GRASS: Generative Recursive Autoencoders for Shape Structures

Jun Li

Kai Xu

NUDT, Shenzen University, Shandong University

Siddhartha Chaudhuri

IIT Bombay

Ersin Yumer Adobe Research

Hao (Richard) Zhang

Simon Fraser University

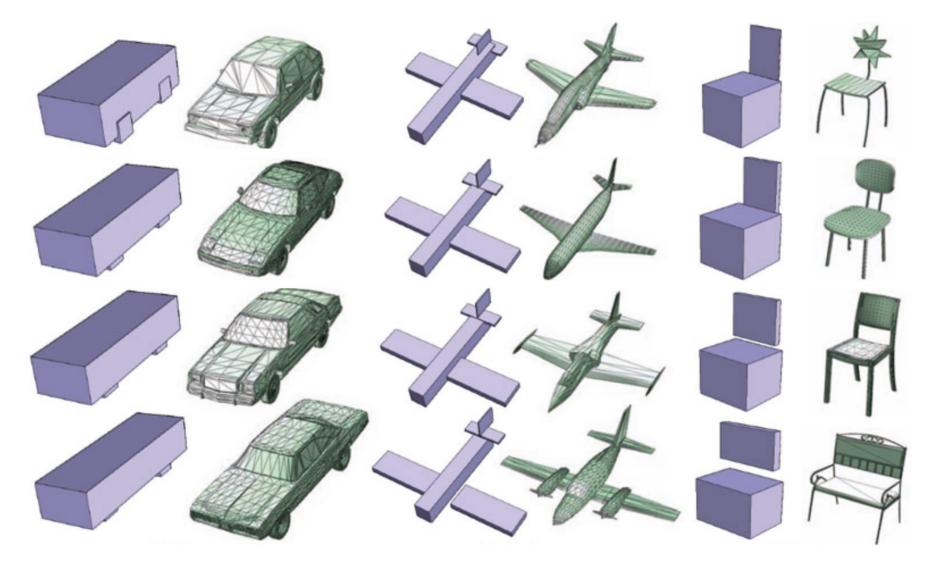
Leonidas Guibas

Stanford University

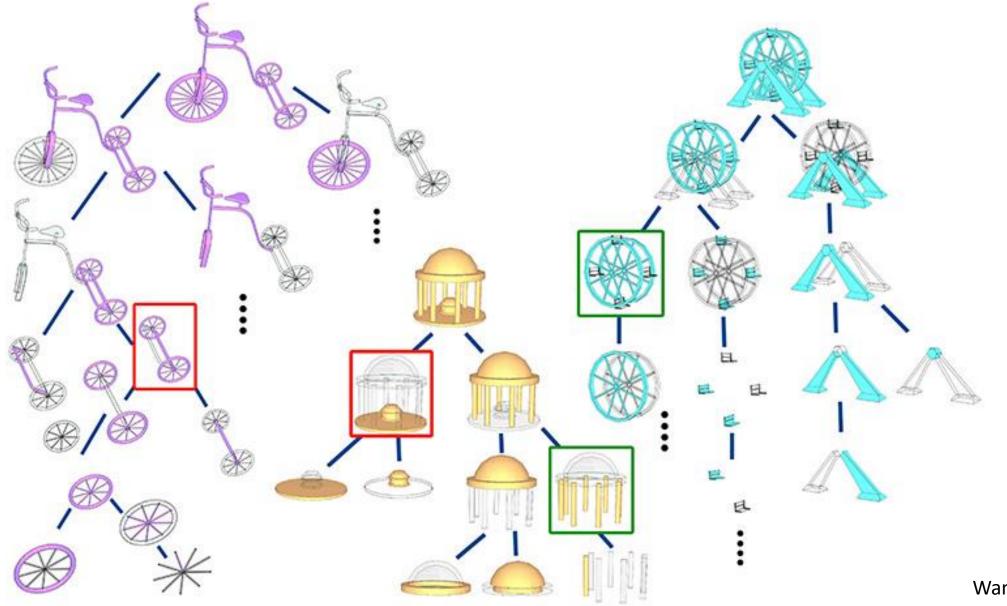
Shapes have different topologies



Shapes have different geometries



Shapes have hierarchical compositionality



Wang et al. 2011

Motivating Question

How can we capture

topological variation
geometric variation
hierarchical composition

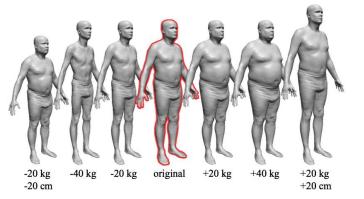
in a

single, generative, fixed-dimensional representation?

Sequences of commands to Maya/AutoCAD

Parametrized procedure [Weber95]

Learned grammar (single exemplar) [Bokeloh10]

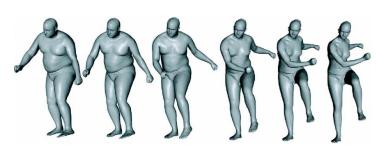


Deformable template [Allen03]



Probabilistic procedure [Talton09]

Learned grammar (multi-exemplar) [Talton12]

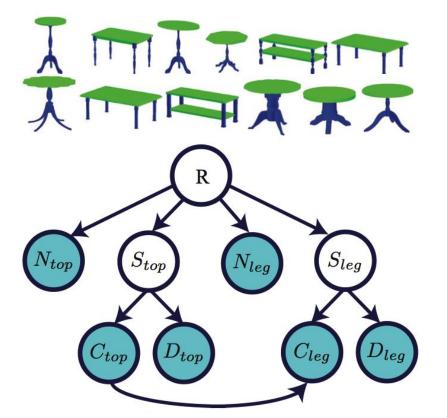


Posed template [Anguelov05]

- PRIORITY 1:
- 1: footprint → S(1r, building_height, 1r) facades T(0, building_height, 0) Roof("hipped", roof_angle) { roof }
- PRIORITY 2:
- 2: facades → Comp("sidefaces"){ facade }
- 3: facade : Shape.visible("street") ~> Subdiv("X",1r,door_width*1.5){ tiles | entrance } : 0.5 ~> Subdiv("X", door_width*1.5, 1r){ entrance | tiles } : 0.5
- 4: facade → tiles
- 5: tiles → Repeat("X",window_spacing){ tile }
- 6: tile ~ Subdiv("X", 1r, window_width, 1r) { wall |
- Subdiv("Y",2r,window_height,1r){ wall | window | wall } | wall } 7: window : Scope.occ("noparent") != "none" → wall
- 8: window → S(1r,1r,window_depth) I("win.obj")
- 9: entrance → Subdiv("X", 1r, door_width, 1r) { wall |
- Subdiv("Y", door_height, 1r) { door | wall } | wall } 10: door → S(1r,1r,door_depth) I("door.obj")
- 11: wall \rightarrow I("wall.obj")

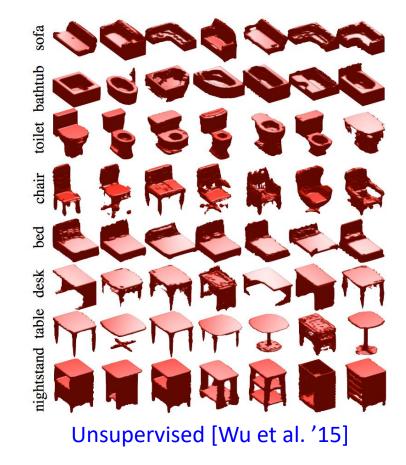
Probabilistic grammar [Müller06]

