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Background & motivation

Fast development of
Commodity depth camera
Real-time reconstruction

Microsoft Kinect

KinectFusion [Nießner et al. 2013]
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Online structural analysis [Zhang et al. 2014]

Online analysis!!

Background & motivation

Real-time reconstruction allows for …

Instant visual feedback
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Background & motivation

What difference does it make?

Real world Point cloud 3D models

ReconstructionScanning

Analysis
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Background & motivation

Why is it so exciting?

Online analysis guides autonomous scanning !!

• Online analysis tells the 
robot where to scan and 
when to stop.

• Analysis will benefit from 
more and more complete 
reconstruction.
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Background & motivation

What’s more exciting?

Online analysis guides autonomous scanning !!

Scan

Act Analyze
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Autoscanning replacing human scanning!

What’s more exciting?

Online analysis guides autonomous scanning !!
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Background & motivation

How is the scene 
composited?
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Background & motivation
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Background & motivation

[Zhang et al. 2014]
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Scene segmentation is not easy!

Low quality depth maps Drifting issue with KinectFusion

Objects in varying scales Cluttered objects
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Push it!
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Method
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Problem statement
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Problem statement
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Method overview

Initialization

Object analysis

Validation
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Initialization

Object analysis

Validation

Algorithms

Object-level 
segmentation

Entropy-based 
validation
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Algorithm I
Object-level segmentation
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Object-level segmentation - Pipeline

Over-segmentation

Graph-cut
and graph 
contraction

Patch graph Object graph

Detected objects
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Object-level segmentation

Generating object hypothesis Selecting object hypothesis

Multiple binary 
graph-cuts

One multi-class 
graph-cut
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Generating object hypotheses

foreground background

a hypothetical object

Input scene

Binary graph-cut 
[Golovinskiy et al. 2009]

seed 
patch
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Generating object hypotheses

……
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Generating object hypotheses

……
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Generating object hypotheses

So we get three hypothetical objects:

The next step is to label the scene using 
the three labels above …
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Selecting object hypotheses

Selecting the most prominent hypotheses 
with a multi-class graph-cut

?
?

?

? ?

? ?

?
?

?

?

Hypothesis a

Hypothesis b

Hypothesis c ? ?

Multi-class labeling 
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?
?

?

? ?

? ?

?
?

?

?

Hypothesis a

Hypothesis b

Hypothesis c ? ?

Multi-class labeling 

Selecting object hypotheses

multi-class graph-cut
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?
?

?

? ?
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?
?
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?

Hypothesis a

Hypothesis b

Hypothesis c ? ?

Multi-class labeling 

Selecting object hypotheses
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?
?

?

? ?

? ?

?
?

?

?

Hypothesis a

Hypothesis b

Hypothesis c ? ?

Multi-class labeling 

Selecting object hypotheses
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Object-level segmentation

Ours RANSAC
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Learn segmentation from history …

Can we learn from such 
case, and apply the 
learned knowledge in 
segmenting the rest 
part of the scene?
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Online Learning of cut cost

Predicted by learned SVM classifier
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Online Learning of cut cost

Feature 
representation

Linear classifier
Multiple Kernel Learning
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Online Learning of cut cost

Positive examples: must cut 

Negative examples: cannot cut 

Collect training examples from pushes:
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Online Learning of cut cost

Incremental update of the classifier
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Online Learning of cut cost
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Algorithm II
Entropy-based proactive validation
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Where to push?

Object-level segmentation
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Validation pipeline

Uncertainty 
estimation

Movement 
tracking

Scan 
refinement

Next-Best-Push

Next-Best-ViewNew recon.
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Validation pipeline

Uncertainty 
estimation

Movement 
tracking

Scan 
refinement

Next-Best-Push

Next-Best-ViewNew recon.



SA2015.SIGGRAPH.ORG

Information gain maximization

Maximize the information gain of the push! 

entropy
before push

entropy
after push

How to measure the entropy?

info. gain

Shannon entropy
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How to measure entropy?

Our goal is object-aware reconstruction
Two aspects:

Uncertainty of egmentation
Uncertainty of econstruction

Conditioned entropy

Joint entropy
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How to measure entropy?

Cut probability
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How to measure entropy?

[Kazhdan et al. 2006]

recon. certainty = sharpness of Poisson field
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How to measure entropy?

Given an object segmentation, how much uncertainty 
is there in the object-wise reconstruction?

Conditioned
entropy
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How to measure entropy?

occluded
iso-points

mutual 
occlusion



SA2015.SIGGRAPH.ORG

How to select the Next Best Push?

Posterior entropy

before push is 
performed

after push is 
performed

Search over all push points:
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How to compute the posterior entropy

Given a push, how much uncertainty can be reduced by it?

How many occluded iso-points can be exposed by it?

iso-points
to be exposed

push

iso-points
cannot be exposed

push
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Plot of information gain

Object-level segmentation Information gain
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Results and evaluation
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Results

Test on real-life scenes



SA2015.SIGGRAPH.ORG

Results

Test on real-life scenes
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Quantitative evaluation

Ground-truth data
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A quantitative measure

bilateral support between ground-truth and 
reconstructed surfaces
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Quantitative evaluation

Bilateral support

Imperfect reconstruction

ground-truth surface
reconstructed surface
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Quantitative evaluation

Bilateral support

Reconstructed with under-segmentation



SA2015.SIGGRAPH.ORG

Quantitative evaluation

Bilateral support

Reconstructed with over-segmentation
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Quantitative evaluation

Compare to [Zhang et al. 2014]

[Zhang et al. 2014]

Our method
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Quantitative evaluation

Comparing to alternative robot active analysis
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Limitations

Extraction rate: 50%~80%

Push scheduling

Vertical support

Object stack

Non-rigid objects
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Conclusion

A new paradigm of 3D acquisition
Autonomous scene scanning

Scene level: Large scale
Object level: Detailed

Proactive validation
Physically-validated segmentation
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Future works

Multiple robots?
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Future works

Recognizing while scanning What is 
this?
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Thank you!

Code of object analysis:
www.kevinkaixu.net
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Physically feasible push

Heuristic rules


