x is obtained by a weighted averaging
of input normals n j, when point p j of k nearest neighbors
carries normal n j.

n(x) =
∑ j∈[1,k] w(

∥∥x− p j
∥∥)n j∥∥∥∑ j∈[1,k] w(

∥∥x− p j
∥∥)n j

∥∥∥ (19)

If no normal is available, it is computed using the Jacobian,

JMLS(x,n) = ∑i w(‖pi− x‖)〈 n, pi− x〉2 (20)

and the normal is the eigenvector (corresponding to the
smallest eigenvalue λ0) of the covariance matrix.

∑i w(‖pi−x‖)(pi−x)(pi−x)T= Ediag(λ0,λ1,λ2)I
T
3 (21)

Fitting a tangent plane will only yield a normal direction, not
an orientation. The normal orientation is always estimated
by the minimum spanning tree (MST) algorithm [HDD*92].

Based on the polynomial reproduction property [Lev98]
of the MLS approach and local Taylor expansion of f , Lip-
man et al. [LCOL06] evaluate the approximation quality
of the MLS surfaces.∣∣∂r f (x)−∂

r f ′(x)
∣∣≤CBr,ε(x,Ph) (22)

where, C is the local upper bound to the (r+1)th order
derivatives |∂r+1 f |. Πh denotes the subset Π∩BALLh(x),
BALLh(x) stands for a ball of radius h with center x.
Br,ε(x,Ph) is the error bounding function defined to the given
points Πh with ε noise. For Br,ε(x,Ph), they develop two
error bounds: tight data-independent and data-dependent
bound. To minimize the two bounds, they look for two dif-
ferent optimal support h with the weight function w(d).

w(d) = e−d2/(h−d)2
, d ∈ [0,h) (23)

Their solution method can be well integrated with the MLS
projection operator as follow: After find the local reference
plane, the second step of local bivariate polynomial is per-
formed by using the computed optimal h.

By using the weight (Equation 23), Wang et al. [WSS08]
also discuss the implications of Levin’s second-step MLS
projection for optimal bandwidth, i.e., the Gaussian width
h. They use kernel regression weights to determine the op-
timal bandwidth, but actually use regular MLS weighting
function to perform the second polynomial fitting step. By
plugging the circular-form bandwidth (expressed as a ma-
trix) into an approximated error criteria evaluating the ker-
nel regression performance, the optimal bandwidth can be
found. The fitting results for typical functional shape (similar
to [LCOL06]) and example point clouds show that the opti-
mal bandwidth outperforms the heuristic bandwidth where h
is a constant or determined by the k nearest neighbors.
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3.1.2. Derived From Normal and Weighted Average

One slightly different but considerably simple projection is
proposed by Adamson and Alexa [AA03a]. Their projection
procedure iteratively projects a given point x onto local refer-
ence planes that are defined by a weighted average position

a(x) = ∑i w(‖x− pi‖)pi

∑i w(‖x− pi‖)
(24)

The local normal approximation n(x) is computed (this ap-
proximation allows drawing a connection to Levin’s MLS
surfaces) similar to [ABCO*01][ABCO*03]: If each point
pi carries a normal ni, Equation 19 is used, otherwise, Equa-
tion 21 is employed. And then, Repeat the computation (see
Figure 2.a for pseudocode) until convergence of the projec-
tion operator.

x′ = x−n(x)T (x−a(x))n(x) (25)

Convergence means that a point is stationary under the re-
peated projection onto the subspace orthogonal to n(x). This
constructive definition also gives rise to an alternative in-
terpretation of the surface defined by an implicit function.
The implicit function f : R3 → R describes the distance of
a point x to the weighted average a(x) projected along the
normal direction n(x):

f (x) = n(x)T (x−a(x)) (26)

In the following work, Alexa and Adamson [AA04b]
point out that “since the normal n(x) of the approximating
tangent plane is generally not the normal to Σ, this basic
projection procedure does not result in an orthogonal projec-
tion”. The implicit description allows the exact evaluation of
surface normals using the gradient ∇ f . Based on the prop-
erty of projection operator, the projection can be further clas-
sified into three type procedures: basic projection (Figure
2.a), almost orthogonal projection (Figure 2.b), and orthog-
onal projection (Figure 2.c). Figure 2.d shows the different
results of the three projections for one point. Obviously, the
sophisticated orthogonal projection produces the best result
and the basic projection has the simplicity with less accu-
racy. The almost orthogonal projection trades off the sim-
plicity and accuracy and it has been widely adopted as the
implementation standard.

In contrast to the algorithmic construction of MLS sur-
faces using the projection operator, Amenta and Kil [AA04a]
give an explicit definition of MLS surfaces in terms of crit-
ical points of the energy function e along lines determined
by a vector field n(x). The energy function takes a position x
and an un-oriented direction b.

eMLS(x,b) = ∑i w(‖pi− x‖ )(〈b, pi〉−〈b,x〉 )2 (27)

The vector function takes a position x.

nMLS(x) = argminb eMLS(x,b) ,‖n‖= 1 (28)

Figure 2: Three projection procedures. (a) Pseudocode for
the basic projection operator. (b) Pseudocode for the al-
most orthogonal projection operator. (c) Pseudocode for the
orthogonal projection operator. (d) Comparisons for some
point extremities (Taken from [GGG08]). Blue: basic. Red:
almost orthogonal. Magenta: orthogonal.

The MLS surfaces (Figure 3 and 4) is defined as

S = {x | x ∈ arglocalminy∈lx,n(x)
eMLS(y,n(x))} (29)

where lx,n(x) is the line through xwith direction n(x),
arglocalminy∈lx,n(x)

denotes the set of inputs y producing lo-
cal minima of a function of variable y. The process of pro-
jecting a point onto the extremal surface Σ implied by n and
e is illustrated in Figure 3. At each iteration, find n(x j) and
consider the line lx j ,n(x j), then search for a nearby local mini-
mum of e(y,n(x j)) over the set y∈ lx j ,n(x j). The nearest local
minimum becomes x j+1, until n(xn) at final point does not
increase e. The energy does indeed decrease for the MLS
function at every step and also for any function e(x,a) which
does not depend on the direction parameter. And, once the
above procedure converges, it produces a point of Σ.

Figure 3: Illustration of the definition and the projection
process of a projection MLS.

Since a point of the extremal surface is a critical point of
x on the line lx,n(x), the directional derivative of e(y,n(x)) in
the direction n(x) has to be zero at x. In other words, at a
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point x of the extremal surface, n(x) is perpendicular to the
gradient of e(y,n(x)), and tangent to the iso-surface e(y,n(x))
for y in R3. This is illustrated in Figure 4. Based on the form
of implicit definition (Equation 26), Amenta and Kil define
more general formulation of extremal surfaces,

f (x) = n(x)T (
∂eMLS(y,n(x))

∂y
|x) = 0 (30)

where
∂eMLS (y,n(x))

∂y |x is the gradient of e as a function of
y, keeping n(x) fixed, and then evaluated at x. When the
weighting function is a Gaussian (Equation 4), the implicit
function f takes the following form:

f (x)=2∑i n(x)T(x−pi)

[
1−

(
n(x)T(x−pi)

h

)2]
wi(‖x−pi‖) (31)

Notice that a point x on one of the iso-surfaces might be
either a maximum on lx,n(x) or a minimum (Figure 4).