Structural PGM vs Volumetric DNN



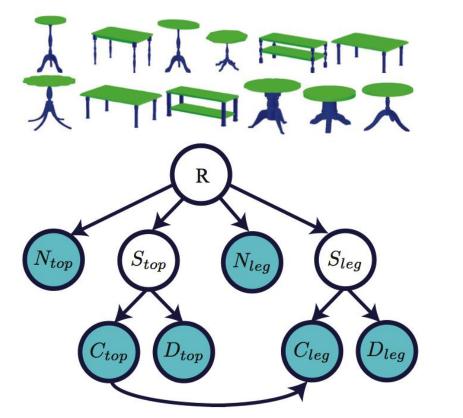
Strongly supervised [Kalogerakis et al. '12]

Pros: direct model of compositional structure, (relatively)
low-dimensional, high quality output
Cons: limited topological variation, no continuous geometric variation (for generation), no hierarchy, huge effort to segment & label training data



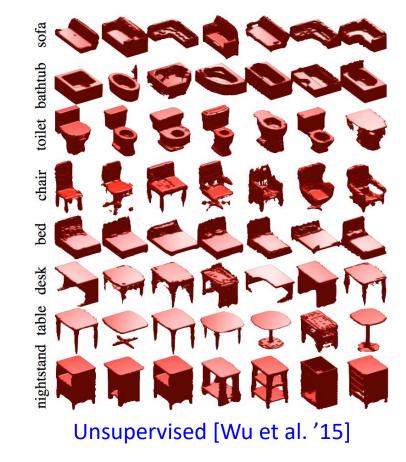
Pros: arbitrary geometry/topology, unsupervised **Cons:** low-resolution, no explicit separation of structure vs fine geometry, no guarantee of symmetry/adjacency, no hierarchy, lots of parameters, lots of training data

Structural PGM vs Volumetric DNN



Strongly supervised [Kalogerakis et al. '12]

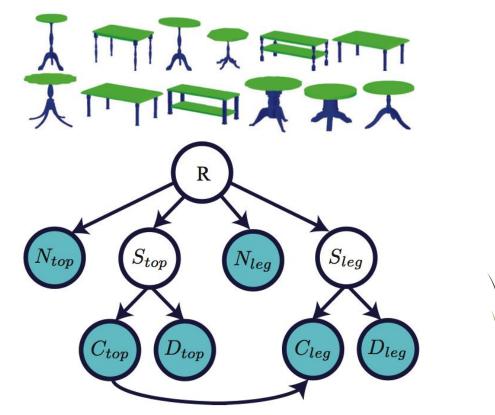
Pros: direct model of compositional structure, (relatively)
low-dimensional, high quality output
Cons: limited topological variation, no continuous geometric variation (for generation), no hierarchy, huge effort to segment & label training data



Pros: arbitrary geometry/topology, unsupervised
Cons: low-resolution, no explicit separation of structure vs fine geometry, no guarantee of symmetry/adjacency, no hierarchy, lots of parameters, lots of training data

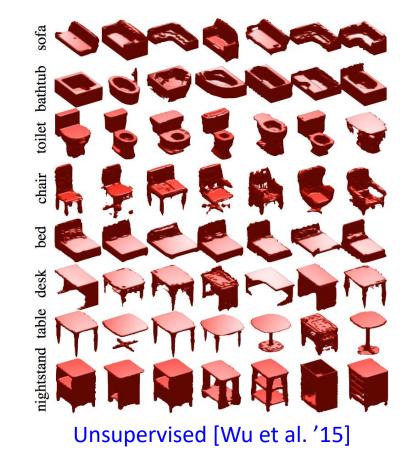
Structural PGM vs Volumetric DNN

GRASS



Strongly supervised [Kalogerakis et al. '12]

Pros: direct model of compositional structure, (relatively)
low-dimensional, high quality output
Cons: limited topological variation, no continuous geometric variation (for generation), no hierarchy, huge effort to segment & label training data



Pros: arbitrary geometry/topology, unsupervised
Cons: low-resolution, no explicit separation of structure vs fine geometry, no guarantee of symmetry/adjacency, no hierarchy, lots of parameters, lots of training data

GRASS: Generative neural networks over unlabeled part layouts

- GRASS factorizes a shape into a hierarchical layout of simplified parts, plus fine-grained part geometries
- Weakly supervised:
 - ✓ segments
 - × labels
 - × manually-specified "ground truth" hierarchies
- Structure-aware: learns a generative distribution over richly informative structures

Three Challenges

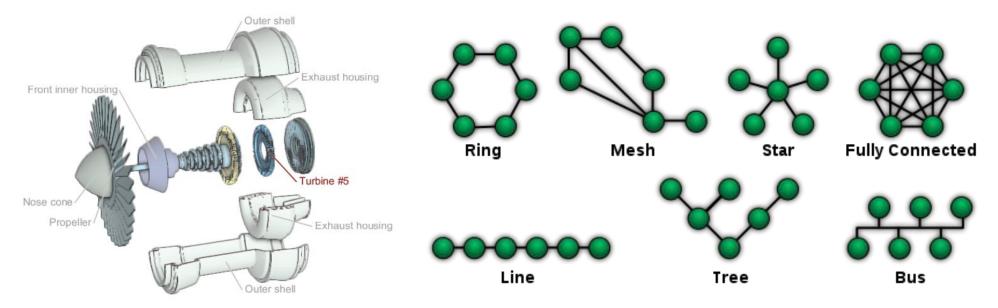
- Challenge 1: Ingest and generate arbitrary part layouts with a fixed-dimensional network
 - Convolution doesn't work over arbitrary graphs

 Challenge 2: Map a layout invertibly to a fixed-D code ("Shape DNA") that implicitly captures adjacency, symmetry and hierarchy

• Challenge 3: Map layout features to fine geometry

Huge variety of (attributed) graphs

 Arbitrary numbers/types of vertices (parts), arbitrary numbers of connections (adjacencies/symmetries)

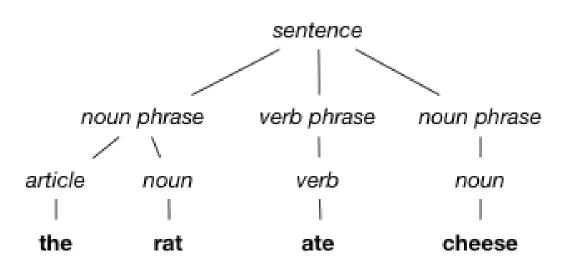


• For linear graphs (chains) of arbitrary length, we can use a recurrent neural network (RNN/LSTM)

Key Insight

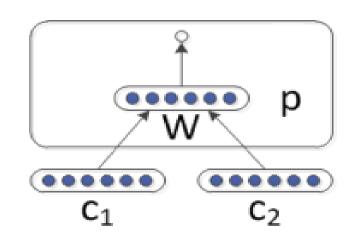
• Edges of a graph can be collapsed sequentially to yield a hierarchical structure

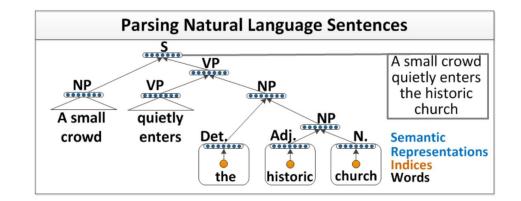
- Looks like a parse tree for a sentence!
- ... and there are unsupervised sentence parsers

