

OBJECT-AWARE GUIDANCE FOR AUTONOMOUS SCENE RECONSTRUCTION

Ligang Liu, Xi Xia, Han Sun, Qi Shen,

Juzhan Xu, Bin Chen, Hui Huang, Kai Xu

University of Science and Technology of China Shenzhen University National University of Defense Technology

Photography & Recording Encouraged

Commodity RGB-D sensors

• RGB-D sensor allows real-time reconstruction

• Other real-time reconstruction methods

Output Reconstruction Phong Shaded Shaded Voxel Hashing

Shaded with Voxel Colors

Voxel Hashing [Nießner et al. 2013]

ElasticFusion [Whelan et al. 2015]

Indoor scene reconstruction -> 3D object models

• Human scanning is a laborious task [Kim et al. 2013]

• Modern robots are more and more reliable and controllable.

Unimation, 1958

Fetch, 2015

Motivation: Autoscanning with Robots

Existing Works: Single Objects

• High quality scanning and reconstruction of single object [Wu et al. 2014]

Existing Works: Unknown Scenes

- Two pass scene reconstruction and understanding.
- Can only use **low-level** information in first exploration pass.

Existing Works: Unknown Scenes

- Two pass scene reconstruction and understanding.
- Can only use **low-level** information in first exploration pass.

reconstruction & segmentation [Xu et al. 2015]

object recognition [Xu et al. 2016]

The Main Challenge

 How to automatically achieve scene reconstruction and understanding in one pass?

Motivation

• Human explore unknown scenes object by object!

Key idea: using recognized objects as a guidance map

We need to

© 2018 SIGGRAPH. All Rights Reserved

• Objectness should measure both similarity and completeness

Partial Matching

Query

Partial Matching

3DMatch [Zeng et al. 2016]

GENERATIONS / VANCOUVER 12-16 AUGUST

Partial Matching

Model-Driven Objectness

$$d(X, Y) = \frac{1}{n_p} \sum_{i=1}^{n_p} d(x_i, Y)$$
$$d(x_i, Y) = \min_{j=1, \cdots, n_p} ||x_i - y_j||^2$$
$$O(c, m) = \exp\left[-\frac{1}{Diag(c)} (d(c, m) + d(m, c))^{\frac{1}{2}}\right]$$
Objectness Similarity Completeness

Next Best Object

Technical Challenge

• How to segment and recognize objects during reconstruction?

Recognition and segmentation constitute a chicken-egg problem

Pre-segmentation

Post-segmentation

• Couples segmentation and recognition in the same optimization

Post-segmentation

© 2018 SIGGRAPH. All Rights Reserved

GENERATIONS / VANCOUVER

SIGGRAPH2018

Post-segmentation Results

Database Construction

Database Construction

Two advantages:

- Decrease the difference between CAD model and scanned model
- Segmented components & component pairs can make retrieval easier

GENERATIONS/VANCOUVER SIGGRAPH2018

Evaluation

• Virtual scene dataset

SUNCG (66 scenes)

ScanNet (38 scenes)

• Comparing object recognition with PointNet++ [Qi et al. 2017]

Comparison

GENERATIONS / VANCOUVER SIGGRAPH2018

Comparing Rand Index of segmentation

$$RI(S_1, S_2) = {\binom{2}{n}}^{-1} \sum_{i, j, i < j} [C_{ij}P_{ij} + (1 - C_{ij})(1 - P_{ij})],$$

• Comparing object coverage rate and quality against tensor field guided autoscanning [Xu et al. 2017]

© 2018 SICCRAPH. A gnts Reserved

Conclusion

Key techniques:

- Objectness based segmentation
 - Pre-segmentation
 - Post-segmentation

- Objectness based reconstruction
 - The next best object (NBO)
 - The next best view (NBV)

Limitations

No similar models

Cluttered scenes

Future Works

Combine image-based method

Driverless car with LiDAR

Thank you for your attention!

Data and code are available:

http://kevinkaixu.net/projects/nbo.html

• Comparing object coverage rate and quality against tensor field guided autoscanning [Xu et al. 2017]

$$R_{\text{cover}} = \frac{1}{|\mathcal{V}_{S}|} \int_{v \in \mathcal{V}_{S}} \delta_{\text{detect}}(v) \cdot \delta_{\text{vis}}(v),$$
$$Q_{\text{cover}} = \frac{1}{|\mathcal{V}_{S}|} \int_{v \in \mathcal{V}_{S}} \delta_{\text{detect}}(v) \cdot \delta_{\text{vis}}(v) \cdot q(v),$$

Depth noise

Time Table

1

Category	Total	Navigate	Segment	NBO	NBV
Bedroom (V)	47.8	24.1	20.1	2.0	1.6
Living room (V)	57.0	30.4	22.2	2.3	2.1
Kitchen (V)	37.5	16.2	17.6	2.0	1.7
Bathroom (V)	29.5	14.8	12.2	1.3	1.2
Office (V)	40.8	21.3	16.0	1.9	1.6
Meeting room (R)	101.4	62.3	32.4	3.6	3.1
Resting room (R)	78.5	47.9	25.4	2.9	2.3
Office (R)	94.7	56.9	30.3	4.2	3.3

Robot