Figure 4: The reconstruction instance near a feature corner
(Taken from [AK04b]). (a) Top left, the stream lines of the
vector field generated by n. (b) Bottom left, the iso-contours
of the energy function e. (c) Right, both together. The scale
factor on the Gaussian weights in the MLS energy function
h = 10. The extremal surface f (x) = nT∇e = 0 (Equation
30) includes both minima (heavy blue curve, Equation 29)
and maxima (green curve). The endpoints and junctions in
the union of the blue and green curves are singularities of n.

The energy function can also be reduced as

eMLS(y,n(x)) = ∑i w(‖pi− x‖)
(

n(x)T (y− pi)
)2

(32)

where the weighting function w varies with x instead of
y. This is essentially the MLS surface implemented in
Pauly et al.’s methods [PGK02][PKKG03] and the popular
PointShop3D platform [ZPK*02], and it has a very straight-
forward implicit form.

f (x) = ∑i w(‖x− pi‖)
(

nT
i (x− pi)

)2
(33)

Dey et al. [DGS05] prove theoretical guarantees for
the projection MLS surfaces [AK04a]. The extremal sur-
face based projection procedure converges and the target ex-
tremal surface is isotopic to the original sampled surface.

The projection procedure indeed converges to extremal sur-
face when the point set P is sufficiently dense and the initial
point x is chosen sufficiently close to S. The sampling con-
dition implies two facts: uniform (ε,α) samples and that two
nearby sample points have similar normals.

3.2. Implicit MLS Surfaces

Implicit MLS (IMLS) surfaces is a zero level-set surface of
a signed distance field based on the MLS methods. General
reconstruction via implicit surfaces includes the following
steps: estimate normals, approximate signed distance func-
tion, apply the mesh creation algorithm (e.g., marching cube
[LE87]), build final mesh. And if necessary, an optimization
to the resultant mesh will be performed.

3.2.1. IMLS Surfaces Based on Euclidean Distance

To provide the interpolation and approximation simulta-
neously, Shen et al. [SO’S04] use the weight function

w(d) = (
1

d2 + ε2 )2 (34)

Setting the parameter ε to zero results in a singularity at d=0,
which enforces the MLS fitting function to interpolate the
data. Shen et al. solve Equation 5 with the positional con-
straints fi and normal constrains nT

i (x− pi) at the same time.
w

1
2
1 (‖x− p1‖)

. . .

w
1
2
n (‖x− pn‖)


gT(p1)

...
gT(pn)

c(x)=


w

1
2
1 (‖x− p1‖)

. . .

w
1
2
n (‖x− pn‖)


 f̃1

...
f̃n

(35)

where f̃i(x) = fi + nT
i (x− pi), it’s a signed distance func-

tion and can be used to express iso-surfaces. For simplicity,
choose g=[1], i.e., f (x) is a level set value ( f (x)=c(x)). No-
tice that, since the weights vary over x, f (x) becomes a func-
tion of x instead of a constant. Then, Equation 35 becomes(

∑i w
1
2 (‖x− pi‖)

)
f (x) = ∑i w

1
2 (‖x− pi‖) f̃i(x) (36)

In the case, the fit form equation can be intuitively inter-
preted as the value of the interpolating function at x, which
is simply the weighted average of the values at x predicted
by each of the f̃i. Since the implicit surface definition is de-
signed to reconstruct mesh from polygon soup, positional
constrains should be changed to polygonal constrains. The
parenthesized term of Equation 36 and the term on the right
are replaced by integrals over the polygons.

f (x) =
∑i

∫
Polyi

w(‖x− p‖)( fi +nT
i (x− pi))d p

∑i
∫

Polyi
w(‖x− p‖)d p

(37)

The quadrature are approximated numerically using an im-
portance sampling approach. Note that,when extracting fi-
nal meshes, they use the polygonizing algorithms described
in [Blo94]. Besides the mesh reconstruction, the MLS defi-
nition has been applied to level-of-detail, bounding volume
creation, and deformable object simulation.
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Shen et al.’s approach [SO’B04] is close to the previ-
ous implicit algorithm [OBA*03], which uses the partition-
of-unity(POU) method with a fast hierarchical evaluation
scheme to compute surfaces from data sets. POU per-
forms local least squares approximation at fixed position and
blend them using weighted average while MLS performs a
weighted local least squares approximation for every point.
In practice it turns out that when using a constant basis, the
two approaches are equivalent (assuming the POU is per-
formed for each point using the same weighting scheme).

In the simplest case, by taking fi=0, f̃i = nT
i (x− pi), Kol-

luri [Kol05] defines uniform implicit MLS surfaces f as a
weighted average of the tangent planes.

f (x) =
∑i w(‖x− pi‖)

(
nT

i (x− pi)
)2

∑i w(‖x− pi‖)
(38)

with the weighting function

wi(d) = e−d2/(ρ·sl f s)2
/nsi (39)

where, nsi is the number of samples inside a ball of radius ri
centered at pi, including pi itself. The local feature size (lfs)
at point x ∈ S is defined as the distance from x to the near-
est point of the medial axis of S. The width of the Gaussian
functions is ρ (ρ<0.01) times of the smallest local feature
size (slfs), normalized to unit 1 in the algorithm. At the uni-
form (ε,α) sampling condition (Figure 5.a), which is a shell
with uniform thickness 2ε·slfs, Kolluri proves that the im-
plicit function is a good approximation of the signed distance
function of the original surface, and that the reconstructed
surface is geometrically and topologically correct.

Figure 5: The (ε,α) sampling condition. Implicit MLS sur-
faces (black) located in the sampling space (white regions) is
defined based on the local feature size relating to the media
axes (yellow). (a) Uniform (ε,α) sampling space. (b) Adap-
tive (ε,α) sampling space.

In a larger adaptive sampling space (Figure 5.b), Dey and
Sun [DS05] can reconstruct provably good adaptive MLS
surfaces, at the aid of one modified Gaussian function to be
a fraction of the local feature size.

wi(‖x− pi‖) = e−
√

2‖x−pi‖2/(ρ
2l f s(x̂)l f s(p̂i)) (40)

where ρ is a user-specified parameter that is less 1. For sam-
ple x, x̂ is the closest point on S. Since the local feature

size should be pre-computed, Dey et al. use another sur-
face reconstruction procedure via adaptive MLS function.
First, they estimate each point’s normal by Delaunay ball.
Then, they compute local feature size of each sample. Af-
ter that, they project each sample point by iteratively us-
ing x′ = x− f (x)∇ f (x)/‖∇ f (x)‖2. Finally, they build final
meshes based on the Cocone algorithm [ACDL02].

3.2.2. IMLS Surfaces Derived From Algebraic Distance

By directly fitting (withoud iterative solving procedure)
higher order algebraic spheres [Pra87] rather than planes,
Guennebaud and Gross [GG07] propose an algebraic MLS
surface, called algebraic point set surfaces (APSS). An al-
gebraic sphere is the 0-isosurface of the scalar field su(x) =
[1,xT ,xT x]u, where u = [u0, ...,uD+1]T ∈RD+2 (D is the di-
mension, here D=3) is the vector of scalar coefficients de-
scribing the sphere. The APSS SP is defined as the zero set
of the implicit scalar field f (x) representing the algebraic
distance between the point x and the fitted sphere u(x).

f (x) = su(x)(x) = [1,xT ,xT x]u(x) = 0 (41)

The weighting function used in the paper is a compact
supporting polynomial

wi(x) =


(

1−
(
||x−pi||

hi(x)

)2
)4

, ||x− pi||<1

0 , otherwise
(42)

where hi(x) describes the local feature size.