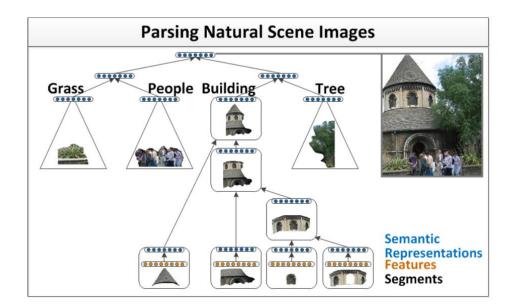


Recursive Neural Network (RvNN)

- Repeatedly merge two nodes into one
- Each node has an *n*-D feature vector, computed recursively
- $p = f(W[c_1;c_2] + b)$

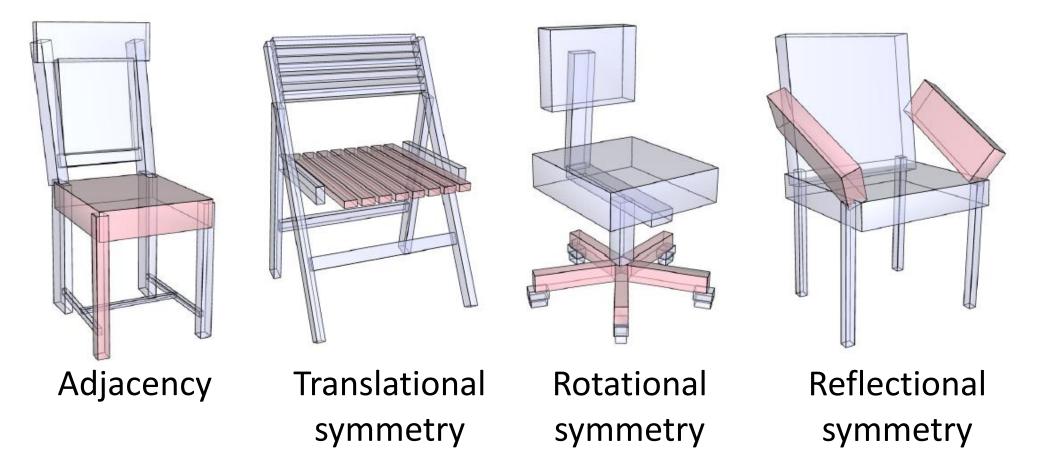






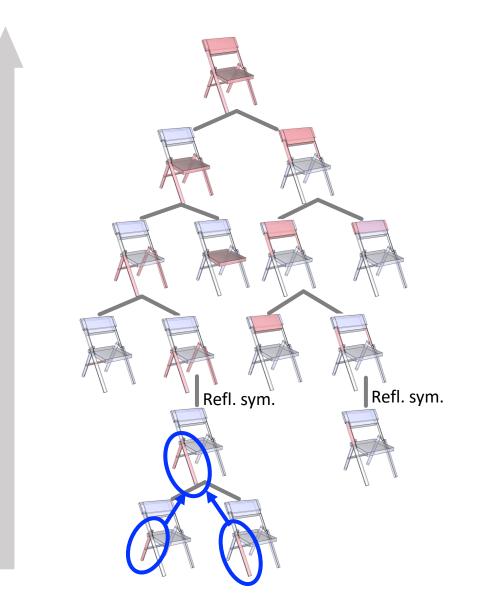
Socher et al. 2011

Different types of merges, varying cardinalities!

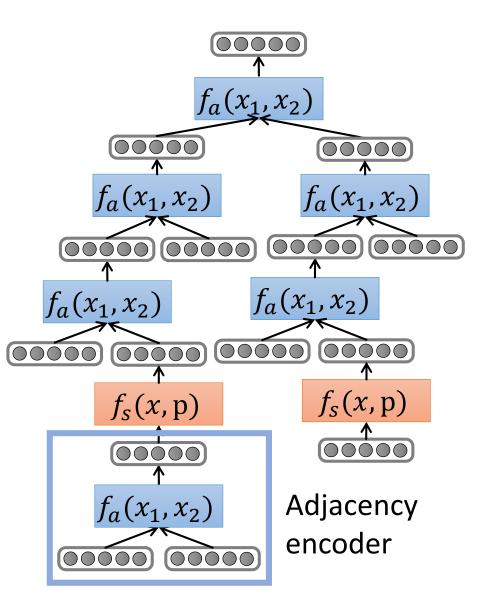


- How to encode them to the same code space?
- How to decode them appropriately, given just a code?

