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Appendix: Online cut cost learning with Multi-
ple Kernel Learning

We first introduce the general method of Multiple Kernel Learning
(MKL) [Bach et al. 2004]. Then, we show how to extend MKL for
online learning, based on the passive-aggressive algorithm [Cram-
mer et al. 2006]. Finally, we list the kernels and features we em-
ployed for cut cost learning.

1 Multiple Kernel Learning

Given a training data set:

D = {(xi, yi) | xi ∈ Rn, yi ∈ {−1, 1}}ni=1 ,

where xi is feature vector of i-th data point, and yi, being −1 or
+1, the indicator of the data point’s binary class. The objective of
Multiple Kernel Learning is to learn a prediction function:

f(x) = w>φd(x) + b,

where w and b are the parameters of a Support Vector Ma-
chine (SVM). The function involves a kernel kd(xi,xj) =
φ>d (xi)φd(xj). The kernel represents the dot product in feature
space φ parameterized by d and is used to measure the similarity
of data points. The goal in SVM learning is to learn the globally
optimal parameters, the weight vector w and the bias b, from train-
ing data D. This is achieved by solving the following optimization
problem:

min
w,b

1

2
‖w‖2 +

∑
i

l(yi, f(xi)),

where l is loss function of the form l = C max(0, 1 − yif(xi))
(C is a constant). In MKL, besides the two parameters, we also
need to optimize the kernel parameters d, by solving the following
minimization problem:

min
w,b,d

1

2
‖w‖2 +

∑
i

l(yi, f(xi)) + r(d) s.t. d ≥ 0

where both the regularizer r and the kernel can be any general dif-
ferentiable functions of d with continuous derivative. We use the
`1 regularizer proposed in [Chan et al. 2007].

2 Online Multiple Kernel Learning

The main feature of online learning is that the training data points
arrive in a sequential manner. Let us denote the data point pre-
sented to the learning algorithm on round t by xt ∈ Rn, which
is associated with an observed label yt ∈ {−1,+1}. We refer to
such instance-label pair (xt, yt) as online example. Online learn-
ing aims to make predictions using a prediction function learned
incrementally with the online examples. In order to update the pre-
diction function, which was learned based on historical examples,
with the newly coming example, a guiding principle is to make the
new prediction function “fits” the new example, while making min-
imal change to the original prediction function. By fitting, we mean
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that the new prediction function should give correct prediction for
the new example.

The passive-aggressive algorithm proposed in [Crammer et al.
2006] is designed for SVM, aiming to find a new SVM predic-
tion function based on a single example (corresponding to an on-
line example) while ensuring it to remain as close as possible to the
original one. This is achieved by constraining the weight vector w
in SVM prediction function. Specifically, we set the weight vector
wt+1 in round t + 1, given the new example (xt, yt), to be the
solution to the following constrained optimization problem:

wt+1 = arg min
w∈Rn

1

2
‖w −wt‖2 s.t. l(w; (xt, yt)) = 0

The optimization has a simple closed form solution:

wt+1 = wt + τtytxt with τt =
lt
‖xt‖2

.

To extend the passive-aggressive algorithm to the MKL setting, we
solve the following optimization problem:

wt+1 = arg min
w∈Rn

1

2
‖w −wt‖2 +

∑
i

l(yi, f(xi)) + r(d)

s.t. d ≥ 0

(1)

The optimization of such problem can be solved by reformulating it
as an interleaving optimization [Chapelle et al. 2002]. In the outer
loop, the kernel is learned by optimizing over d. In the inner loop,
the kernel is held fixed and the w is optimized. See more details
in [Chapelle et al. 2002].

3 Kernels and features

Our MKL uses fourteen kernels, which include eleven Gaussian
kernels and three Polynomial kernels. The eleven Gaussian kernel
we used are:

k(x,y) = e
− ‖x−y‖2

2σ2 ,

where σ = 2n with n ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}.
The three Polynomial kernels are:

k(x,y) = (x>y + 1)d,

with d ∈ {1, 2, 3}.

We use six features to describe the relations between two adjacent
patches Pu and Pv:

• Dihedral angle: We compute the dihedral angle between the
two patches using their average normals:

x1 = cos θuv = nu · nv,

where nu and nv are the average normals of patch Pu and Pv ,
respectively.

• Dihedral angle convexity: We measure the local convexity
of the dihedral angle between Pu and Pv:

x2 = κuv = [(nu × nv)× (cu − cv)] · nu

where cu and cv are the centers of patch Pu and Pv , respec-
tively.
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• Difference of normal variance: We compute the difference
of the variance of normals in the two patches:

x3 = |Σn(Pu)− Σn(Pv)|,

where Σn is the variance of the normal directions of all points
in a patch.

• Difference of patch planarity: We compare the patch pla-
narity:

x4 = |π(Pu)− π(Pv)|,

where patch planarity π is measured as the average distance
from all patch point to the least-square fitting plane of the
patch.

• Difference of patch size: We compare the area of the two
patches:

x5 = |s(Pu)− s(Pv)|,

where s(·) counts the number of points in a patch, as an ap-
proximation to its area.

• Difference of patch color distribution: We compare the
color distribution of the two patches:

x6 = χ2(Hu −Hv) =
1

2

K∑
k=1

[Hu(k)−Hv(k)]2

Hu(k) +Hv(k)
,

where Hu and Hv are the color histograms of patch Pu and
Pv , respectively.
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