The solution u(x) of the algebraic sphere fit at position x,
only used to estimate the missing normals, is expressed as

u(x)=argminu,u6=0

(
uT WP(x)u

)
(43)

where, WP(x) is

WP(x)=

1 pT
1 pT

1p1
...

...
...

1 pT
n pT

npn


Tw1(‖x− p1‖)

. . .
wn(‖x− pn‖)


1 pT

1 pT
1p1

...
...

...
1 pT

n pT
npn

(44)

By using of the normals obtained by the consistent ori-
entation propagation method or given as part of the input,
Guennebaud and Gross add the following derivative con-
straints to the minimization problem (Equation 43).

ni =∇su(pi), ||ni||= 1 (45)

The normal constraint leads to a standard linear system of
equation that can be solved efficiently.

In the following work, Guennebaud et al. [GGG08] show
that the former algorithm actually minimizes Equation 41
under the positional constraints su(pi)=0 and the derivative
constraints (Equation 45) simultaneously:

u(x) = argmin
u

∑i wi(x)
(

su(pi)
2 +‖∇su(pi)−ni‖2

)
(46)
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And they observe that the derivative constraints provide suf-
ficient information to determine the four coefficients u1 to
u4 that define the gradient of the sphere, by explicitly solv-
ing the below normal equation.

[
∑i wi(x)I3 2∑i wi(x)pi

(2∑i wi(x)pi)
T 4∑i wi(x)pT

i pi

]
·


u1
u2
u3
u4

=
[

∑i wi(x)ni
2∑i wi(x)pT

i ni

]
(47)

Next, they use the algebraic distance constraints to deter-
mine the value of u0. By multiplying u4 by an introduced
parameter β, Guennebaud et al. [GGG08] can continuously
tweak their algebraic spherical fit between a pure planar fit
(β = 0) and a pure spherical fit (β = 1). Moreover, the pa-
rameter can control the curvature of the fitted sphere (in-
verting the curvature with a negative value), or enhance the
surface microstructures.

3.3. Summary

For MLS surfaces, the surface definition is the most impor-
tant issue, since it determine which form of projection pro-
cedures is used or which formulation of implict functions is
taken. Although the two definitions are formulated from dif-
ferent point of view and put their emphasis on their own as-
pects, it dose not mean they can’t be converted between each
other. Generally, the projection MLS surfaces may be ex-
pressed by the implicit functions [AA03a][AA04b][AK04a],
while the pure implicit MLS surfaces can also include pro-
jection procedure [GG07]. In particular, it can be found that
Equation 33 (one projection MLS surface) and 38 (one im-
plicit MLS surface) define scalar fields by similar signed
distance of local tangent planes, and have exactly the same
zero level set. Equation 38 has a significant computational
advantage, since Newton iteration for Equation 38 has a
much larger convergent domain than the one for Equation
33. However, Equation 33 facilitates theory analysis.

4. Properties and Conditions

Amenta and Kil [AK04b] find two characteristics (Figure
4) of the extremal surface defined by the energy function
[AK04a]. (1) The domain of MLS surfaces (i.e., the converg-
ing neighborhood of surface S) is a narrow region around
the ideal S. This means that, when the noise level exceeds
expectations, it may not even include the entire point cloud
by causing some of the points in the cloud to project away
from where the surface ought to be. (2)When the input points
come from surfaces with sharp corners, in the vicinity of
which two sheets of the MLS surfaces seem to collapse into
one. The MLS surfaces extend through the corners with dis-
continuity, and some unexpected surfaces exist not near the
input points. The two un-satisfying facts can be generalized
into two types of constrains: (1) sampling space properties
(Section 4.1) including spatial scope, sampling rule and sam-

pling density, (2) desired outputs (Section 4.2), e.g., smooth
surfaces with sharp features, and complex manifolds.

4.1. Sampling Space

4.1.1. MLS Surfaces Domain

To solve the previous two undesirable phenomena, Amenta
and Kil [AK04b] address two MLS variants which can be
defined on two wider domains without producing spurious
surface components. Similar to the simple MLS surfaces
method [AA03a], they first define a weighted center-of-
mass (COM) energy function by evaluating position x.

eCOM(c,b) = ∑i w(‖pi− x‖)(〈b, pi〉−〈b,c〉)2 (48)

where c = ∑i piw̄(‖x− pi‖) is calculated by the normal-
ized Gaussian weight of the sample pi w̄(‖x− pi‖) =
w(‖x− pi‖)/∑ j w(

∥∥x− p j
∥∥). The COM method is efficient

and works well except near sharp corners. So another line
integral approach, computationally expensive, is defined to
work well everywhere.

eI(x,a) =
∫

y∈`x,a

e2
DIST (y)w(‖y− x‖) (49)

where eDIST (y) = ∑i w̄(‖y− pi‖)‖y− pi‖2 estimates the
weighted square distance of x from the input point set.

In Section 3.2.1, domains that allow provable MLS sur-
face construction with uniform sampling [DGS05][Kol05]
and adaptive sampling [DS05] have been discussed.

Besides these, Bremer and Hart [BH05] analyze the mild
sampling conditions of MLS surfaces domain by defining
normals within an adaptive tubular neighborhood [AA04a]
of the sampling points. They impose the upper and lower
bounds on sampling density by requiring an (u,l)-sampling
of the surface, which simultaneously satisfies two condi-
tions: (1)the collection of balls centered at pi of radius
u · l f s(p̂i) covers S, (2) balls center at pi of radius l · l f s(p̂i)
do not intersect. In the (u,l)-sampling domain, they prove the
constructed MLS surface with an adaptive Gaussian weight-
ing function can be well defined.

wi(‖x− pi‖) = e
− (25‖x−pi‖)2

l f s2(p̂i) (50)

The well defined normal of position x is the vector corre-
sponding to only one smallest eigenvalue of the weighted
covariance matrix (Equation 21).

4.1.2. Adaptive Sampling

Sampling condition should guarantee that a surface is appro-
priately sampled, which at least intuitively means that the lo-
cal sampling density should depend on the local geometric
complexity, e.g., some indication of curvature.

For the projection operator defined by Alexa et al.
[ABCO*01], using a global constant scale factor h in
Gaussian function can be problematic for non-uniformly
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sampled surfaces. If h is too large, areas of high sampling
density will be smoothed excessively. On the contrary, nu-
merical instabilities occur in sparsely sampled regions, if h
is too small.

To deal with this problem, Pauly et al. [PGK02] use an ex-
tension of the static MLS approach. Instead of considering
samples within a fixed radius proportional to h, they collect
the k-nearest neighbors and adapt according to the radius r
of the enclosing sphere. The weighting function is defined as

wi(‖x− pi‖) = e−‖x−pi‖2/h2
r (51)

By dynamically choosing hr = r/3, they ensure that only
points within the k-nearest neighbors contribute noticeably
to the least squares optimization of Equation 15.

Subsequently, Pauly et al. [PKKG03] propose an
anisotropic weighting MLS method by redefining a new
weighting function, where hr = h/ρ(r) and ρ(r): R3 → R is
a continuous and smooth function approximating the local
sampling density. To compute ρ, they first estimate the local
sampling density ρi for each pi by finding the sphere with
minimum radius ri centered at pi that contains the k-nearest
neighbors of pi. Then ρi is defined as ρi = k/r2

i where their
experiments showed that k should be greater than 6 to en-
sure stable computations, but less than 20 to avoid excessive
smoothing of the density estimation. In the second step, ρ

can be interpolated using standard scattered data approxi-
mation techniques, e.g., radial basis functions.