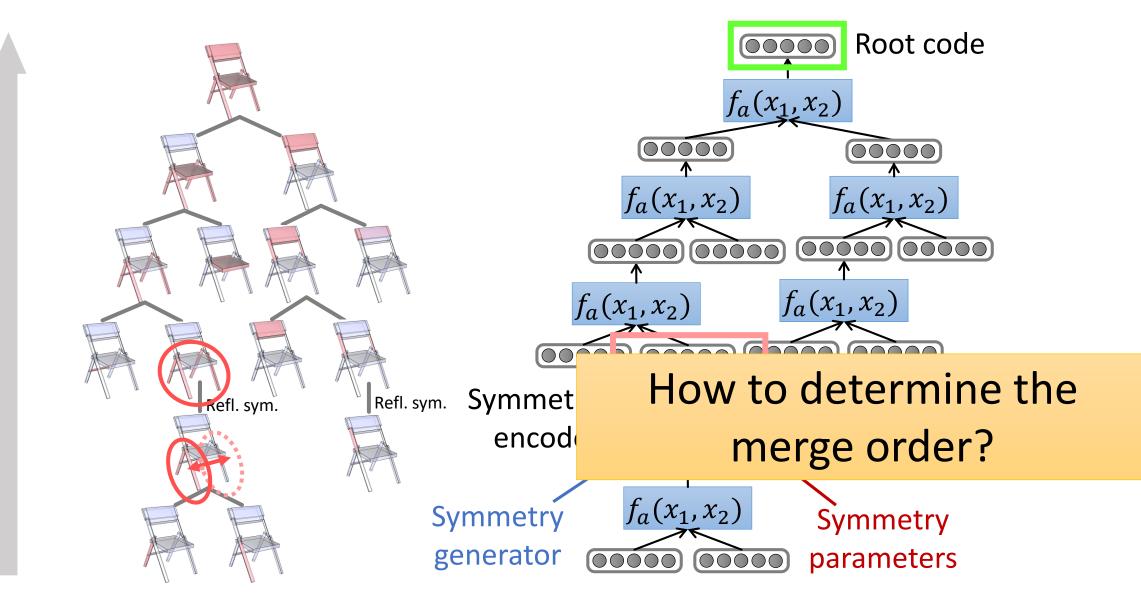
Recursively merging parts



Bottom-up merging

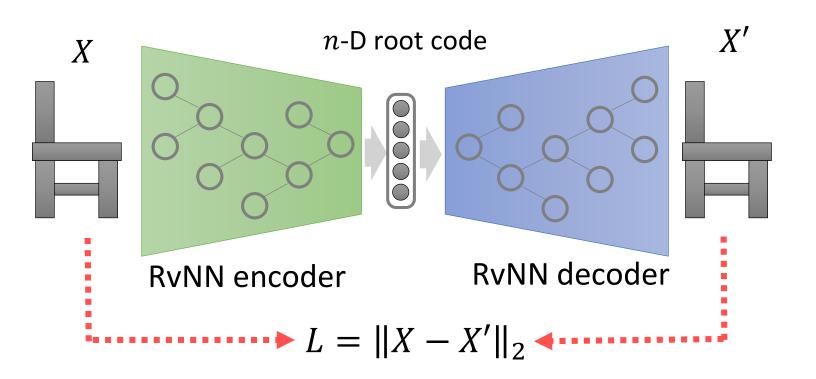


Recursively merging parts



Bottom-up merging

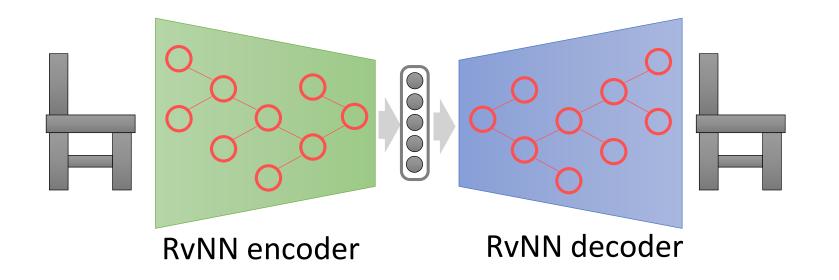
Training with reconstruction loss



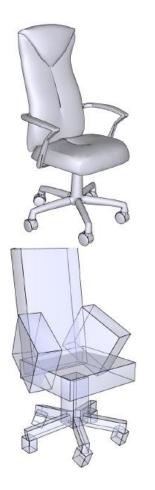
• Learn weights from a variety of randomly sampled merge orders for each box structure

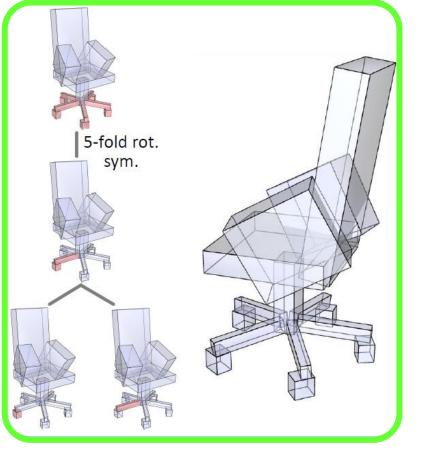
In testing

- Encoding: Given a box structure, determine the merge order as:
 - The hierarchy that gives the lowest reconstruction error

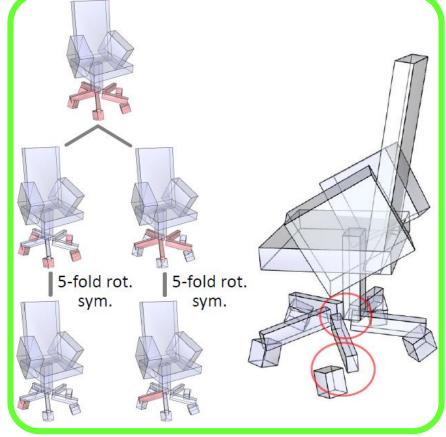


Inferring symmetry hierarchical reconstruction loss





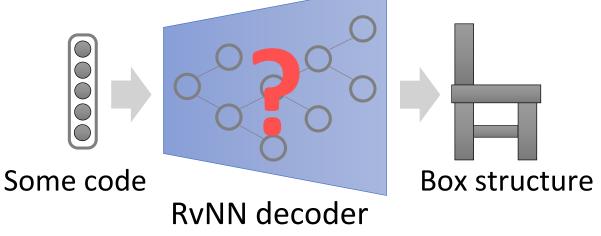
Low reconstruction loss



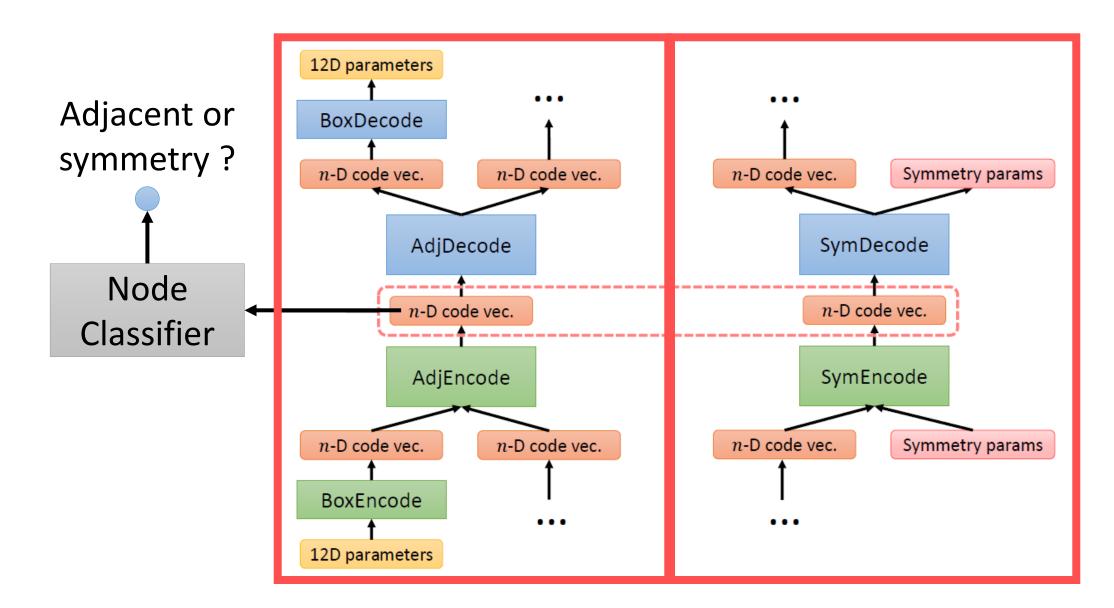
High reconstruction loss

In **testing**

- Encoding: Given a box structure, determine the merge order as:
 - The hierarchy that gives the lowest reconstruction error
- Decoding: Given an arbitrary code, how to generate the corresponding structure?



How to know what type of encoder to use?



Making the network generative

• Variational Auto-Encoder (VAE): Learn a distribution that approximates the data distribution of true 3D structures

