Autoscanning for Coupled Scene Reconstruction and Proactive Object Analysis Kai Xu, Hui Huang, Yifei Shi, Hao Li, Pinxin Long, Jianong Caichen,

Wei Sun, Baoquan Chen

Shenzhen VisuCA Key Lab / SIAT

National University of Defense Technology

SIGGRAPH

ASIA 2015

КПВ

Shandong University

- Background & motivation
- Method
- Results & evaluation
- Conclusion
- Future works

- Fast development of

- Commodity depth camera
- Real-time reconstruction

KinectFusion [Nießner et al. 2013]

- Real-time reconstruction allows for ...

Instant visual feedback

Online analysis!!

Scanning

Reconstruction

SIGGRA

- Why is it so exciting?

Online analysis guides autonomous scanning !!

- Online analysis tells the robot *where to scan* and *when to stop*.
- Analysis will benefit from more and more complete reconstruction.

- What's more exciting?

Online analysis guides autonomous scanning !!

Autoscanning replacing human scanning!

- What's more exciting?

Online analysis guides autonomous scanning !!

Scene segmentation is not easy!

Low quality depth maps

Drifting issue with KinectFusion

sa2015.SIGGRAPHIECTS in varying scales

Cluttered objects

Our solution: Proactive analysis

0000 00000 00000

000

PR

Method

Problem statement

Input: Raw KinectFusion recon. • **Output:** Full scene reconstruction • **Object-level segmentation** • **Object-wise fidelity** •

Problem statement

Method overview

Algorithm I Object-level segmentation

Object-level segmentation - Pipeline

Object-level segmentation

Generating object hypothesis

Multiple binary graph-cuts

Selecting object hypothesis

One multi-class graph-cut

 $\bullet \bullet \bullet \bullet \bullet \bullet$

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

So we get three hypothetical objects:

The next step is to label the scene using the three labels above ...

Selecting the most prominent hypotheses with a multi-class graph-cut

multi-class graph-cut

Object-level segmentation

Ours

RANSAC

Learn segmentation from history ...

Can we learn from such case, and apply the learned knowledge in segmenting the rest part of the scene?

Online Learning of cut cost

 $E(L) = \sum E_d(l_u; P_u) + \sum E_s(l_u, l_v)$ $u \in \mathcal{V}_{p}$ $(u,v)\in\mathcal{E}_{p}$

 $E_{s}(l_{u} \neq l_{v}) = 1 - p(l_{u} \neq l_{v} | \mathbf{x}(P_{u}, P_{v}))$

Predicted by learned SVM classifier

Online Learning of cut cost

Collect training examples from pushes:

Positive examples: must cut

Negative examples: cannot cut

Online Learning of cut cost

- Incremental update of the classifier

Online Learning of cut cost

Algorithm II Entropy-based proactive validation

Where to push?

Object-level segmentation

Validation pipeline

Validation pipeline

How to measure the entropy?

How to measure entropy?

- Our goal is *object-aware reconstruction*
- Two aspects:
 - Uncertainty of **Segmentation**
 - Uncertainty of **Reconstruction**

H = H(, $) \implies$ Joint entropy H(S,R) = H(S) + H(R|S)

How to measure entropy?

$$\begin{aligned}
\mathbf{H}(S,R) &= H(S) + H(R|S) \\
H(R|S) &= -\sum_{e \in \mathcal{E}^{0}(S)} p_{e}(e) \sum_{s \in \overline{\Omega}(e)} g(c(s)) \log g(c(s)) \\
\text{Conditioned entropy}
\end{aligned}$$

Given an *object segmentation*, how much uncertainty is there in the *object-wise reconstruction*?

Search over all push points:

$$u^* = \arg\max_{u} I(S, R | \langle \mathbf{p}_u, \mathbf{d}_u \rangle)$$

Posterior entropy

$$I(S, R | \langle \mathbf{p}_u, \mathbf{d}_u \rangle) = H(S, R) - H'(S, R | \langle \mathbf{p}_u, \mathbf{d}_u \rangle)$$

before push is performed = performed

How to compute the posterior entropy

Plot of information gain

Object-level segmentation

Information gain

Results and evaluation

Results

- Test on real-life scenes

Results

- Test on real-life scenes

- Ground-truth data

A quantitative measure

bilateral support between ground-truth and reconstructed surfaces

- Bilateral support

reconstructed surface

ground-truth surface

Imperfect reconstruction

- Bilateral support

Reconstructed with under-segmentation

- Bilateral support

Reconstructed with over-segmentation

- Comparing to alternative robot active analysis

Limitations

- Extraction rate: 50%~80%
- Push scheduling
- Vertical support

-80%

- Object stack
- Non-rigid objects

- A new paradigm of 3D acquisition

- Autonomous scene scanning
 - Scene level: Large scale
 - Object level: Detailed

- Proactive validation
 - Physically-validated segmentation

Future works

- Multiple robots?

Future works

Acknowledgement

- Anonymous reviewers
- Hao (Richard) Zhang and Daniel Cohen-Or
- Research grants
 - NSFC
 - National 973 Program
 - Guangdong Science and Technology Program
 - Shenzhen VisuCA Key Lab
 - The Fundamental Research Funds of Shandong University
 - SIAT Innovation Program for Excellent Young Researchers

Code of object analysis: www.kevinkaixu.net

Physically feasible push

- Heuristic rules