Adamson and Alexa [AA06a] propose an anistropic
point set surfaces, attaching individual weight function to
each sample rather than to the location in space. The weight
wi(||x–pi||) is performed by transforming the vector x–pi
with ellipsoidal weight Hi derived from each sample.

wi(‖x− pi‖) = e−‖x−pi‖2/‖Hi‖2
(52)

The ellipsoid Hi has a good orientation that one of its axis
points into normal direction, and the other two align with the
local minimum and maximum principal curvature direction.
Hi is determined by a covariance matrix cov(pi) constructed
by the k-nearest neighbors pi(1), . . ., pi(k) of point pi.

cov(pi) =
1
k ∑ j∈[1,k] (pi( j)− pi)(pi( j)− pi)

T (53)

The covariance matrix can be further diagonalized
as cov(pi) = RiΛiRT

i , then Hi is defined as Hi =(
2+
√

k
3
√

k

)−1/2
RiΛ

1/2
i . Then, wi(||x− pi||) is used to com-

pute the weighted average location and the weighted princi-
pal normal direction of the simple MLS surfaces [AA03a].

By using Mahalanobis distance which is a distance mea-
sure with ellipsoidal support, Fiorin et al. [FCS07] define the
following distance function, used for surfels by [AK04a].

distM (x, pi)=
(
nT

i (x−pi)
)2

+β

∥∥∥((x−pi)−
(
nT

i (x−pi)
)

ni

)∥∥∥2
(54)

where ni is the vector direction at point pi, β is a scalar

factor which affects the ellipsoid shape. In particular, when
β=1, the Mahalanoibis distance is quivalent to the Euclidian
distance between the point x and the samples pi, whereas
when β=0, it corresponds to the distance from x to the plane
through pi with normal ni. The enegy function is changed to

eMLS(x,b) = ∑i w̄(‖pi− x‖)distM(x, pi) (55)

where w̄(||x− pi||) is the normalized Gaussian function.

4.2. Outputs

The desired output is another important factor that should be
carefully considered to develop reasonable algorithm. The
following two kinds of outputs have been thoroughly inves-
tigated: complex surfaces (Section 4.2.1) and models with
sharp features (Section 4.2.2).

4.2.1. Complex MLS Surfaces

By computing the weighted average and the local tangent
frame as [AA03a], Alexa and Adamson [AA04a] define the
MLS surfaces with boundaries in a natural way. For points
far away from the point set, the distance c(x) = ||x− a(x)||
(called as off-center value of x) increases. The main idea
for defining a boundary is to require c(x) to be less than a
user-specified threshold δc. More precisely, the surface SP
is implicitly defined as

f (x) = n(x)T (x−a(x)) = 0 ∧ c(x) < δc (56)

δc and c(x) are both dependent on sampling conditions.
Alexa and Adamson [AA03a][AA04a] assume that each
point ofP is near SP, and the union of the balls Bpi , centered
at pi with radius rB, contain the surface SP. Determined by
experiments, rB ≈ 1.5Dknn, where Dknn is computed as the
average Euclidean 6-nearest neighbor distance. Obviously,
c(x) behaves roughly like the distance to the point set, and
δc is relative to rB, 2

3 rB < δc < 1+4
√

3
9 rB.

Beside the bounded surfaces, handling non-orientable
surfaces [AA04a] is straightforward, as the surface defini-
tion (Equation 56) is not altered when inverting n(x). With
sufficient and small radii, the normals can be oriented consis-
tently so that n(x) is indeed a smooth vector-valued function
of x inside the ball.

Alexa and Adamson [AA08] find that old definition
(Equation 26) has certain deficiencies in shape (e.g., given
input points in convex position, the resulting shape is not
convex). By using the singular weight function

w(d) = d−k, k ≥ 2 (57)

, they define Hermite point set surfaces with an extended
weighted average:

ãi(x) = ∑i w(||x− pi||)p̃i(x)
∑i w(||x− pi||)

(58)
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where p̃i(x) = x− (nT
i (x− pi))ni is the projection of x onto

the tangent space of pi. The surface is then defined as

f (x) = n(x)T (x− ã(x)) = 0 (59)

and can be equivalently expressed as the locally weighted
combination of implicit plane equations at points.

f (x)=∑i

(
nT

i (x−pi)
(
∑ j∈[1,n] nT

i n jw(||x−pi||)w(||x−p j||)
))

(60)

Therefore, for the given input samples in convex position,
the resulting shape is convex, and can also be flexibly con-
trolled by a shape parameter between p̃i(x) and pi.

This Hermite MLS work has been initiated in the context
of Point-Sampled Cell Complexes [AA06b]. The cell com-
plexes consist of the manifold cells MD

i , where D={0,1,2}
denotes the dimension of the cell with index i. Under uni-
form sampling condition, for point x in the support of cell
M, Adamson and Alexa approximate a tangent space TxM
with D dimension, where T is represented by matrix T =
(t0, . . . , tD−1). The tangent frame at x is obtained by com-
puting the larger eigenvalues and corresponding eigenvec-
tors of a matrix of weighted covariances, with the common
Wendland’s radial function w(d).

w(d) =
{

(1− d
h )4( 4d

h +1), 0 ≤ d ≤ h
0, d > h

(61)

The surface comprised by the cell complex is defined by the
projection sequence Qi

M(x)( let Q0
M(x) = x): project the vec-

tor from the current weighted average aM(x) to x onto the
basis of the current tangent frame space in each step, until
||Qi+1

M (x)−Qi
M(x)|| is less that a given threshold. The com-

putation of aM(x) should consider the qD−1
j (x), the results

of projecting onto any connected lower-dimensional cell.

aM(x)=
∑i w(||x−pi||)pi+∑ j ω(||x−qD−1

j (x)||)qD−1
j (x)

∑i w(||x− pi||)+∑ j ω(||x−qD−1
j (x)||)

(62)

with

ω(d)=

{ (
ln d

h

)2
−

(
d
h

)2
+2

(
d
h

)
−1, 0 ≤ d ≤ h

0, d > h
(63)

Through the projection onto its boundary MD−1
i , the projec-

tion onto cell M is restricted to lie within a half space through
qD−1

j (x). The normal of the binary space is computed as

b j = TqD−1
j (x)M

D
i −TqD−1

j (x)M
D−1
i (64)

The result of the stationary projection is finally defined as

QM(x) =

{
Q∞

M (x), bT
j (Q∞

M (x)−qD−1
j (x))≥ 0

qD−1
j , bT

j (Q∞
M (x)−qD−1

j (x)) < 0
(65)

4.2.2. Sharp Features

In order to detect and reconstruct sharp creases and corners
in a possibly noisy point cloud, Fleishman et al. [FCOS05]
propose the robust MLS (RMLS) surfaces, which handle

samples in a more natural way by fitting a piecewise smooth
surface (Equation 20) to a sample set of piecewise smooth
object rather than fitting a smooth surface to whole data. In
their work, locally fitting multiple surfaces to points in the
area of discontinuity is regarded as a statistical problem of
fitting an estimator to data with outliers, where outliers re-
fer to the points across the discontinuities and the statistical
problem is solved by forward-search paradigm.

To overcome jittering artifacts of [FCOS05], Daniels et al.
[DHOS07] leverage the robust statistical method of RMLS
to project points to all possible features such that smooth
and complete curves are extracted to approximate the
features well. The process of feature extraction is carried out
in five steps. Firstly, they identify potential feature points by
tolerance tuning, which is measured by an automatic thresh-
old rather than a manual value in RMLS. Secondly, they use
RMLS procedure to fit multiple surfaces to the neighbor-
hood of identified points and project each point to its near-
est intersection between the surfaces. Thirdly, they remove
the projected point noise using principal component analy-
sis (PCA) of adaptively grown neighborhood. Fourthly, they
create a set of lines by feature polyline propagation method,
after reversely order points by distance to nearest corner
point. Finally, they complete feature curves by analyzing the
end points of feature polylines.