 $P(X) \approx P_{gt}(X)$

• Marginalize over a latent "DNA" code

maximize
$$P(X) = \int P(X|z;\theta)P(z)dz$$

Likelihood

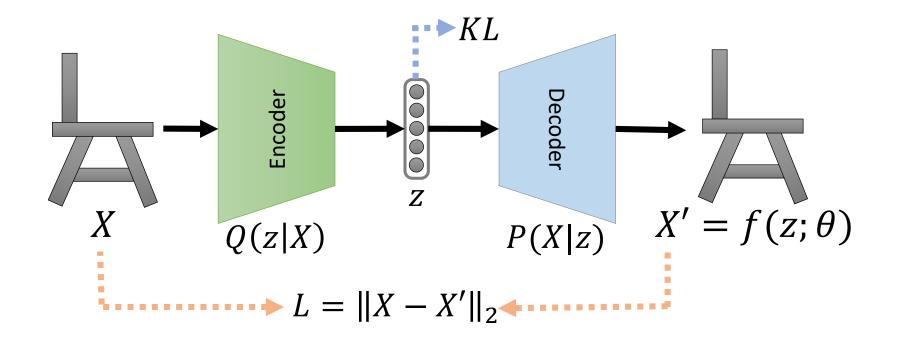
Variational Bayes formulation

maximize
$$P(X) = \int P(X|z;\theta)P(z)dz$$

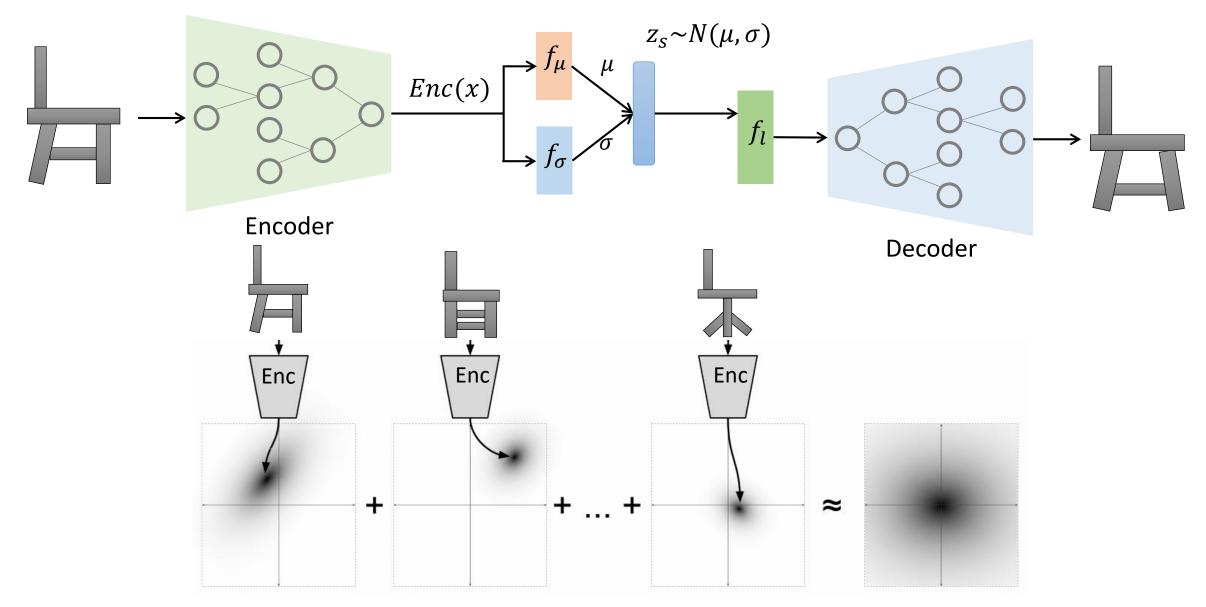
maximize $E_{z\sim Q} \left[\log P(X|z)\right] - \mathcal{D} \left[Q(z|X) \| P(z)\right]$
 z should reconstruct
 X , given that it was
drawn from $Q(z|X)$

Variational Autoencoder (VAE)

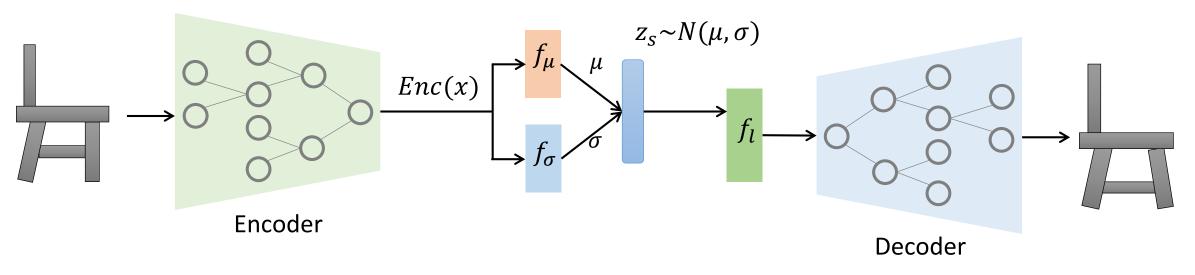
maximize
$$E_{z \sim Q} \left[\log P(X|z) \right] - \mathcal{D} \left[Q(z|X) \| P(z) \right]$$
Reconstruction lossKL divergence loss

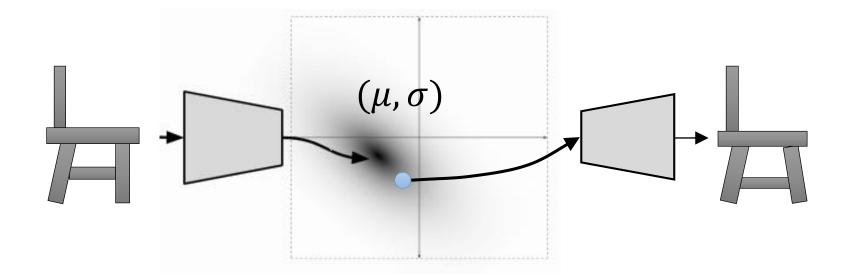


Variational Autoencoder (VAE)