To deal with singularity problem [FCOS05] in sparse or
noisy point clouds, Lipman et al. [LCOL07] realize data-
dependent MLS surfaces in a spline approximation space.
The optional singularity for each local approximation space
is modeled via a singularity indicator field (SIF). For each
point x, a preprocessing is performed to find a local refer-
ence plane and calculate its SIF value. The reference plane
is defined using a local weighted PCA with weight

w(d) = e
− d2

(h/4)2 (66)

Based on the error expression of the MLS approximation
[LCOL06], the singularity indicator Λi at point pi is defined
as the lower bound of the derivative

Λi =
| fi− f (pi)|

∑|v|=r+1 ∑ j∈Jh(x)
|x j−xi|v

v! |LP ,r
j (pi)|

(67)

where Jh(x) = { j|p j ∈ ∩B(x,h)}, B(x,h) is the ball with ra-
dius h centered at x. The shape functions of MLS LP ,r

i (x)
are obtained via Equation 12. fi is known and f (pi) is
obtained from standard local polynomial approximation in
[ABCO*01]. Then, they create the local approximation
spline space Sr of total degree ≤ r (mostly r=3) by apply-
ing the MLS framework on the SIF data.

f (x) = argmin f∈Sr ∑i wi(||x− pi||)|| f (pi)− fi||2 (68)

Reuter et al. [RJT*05] present an alternative approach that
offers the possibility to represent sharp features, by manu-
ally tagging sharp features in the point cloud as an input to
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their algorithm. The key idea is to switch the second step
of projection operator [ABCO*01][Lev03] to a similar one
(an enriched Reproducing Kernel Particle Approxima-
tion (RKPA)) with the Gaussian weight (Equation 4).

By incorporateing the idea of the bilateral denoising
method, Miao et al. [MHL*05] propose a modified MLS
approach [Lev03] with the weighting function

w(||x− pi||) = e−
||x−pi||

2

h2 · e−
||x−ϕpi (x)||

2

(h′)2 (69)

where h′ is another scale constant parameter. ϕpi(x) is the
linear perdiction for x given the information at point pi, and
is defined as its projection on the tangent plane of pi

ϕpi(x) = x +(nT
i (pi− x))ni (70)

Experiments show that the modified MLS smoother can also
preserve sharp edges in a degree.

Ochotta et al. [OSS*07] observe that the failures at cor-
ners and edges are unrelated to sampling conditions and they
are in fact intrinsic to the geometry of the surface from which
the points are sampled. Instead of using two steps [Lev03],
they define MLS surfaces by directly fitting a approximating
function in a unified minimization scheme.

argminq, f ∑i |CH, f (x)− pi|2w(|CH, f (x)− pi|) (71)

where CH, f (x) is the closest point projection of x, whose pro-
jection onto H is q, onto the function f in the function space
F over reference plane H. The encapsulation of H into the
closest point projection function C effectively removes any
major dependence on the local reference frame. H can now
simply be thought of as a means of parameterizing all pos-
sible functions in F , over all orientations and translations.
Especially, when F includes functions with sharp features,
sharp features would be accurately reconstructed.

Guennebaud and Gross [GG07] propose another approach
to handle sharp features in the context of APSS. Before
the actual projection of a point onto the surface, they first
group the selected neighbors by tagging values. Then, the
APSS is executed for each group and the actual point is pro-
jected onto each algebraic sphere. Finally, they detect for
each pair of groups whether the sharp crease form originates
from a Boolean intersection or from a union and apply cor-
responding constructive solid geometry (CSG) rule.

5. Applications

5.1. Other Reconstructions

For dense samples without normals, Scheidegger et al.
[SFS05] directly construct a high-quality triangulation with
bounded error, by using MLS surfaces [ABCO*01][Lev03]
as the underlying representation. Extending the work of
Scheidegger et al. [SFS05] mainly by a more principled way
to compute the guidance field, Schreiner et al. [SSFS06] pro-
pose a direct (re)meshing algorithm with higher geometric
fidelity, lower triangle count and better triangle shape.

For the scans even with sparse, noisy or large missing
parts, Sharf et al. [SLS*06] present a deformable model to
reconstruct a watertight surface. The deformable model re-
covers the target shape with multiple competing evolving
fronts. Once the deformable model has completed its evolu-
tion, a simplified MLS projection [ABCO*01] is used to re-
construct the final shape, where the reference plane is simply
taken as the tangent to the target mesh and the order of the
MLS interpolating polynomial is always reduced to 0. Ar-
eas, where the data is missing, are interpolated (hole-filled)
with a least-square-mesh using the MLS projected vertices
as constraints. Hole-filling tool is also provided by a clean-
ing toolkit [WPH*04] for the post-processing of raw scanner
data. Besides the automatic hole-filling tool, Weyrich et al.
[WPH*04] propose other interactive tools to overcome typi-
cal scanning artifacts such as noise, outliers, holes, or ghost
geometry. And the MLS projection [ABCO*01] is used to
define the final reconstructed surfaces.

Yang and Qian [YQ07b] directly process point cloud
without normal to construct layered manufacturing model by
intersecting a slicing plane with the underlying defined MLS
surfaces [AK04a]. The two fundamental components of their
algorithm are MLS projection and its differential geometri-
cal analysis that provides the normal and curvature infor-
mation for MLS surface. The closed formulas for curvature
computing [YQ07a][YQ07b] is directly and exactly derived
by the expressions of gradient and Hessian of explicit func-
tion f in Equation 31.

5.2. Processing

The algorithm of Alexa et al. [ABCO*01][ABCO*03] cre-
ates a simplified point cloud that is a true subset of the orig-
inal point set, by ordering iterative point removal operations
according to a surface error metric. Based on a numerical
and visual error metric computed by the MLS projection op-
erator [ABCO*03][Lev03], Pauly et al. [PGK02] propose
four types of simplification methods for point-sampled ge-
ometry, including a particle simulation simplification using
MLS projection operator. Mederos et al. [MVD03] create
surface approximation by computing a representative point
of each cluster on the MLS surface [ABCO*03] of its k-
nearest neighbors, and define final refined triangular meshes
with points on the MLS surface of the original point cloud.
Based on the MLS surface definition (Equation 33) with the
weighing function (Equation 51), Pauly et al. [PKG06] pro-
pose a discrete multi-scale surface representation by com-
bining the smoothing and decomposition operators into a
single projection, which allows efficient construction of
the hierarchical multi-resolution. By using the MLS defi-
nition (Equation 26) with the adaptive weighting function
(Equation 51), Duranleau et al. [DBP08] address a multi-
resolution representation for point set surfaces. The multi-
resolution method [DBP08] is close to progressive point set
surfaces proposed by Fleishman et al. [FACOS03], except
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that The basic building of [FACOS03] is the projection op-
erator [ABCO*01] depending on implicit k-neighborhoods.

For MLS surfaces [ABCO*01], Ruggeri et al. [RDSK06]
present a technique to computie piecewise linear approxima-
tions of geodesics on point-based surfaces. In the following
work, Ruggeri et al. [RS08] use the approximate geodesics
between anchors to form a geodesic distance matrix, which
yields descriptors of the target shape. Consequently, an ef-
fective matching method is proposed to recognize point-
based models deformed with isometric transformations.

Since MLS surfaces could be described by implicit func-
tions, operations such as shape blending, offsets, deforma-
tions and CSG are simple to perform [OBA*03]. By combin-
ing unstructured point cloud with the implicit surface def-
inition of the MLS approximation, Pauly et al. [PKKG03]
present a hybrid geometry representation that exploits the
advantages of implicit and parametric surface models. Based
on the combined representation, Pauly et al. propose a free-
form shape modeling framework for point-sampled geom-
etry. Müller et al. [MKN*04] present a mesh-free anima-
tion algorithm derived from continuum mechanics to simu-
late elastic, plastic, melting and solidifying physical objects.
And the simple MLS surfaces projection [AA03a] is used
for dynamic surface reconstruction.

By extending the idea of the local reference domain in
the MLS surfaces projection [Lev03] to the construction
of a local and global surface distance field [GQ03], Guo
et al. [GHQ04a][GHQ04b] build an editing framework on
point set surface with several editing tools, such as force
tool, free-form deformation, sketching-based editing, em-
bossing/engraving, and smoothing. Guo et al. [GHQ04c]
then enhance the editing operations with interactive haptics,
so users can have realistic force feedback.

When extracting a watermark from point-sampled geom-
etry, Cotting et al. [CWPG04] use the MLS approximation
[Lev03] to establish a one-to-one correspondence between
samples in the given point cloud and the original data set.
While Li and Guskov [LG05] introduce a multi-scale salient
feature extraction algorithm and analyze its performance in
the context of approximate alignment of point-based sur-
faces, based on explicit MLS surfaces definition [AK04a].

5.3. Rendering

5.3.1. Splatting

The early MLS surfaces is visualized by a simple up-
sampling and splatting rendering scheme [ABCO*01]
[ABCO*03]. The main procedure of their interactive ren-
dering method is to first select the visible samples, then
up-sample the tangent plane of each representation point
and yield a dense set of splats, project splats onto the pre-
computed polynomial approximating the underlying surface,
and finally perform the splatting of the generated splats.

Guennebaud et al. [GGG08] trade off the rendering qual-
ity and performance by dynamically adjusting the target den-
sity. The core of their approach is an adaptive up-sampling
scheme based on a view-dependent geometric error metric.
The pre-processing of the rendering is to construct an oc-
tree data structure for finding all the points. Their per-frame
rendering is similar to the procedure of [ABCO*03] except
for the projection of the splats onto the algebraic point set
surfaces [GG07] with hardware acceleration.

5.3.2. Ray Tracing

Ray-tracing rendering of MLS surface [AA03a][AA03b]
amounts to finding points on the ray where the function as
defined in Equation 28 evaluates to zero. The ray-surface in-
tersection proceeds in two steps. First, a starting point x0
close to the reconstructed surface SP is computed in the
bounding sphere of the projection sample pi, and an aver-
age plane n(x0)T (x−a(x0))=0 is constructed. Next, starting
from this point x0, the ray is intersected with a local bivariate
approximating polynomial computed by the plane in previ-
ous step, and yields a new point x1. This procedure is re-
peated until convergence. Since computing the ray-surface
intersection is rather time consuming, Adamson and Alexa
[AA03b] use octree to accelerate the computation. They try
to first find all ray-sphere intersections, and then sort the
spheres front to back and perform the ray-surface intersec-
tion test for the nearest sphere.

Wald and Seidel [WS05] introduce various optimizations
of [AA03b] to achieve interactive frame rates. The perfor-
mance is increased due to the combination of an efficient
surface-intersection algorithm (called ray marching with lin-
ear intersection interpolation) and a highly optimized kd-tree
acceleration structure. Until now, various extensions and op-
timizations of the basic algorithms [AA03a][AA03b] have
been used to visualize various models, including the ani-
mation of elastic and plastic solids [AKP*05], fracturing
materials [PKA*05], viscous fluids [KAG*05], point-based
shells [WSG05], geometry textures synthesis [DP06], and
hardware acceleration of ray tracing on the GPU [TGN*06].
The sequences show high-quality rendering results of point-
sampled surfaces with complex shading effects such as shad-
ows, reflections, and refractions, which can’t provided by the
splatting rendering.

6. Discussion

Table 1 summarizes the typical MLS surface algorithms in
terms of type, name, weighting equation, defining formula-
tion, input and output, and applications. It is clear that there
is no certain connection between any specific definition and
the application, since one application can be realized by dif-
ferent MLS surfaces definitions.

The primary issue of the MLS surface method is the defin-
ing form, which is the mathematic and practical fundamental
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of its design, implementation and analysis. Although, there
are a great deal of methods so far, they can be mainly rep-
resented by six typical definitions. (1) The original work
[ABCO*01], implemented the two-step (local tangent frame
computation and bivariate polynomial approximation) sta-
tionary projection theory [Lev03], directly defines point set
surfaces from the input point set. Its main extension han-
dles sharp features [FCOS05][DHOS07][LCOL07], and the
two step implementation can be transformed to one step
by a unified formulation [OSS*07]. (2) The simple inter-
secting point set surfaces [AA03a][AA03b] is defined by
the product of normal and distance vector from the evalu-
ation position to its local weighted centroid. For the point
set without normals, when the resolving normal of Equation
21 is well-defined (unique), i.e., the samples locate in the
restricted (u,l) sampling domain [BH05], the reconstructed
surface is also well-defined. Note that, the normal to the lo-
cal tangent frame is not the surface normal, and the iterative
projection procedure of Equation 26 can be classified into
three kinds: basic, almost orthogonal, and orthogonal pro-
jector [AA04b]. Currently, the ray-tracing rendering of point
set surfaces [AA03a][AA03b] has become one of the two
rendering standards in the point-based graphics. The sim-
ple MLS definition can be extended to deal with the scat-
ting points of complex models. Special treatments have been
performed to obtain bounded, non-orientable MLS surfaces
[AA04a], anisotropic [AA06a] and Hermite [AA08] point
set surfaces, even point-sampled cell complex [AA06b]. (3)
The general explicit MLS surfaces definition is given by
minimal extremal surface, where its normal is perpendic-
ular to the gradient of its energy field [AK04a]. The ex-
tremal surface has been proven [DGS05] that its projec-
tion is converging and isotopic to the original sampled sur-
face, if the uniform (ε,α) sampling condition is satisfied
and two nearby sample points have similar assigned nor-
mal vectors. The reduced version of the extremal surfaces
has been used in the Poinshop3D tools [ZPKG02] and some
other work [PKG02][PKKG03] [MHL*05]. (4) Amenta and
Kil [AK04] discuss the domain of the point set surfaces,
which originates the researches on the properties and con-
ditions of the MLS surfaces, such as the sampling con-
dition [PKG02][PKKG03][AA06a][BH05][DS05][DGS05]
[Kol05], sharp features [FCOS05][DHOS07][LCOL07], and
complex surface reconstruction [AA04a][AA06a][AA06b]
[AA08]. (5) The pure implicit MLS surfaces is defined by
the signed Euclidean distance function, which is computed
from the position to the tangent planes attached to the local
neighboring samples in the MLS sense [SO’S04]. The the-
oretical guarantees for the implicit MLS surfaces has been
provided in the uniform [Kul05] and adaptive [DS05] (ε,α)
sampling conditions. (6) The recent algebraic point set sur-
faces [GG07] is an implicit MLS surfaces by directly fitting
algebraic spheres rather than the previous Euclidean planes.
From the definition form column in the table 1, it is easy to
find the elements used in the formulations: the normal ob-
tained by equation 19 or 21, the signed scalar field that is

a locally weighted combination of implicit plane equations
n(x)T (x−a(x)) or nT

i (x− pi).