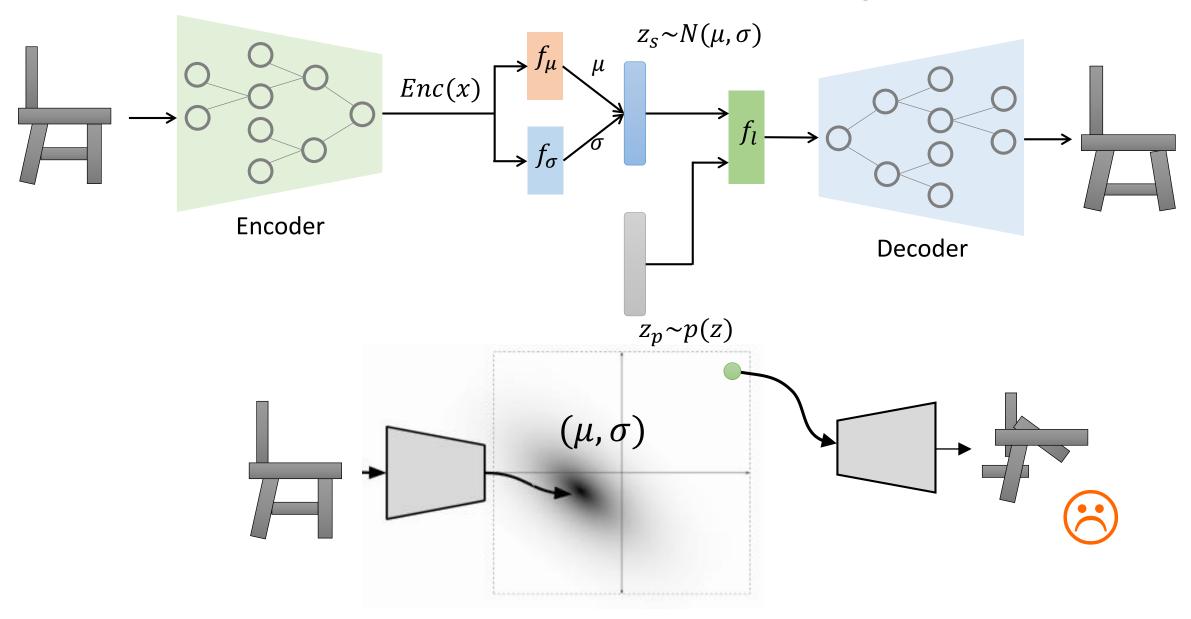


Sampling near μ is robust

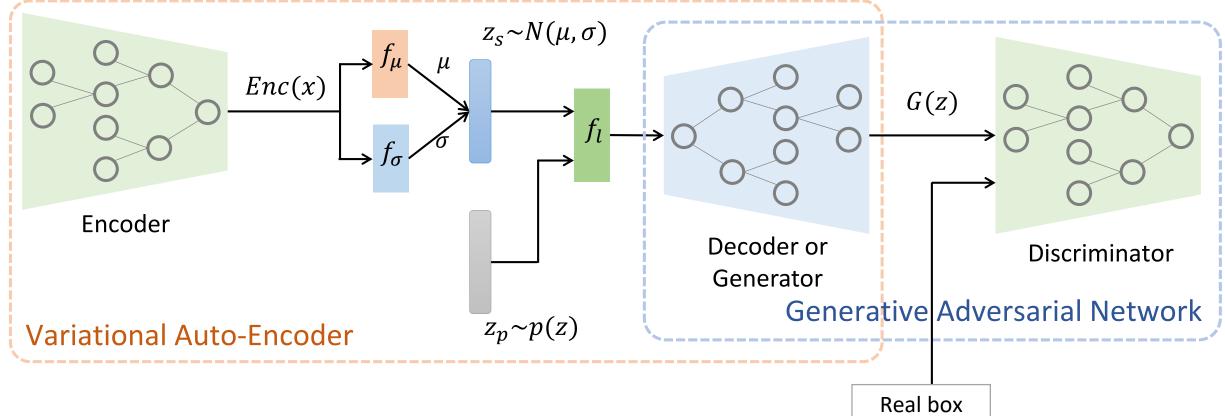




Sampling far away from μ ?



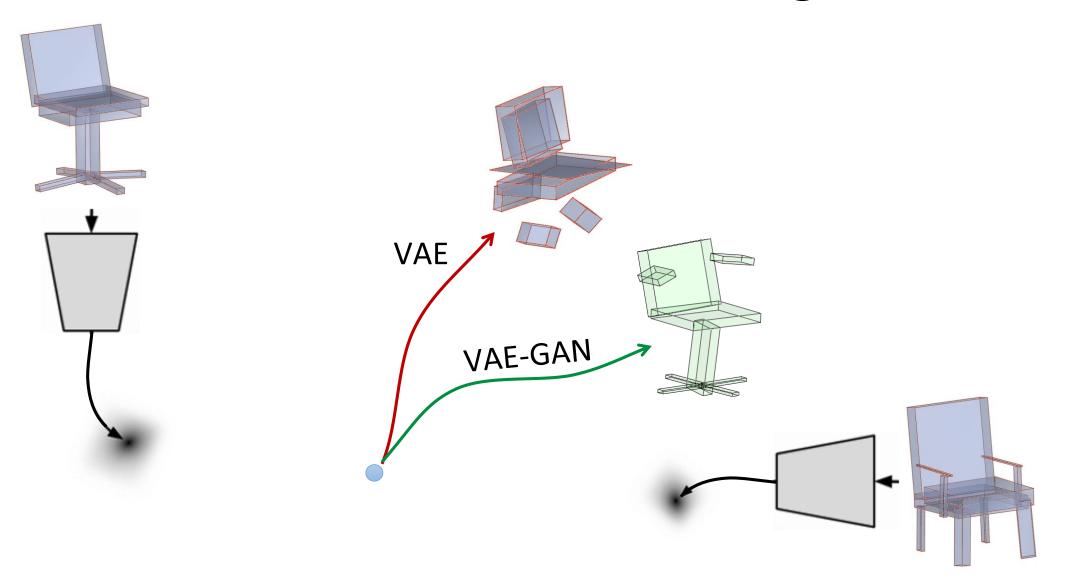
Adversarial training: VAE-GAN



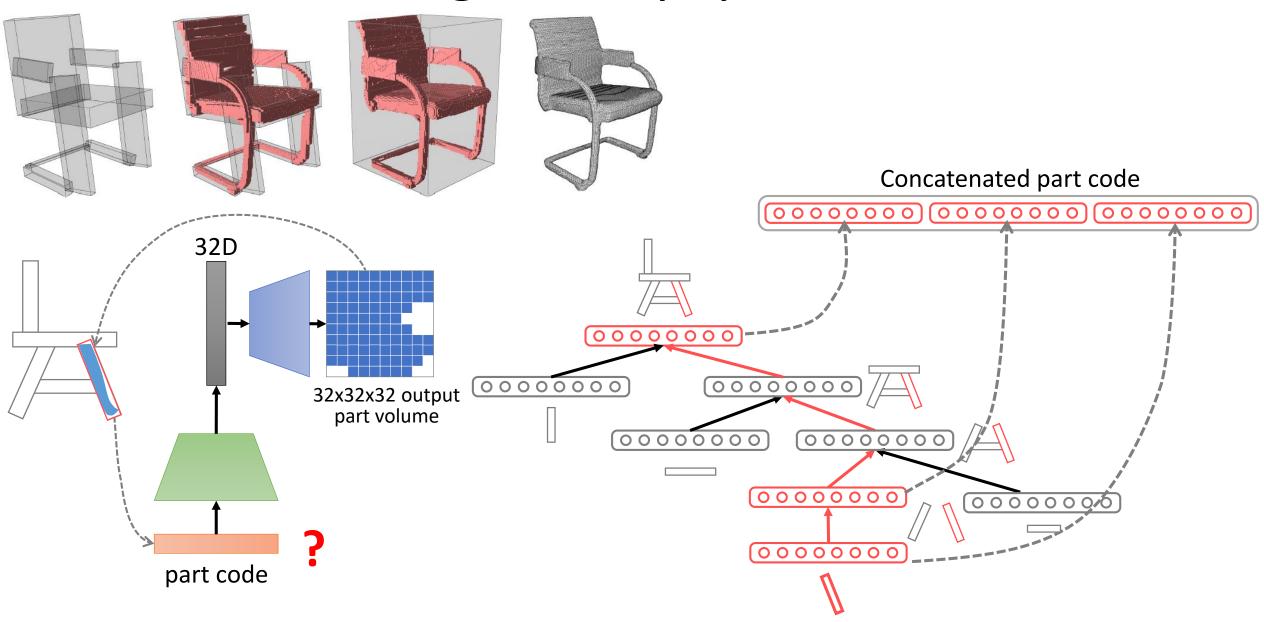
structures

- Reuse of modules!
 - VAE decoder \rightarrow GAN generator
 - VAE encoder \rightarrow GAN discriminator