The other key issue in the MLS surfaces definition is the
weighting function, which is a smooth, non-negative, and
monotonically decreasing function. Obviously, the Gaussian
function and its variants have dominated the weighting field,
just as shown in table 1. The Gaussian width h is one impor-
tant factor that affects the final results, since it determines the
shape of compactly spherical supporting region of each sam-
ple. In the pioneering work [ABCO*01][ABCO*03], h is a
pre-defined constant value that reflects the anticipated spac-
ing between neighboring points. The optimal h is respec-
tively investigated by [LCOL06] and [WSS08], and used
in the second polynomial approximation step of [Lev03] to
achieve better polynomial approximation. For the irregular
samples, the variant function h(x) should account for the
anisotropic settings. The anisotropic h(x), related to the local
space, is first intuitively defined by [PGK02] and [PKKG03],
then is sensibly computed to represent the anisotropic sup-
port regions by the Mahalanoibis distance [AK04a][FCS07]
and ellipsoidal weight [AA06a]. Besides these, the variant
function h(x) can be carefully defined, so that the sampling
space [Kul05][DS05][DGS05][BH05] is proportional to the
local feature size, hence, the reconstructed surface in the
sampling space is geometrically and topologically correct.

7. Conclusion

The paper has surveyed the methods used in literature for
MLS surfaces, by classifying the algorithms, describing
main ideas behind each typical approach, and comparing
their strongpoints and weaknesses. Especially, we have iden-
tified the distinct difference between the projection MLS sur-
faces and the implicit MLS surfaces. This difference orig-
inates from a different point of view on whether an MLS
surface is defined as the stationary projection set of input
points or it is created by an implicit scalar field. In general,
an MLS surface is determined by the definition form and the
weighting function, respecting the sampling condition (such
as noise level, sampling density among others) and the spe-
cific requirement of the output.

Although there are already numerous techniques for MLS
surfaces, it seems that directions to address this problem are
only beginning. Just as a measure, one can compare the large
number of 2D MLS curve publications to the small num-
ber of 3D MLS surface publications. It seems that more ad-
vanced issues are still largely open problems and would re-
quire further research. Firstly, Future MLS surface schemes
will be innovate by new mathematic defining forms, e.g., the
algebraic ellipsoidal surfaces representation for anisotropic
objects. Secondly, it is important to theoretically analyze
both the increasing sensitivity with respect to unwanted sta-
tionary points far away form the surface and the sampling re-
quirements with desired blue noise property. Thirdly, further
research should be taken on how to effectively use the MLS
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surfaces in different applications, e.g., non-manifold recon-
struction, reliable quadric surface extraction, partial similar-
ity analysis, interactive editing, animation, and real-time ren-
dering with hardware acceleration.

References

[AA03a] Adamson A., Alexa M.: Approximating and
inter-secting surfaces from points. In Proc. SGP (2003),
230–239.

[AA03b] Adamson A., Alexa M.: Ray tracing point set
surfaces. In Proc. SMI (2003), 272–279.

[AA04a] Adamson A., Alexa M.: Approximating
bounded, non-orientable surfaces from points. In Proc.
SMI (2004), 243–252.

[AA04b] Alexa M., Adamson A.: On normals and projec-
tion operators for surfaces defined by point sets. In Proc.
PBG (2004), 149–156.

[AA06a] Adamson A., Alexa M.: Anisotropic point set
surfaces. In Proc. AfriGraphic (2006), 7–13.

[AA06b] Adamson A., Alexa M.: Point-sampled cell com-
plexes. ACM TOG 25, 3 (2006), 671–680.

[AA08] Alexa M., Adamson A.: Interpolatory point set
surfaces - convexity and hermite data. ACM TOG (2008).

[ABCO*01] Alexa M., Behr J., Cohen-Or D., Fleishman
S., Levin D., Silva C. T.: Point set surfaces. In Proc. IEEE
Visualization (2001), 21–28.

[ABCO*03] Alexa M., Behr J., Cohen-Or D., Fleishman
S., Levin D., Silva C. T.: Computing and rendering point
set surfaces. IEEE CGV 9, 1 (2003), 3–15.

[ACDL02] Amenta N., Choi S., Dey T. K., Leekha N.: A
simple algorithm for homeomorphic surface reconstruc-
tion. IEEE CGA 12 (2002), 125–141.

[AK04a] Amenta N., Kil Y.: Defining point-set surfaces.
ACM TOG 23, 3(2004), 264–270.

[AK04b] Amenta N., Kil Y.: The domain of a point set
surface. In Proc. PBG (2004), 139–147.

[AKP*05] Adams B., Keiser R., Pauly M., Guibas L. J.,
Gross M., Dutre P.: Efficient ray tracing of deforming
point-sampled surfaces. Computer Graphics Forum 24, 3
(2005), 677–684.

[Blo94] Bloomenthal J.: An implicit surface polygonizer.
Graphics Gems IV. Acamedic Press Professional, 1994,
324–349.

[BH05] Bremer P.-T., Hart J. C.: A sampling theorem for
MLS surfaces. In Proc. PBG (2005), 47–54.

[CWPG04] Cotting D., Weyrich T., Pauly M., Gross M.:
Robust Watermarking of Point-Sampled Geometry. In:
Proc. SMI (2004), 232–242.

[DBP08] Duranleau F., Beaudoin P., Poulin P.: Multireso-
lution Point-set Surfaces. In Proc. GI (2008).

[DGS05] Dey T. K., Goswami S., Sun J.: Extremal surface
based projections converge and reconstruct with isotopy.
Tech. Rep., Ohio State University, 2005.

[DHOS07] Daniels J., Ha L., Ochotta T., Silva C.: Robust
Smooth Feature Extraction from Point Clouds. In Proc.
SMI (2007), 123–136.

[DP06] Duranleau F., Poulin P.: Patch-based Synthesis of
Geometry Textures with Point-set Surfaces. In Proc. VMV
(2006).

[DS05] Dey T. K., Sun J.: An adaptive MLS surface for
reconstruction with guarantees. In Proc. SGP (2005), 43–
52.

[FACOS03] Fleishman S., Alexa M., Cohen-Or D., Silva
C. T.: Progressive point set surfaces. ACM TOG 22, 4
(2003), 997–1011.

[FCOS05] Fleishman S., Cohen-Or D., Silva C. T: Robust
moving least-squares fitting with sharp features. ACM
TOG 24, 3 (2005), 544–552.

[FCS07] Fiorin V., Cignoni P., Scopigno R.: Out-of-core
mls reconstruction. In Proc. IASTED CGI (2007), 27–34.

[GG07] Guennebaud, G., Gross, M.: Algebraic point set
surfaces. ACM TOG 26, 3 (2007).

[GGG08] Guennebaud, G., Germann M., Gross, M.: Dy-
namic sampling and rendering of algebraic point set sur-
faces. In Proc. Eurogrphaics (2008).

[GHQ04a] Guo X., Hua J., Qin H.: Scalar-Function-
Driven Local and Global Editing on Point Set Surfaces.
IEEE CGA 24, 4 (2004), 43–52.

[GHQ04b] Guo X., Hua J., Qin H.: Point Set Surface Edit-
ing Techniques based on Level-Sets. In Proc. CGI (2004).

[GHQ04c] Guo X., Hua J., Qin H.: Touch-based Haptics
for Interactive Editing on Point Set Surfaces. IEEE CGA
24, 6 (2004), 31–39.