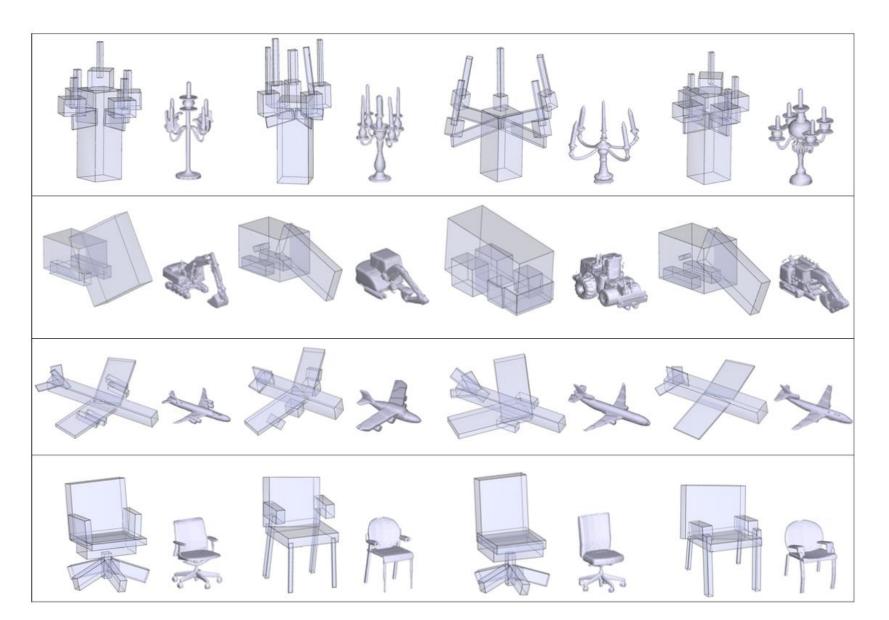
Benefit of adversarial training



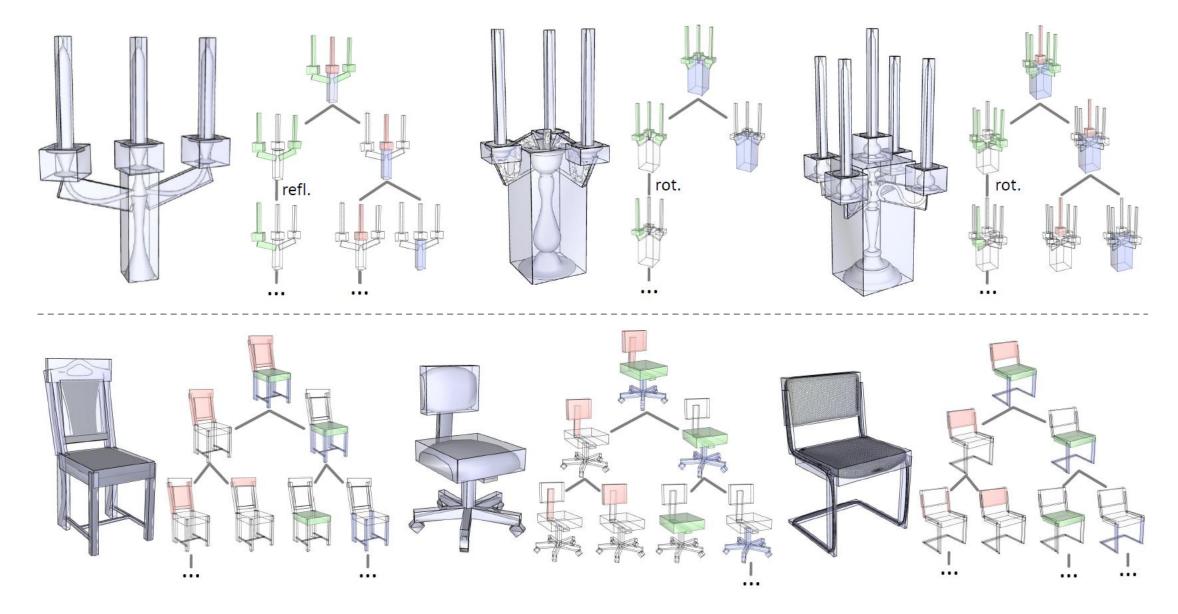
Part geometry synthesis

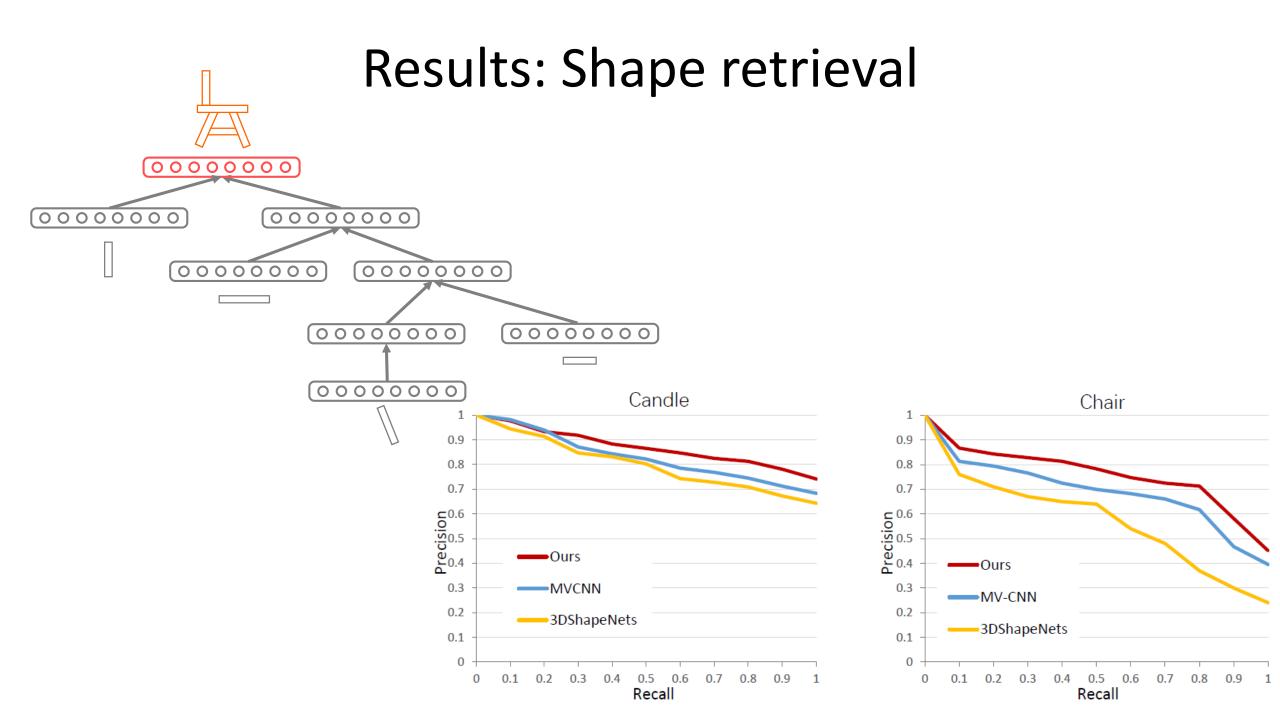


Results: Shape synthesis

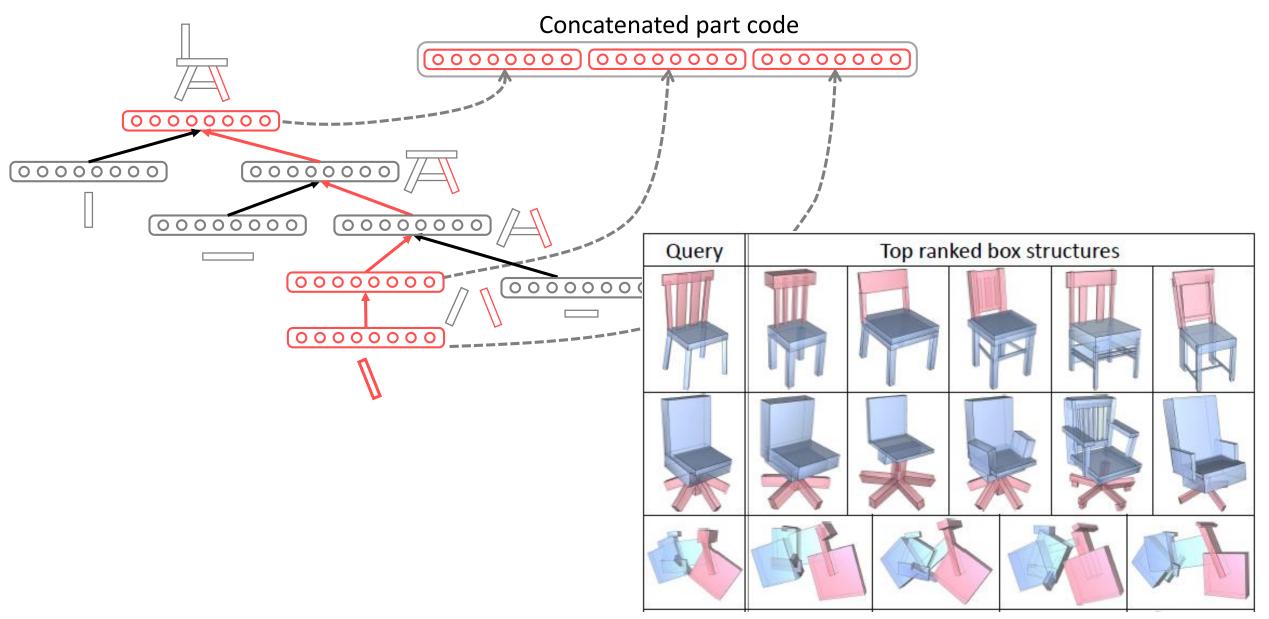


Results: Inferring consistent hierarchies

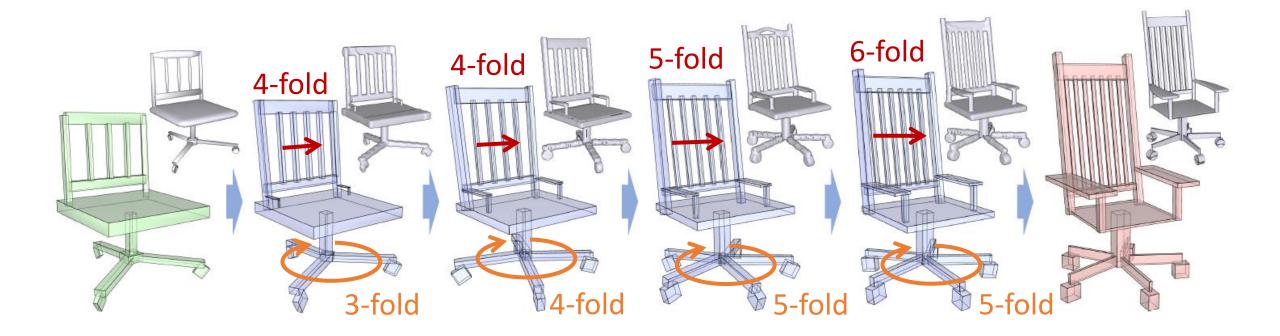




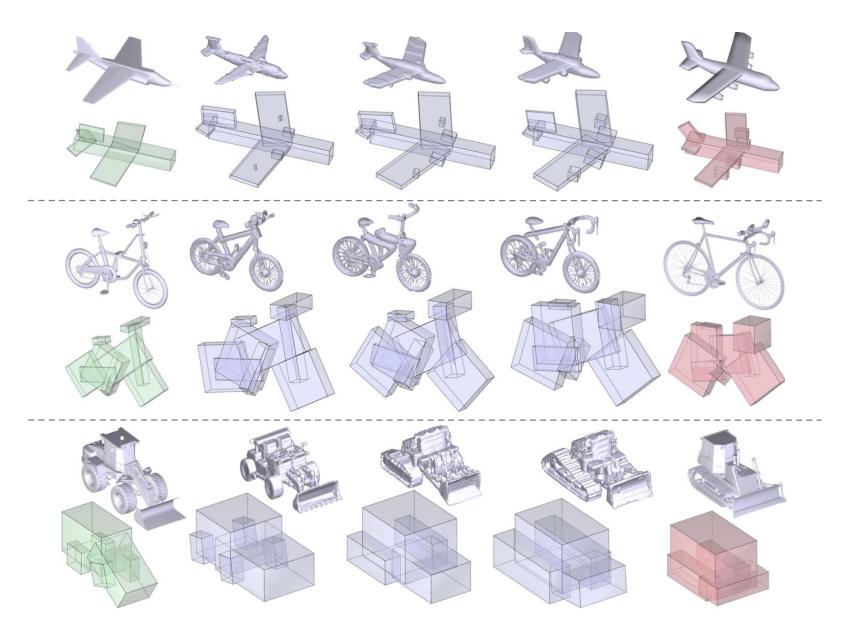
Results: Shape retrieval



Results: Shape interpolation

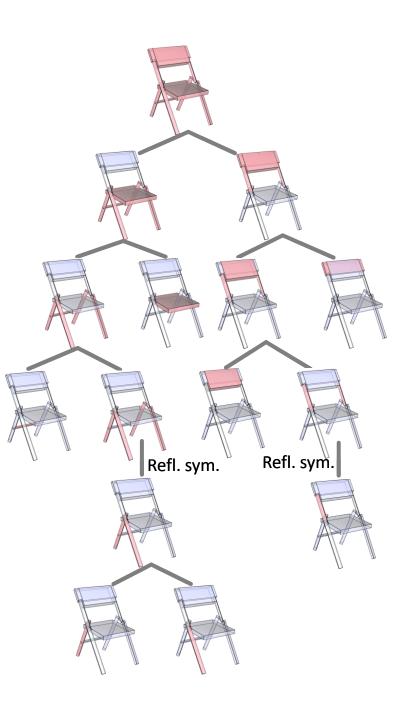


Results: Shape interpolation



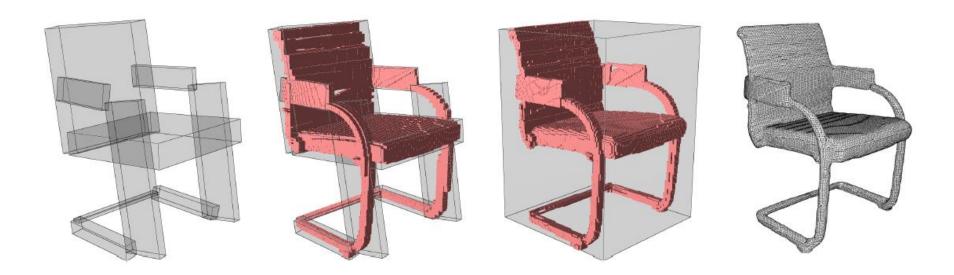
Discussion

- What does our model learn?
 - Hierarchical organization of part structures
 - A reasonable way to generate 3D structure
 - Part by part
 - Bottom-up
 - Hierarchical organization
 - This is the usual way how a human modeler creates a 3D model
 - Hierarchical scene graph



Discussion

- A general guideline for 3D shape generation
- Coarse-to-fine:
 - First generate coarse structure
 - Then generate fine details
 - May employ different representations and models



Acknowledgement

- Anonymous reviewers
- Help on data preparation
 - Yifei Shi, Min Liu, Chengjie Niu and Yizhi Wang
- Research grants from
 - NSFC, NSERC, NSF
 - Google Focused Research Award
 - Gifts from the Adobe, Qualcomm and Vicarious corporations.
 - Jun Li is a visiting PhD student of University of Bonn, supported by the CSC

Thank you!

Code & data available at www.kevinkaixu.net