[GP07] Gross M., Pfister H.: Point-based graphics. MOR-
GAN KAUFMANN publishers, 2007.

[GQ03] Guo X., Qin H.: Free-Form Deformations via
Sketching and Manipulating Scalar Fields. In Proc. Solid
Modeling and Applications (2003), 328–333.

[HDD*92] Hoppe H., DeRose T., Duchamp T., McDonald
J., Stuetzle W.: Surface reconstruction from unorganized
points. Computer & Graphics 26, (1992), 71–78.

[LE87] Lorensen W., ECline H. E.: Marching cubes:a high
resolution 3D surface construction algorithm. Computers
& Graphics 21, 4 (1987), 163–169.

[KAG*05] Keiser R., Adams B., Gasser D., Bazzi P.,
Dutre P., Gross M.: A unified lagrangian approach to
solid-fluid animation. In Proc. PBG (2005), 125–148.

[KB04] Kobbelt L., Botsch M.: A Survey of Point-based
techniques in computer graphics. Computers & Graphics
28, 6(2004), 801–814.

c© The Eurographics Association 2008.



Z.-Q. Cheng, etc. / A Survey of Methods for Moving Least Squares Surfaces

[Kol05] Kolluri R.: Provably good moving least squares.
In Proc. SIAM SDA (2005), 1008–1018.

[LCOL06] Lipman Y., Cohen-Or D., Levin D.: Error
bounds and optimal neighborhoods for mls approxima-
tion. In Proc. SGP (2006), 71–80.

[LCOL07] Lipman Y., Cohen-Or D., Levin D.: Data-
dependent MLS for faithful surface approximation. In
Proc. SGP (2007), 59–67.

[Lev98] Levin D.: The approximation power of moving
least-squares. Mathematics Computing 67, 224 (1998),
1517–1523.

[Lev03] Levin D.: Mesh-independent surface interpola-
tion. Geometric Modeling for Scientific Visualization
(2003), 37–49.

[LG05] Li X., Guskov I.: Multiscale Features for Approx-
imate Alignment of Point-based Surfaces. In Proc. SGP
(2005), 217–226.

[MaL76] McLain D. H.: Two dimensional interpolation
from random data. The Computer Journal 19, (1976),
178–181.

[MHL*05] Miao L., Huang J., Liu X., Bao H., Peng Q.,
Guo B.: Computing variation modes for point set surfaces.
In Proc. PBG (2005), 63–69.

[MKN*04] Müller M., Keiser R., Nealen A., Pauly M.,
Gross M., Alexa M.: Point Based Animation of Elas-
tic, Plastic and Melting Objects. In Proc. ACM SIG-
GRAPH/Eurographics SCA (2004), 141–151.

[MVD03] Mederos B., Velho L., De Figueiredo L.H.:
Moving Least Squares Multiresolution Surface Approx-
imation. In Proc. Brazilian CGIP (2003), 19–24.

[Nea04] Nealen A.: An As-Short-As-Possible Introduc-
tion to the Least Squares, Weighted Least Squares and
Moving Least Squares Methods for Scattered Data Ap-
proximation and Interpolation. Tech. Rep., TU Darmstadt,
2004.

[OBA*03] Ohtake Y., Belyaev A., Alexa M., Turk G., Sei-
del H.-P.: Multi-level partition of unity implicits. ACM
TOG 22, 3(2003), 463–470.

[OSS*07] Ochotta T., Scheidegger C., Schreiner J., Lima
Y., Kirby R. M., Silva C.: A Unified Projection Operator
for MLS Surfaces. Tech. Rep., Utah University, 2007.

[PGK02] Pauly M., Gross M., Kobbelt L. P.: Efficient sim-
plification of point-sampled surfaces. In Proc. IEEE Visu-
alization (2002), 163–170.

[PKA*05] Pauly M., Keiser R., Adams B., Dutre P., Gross
M., Guibas L. J.: Meshless animation of fracturing solids.
ACM TOG 24, 3(2005), 957–964.

[PKG06] Pauly M., Kobbelt L. P., Gross M.: Point-
based multi-scale surface representaition. ACM TOG 25,
2(2006), 177–193.

[PKKG03] Pauly M., Keiser R., Kobbelt L. P., Gross M.:
Shape modeling with point-sampled geometry. ACM TOG
22, 3(2003), 641–650.

[Pra87] Pratt V.: Direct least-squares fitting of algebraic
surfaces. In Proc. SIGGRAPH (1987), 145–152.

[RDS*06] Ruggeri M. R., Darom T., Saupe D., Kiryati, N.:
Approximating geodesics on point set surfaces. In Proc.
PBG (2006), 85–93.

[RJT*05] Reuter P., Joyot P., Trunzler J., Boubekeur T.,
Schlick C.: Surface reconstruction with enriched re-
producing kernel particle approximation. In Proc. PBG
(2005), 79–87.

[RS08] Ruggeri M. R., Saupe D.: Isometry-invariant
matching of point set surfaces. In Proc. Eurographics
Workshop on 3D Object Retrieval (2008).

[SFS05] Scheidegger C., Fleishman S., Silva C.: Triangu-
lating Point-Set Surfaces With Bounded Error. In Proc.
SGP (2005), 63–72.

[SLS*06] Sharf A, Lewiner T, Shamir A, Kobbelt L,
Cohen-Or D.: Competing fronts for coarse-to-fine surface
reconstruction. Computer Graphics Forum 25, 3 (2006).

[SO’S04] Shen C., O’Brien J. F., Shewchuk J. R.: Interpo-
lating and approximating implicit surfaces from polygon
soup. ACM TOG, 23, 3(2004), 896–904.

[SSFS06] Schreiner J., Scheidegger C. E., Fleishman S.,
Silva C. T.: Direct (re)meshing for efficient surface pro-
cessing. Computer Graphics Forum 25, 3(2006).

[TGN*06] Tejada E., Gois J. P., Nonato L. G., Castelo A.,
Ertl T.: Hardware-accelerated Extraction and Rendering
of Point Set surfaces. In Proc. Eurographics/IEEE Sym-
posium on Visualization (2006), 21–28.

[WPH*04] Weyrich T., Pauly M., Heinzle S., Keiser R.,
Scandella S., Gross M.: Post-processing of scanned 3D
surface data. In Proc. PBG (2004), 85–94.

[WS05] Wald I., Seidel H.-P.: Interactive ray tracing of
point-based models. In Proc. PBG (2005), 9–16.

[WSG05] Wicke M., Steinemann D., Gross M.: Efficient
animation of point-based thin shells. In Proc. Eurograph-
ics (2005), 667–676.

[WSS08] Wang H., Scheidegger C., Silva C.: Optimal
Bandwidth Selection for MLS Surfaces. In Proc. SMI
(2008).

[YQ07a] Yang P., Qian X.: Direct computing of surface
curvatures for point-set surfaces. In Proc. PBG (2007),
29–36.

[YQ07b] Yang P., Qian X.: Adaptive slicing of moving
least squares surfaces: toward direct manufacturing of
point set surfaces. In: Proc. ASME DET & CIE (2007).

[ZPKG02] Zwicker M., Pauly M., Knoll O., and Gross M.:
Pointshop3D: An interactive system for point-based sur-
face editing. ACM TOG 21, 3 (2002), 322–329.

c© The Eurographics Association 2008.



Z.-Q. Cheng, etc. / A Survey of Methods for Moving Least Squares Surfaces

Table 1: Summary of typical MLS surfaces techniques.
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