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?

Shapes have different topologies



Ovsjanikov et al. 2011

Shapes have different geometries



Wang et al. 2011

Shapes have hierarchical compositionality



Motivating Question

How can we capture

- topological variation
- geometric variation

- hierarchical composition

in a

single, generative, fixed-dimensional representation?

“Shape DNA” GenerateEncode



Sequences of
commands to

Maya/AutoCAD

Deformable template [Allen03]
Posed template [Anguelov05]

Parametrized procedure [Weber95] Probabilistic procedure [Talton09]

Learned grammar (single exemplar)
[Bokeloh10]

Learned grammar (multi-exemplar)
[Talton12]

Probabilistic grammar
[Müller06]



Pros: direct model of compositional structure, (relatively) 
low-dimensional, high quality output
Cons: limited topological variation, no continuous geometric 
variation (for generation), no hierarchy, huge effort to 
segment & label training data

Pros: arbitrary geometry/topology, unsupervised
Cons: low-resolution, no explicit separation of structure vs fine 
geometry, no guarantee of symmetry/adjacency, no hierarchy, 
lots of parameters, lots of training data

Strongly supervised [Kalogerakis et al. ’12] Unsupervised [Wu et al. ’15]

Structural PGM vs Volumetric DNN
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?

Strongly supervised [Kalogerakis et al. ’12]



GRASS: Generative neural networks over 
unlabeled part layouts

 GRASS factorizes a shape into a hierarchical layout of simplified 
parts, plus fine-grained part geometries

 Weakly supervised:

 segments

  labels

 manually-specified “ground truth” hierarchies

 Structure-aware: learns a generative distribution over richly 
informative structures



Three Challenges

• Challenge 1: Ingest and generate arbitrary part layouts with 
a fixed-dimensional network
• Convolution doesn’t work over arbitrary graphs

• Challenge 2: Map a layout invertibly to a fixed-D code 
(“Shape DNA”) that implicitly captures adjacency, symmetry 
and hierarchy

• Challenge 3: Map layout features to fine geometry



Li et al. 2008, Wikipedia

Huge variety of (attributed) graphs

 Arbitrary numbers/types of vertices (parts), arbitrary numbers 
of connections (adjacencies/symmetries)

 For linear graphs (chains) of arbitrary length, we can use a 
recurrent neural network (RNN/LSTM)



Key Insight

• Edges of a graph can be collapsed sequentially to yield a 
hierarchical structure

• Looks like a parse tree
for a sentence!

• … and there are
unsupervised
sentence parsers



Socher et al. 2011

Recursive Neural Network (RvNN)

 Repeatedly merge two nodes 
into one

 Each node has an n-D feature 
vector, computed recursively

 p = f (W [c
1
;c

2
] + b)



Different types of merges, varying cardinalities!

Adjacency Translational
symmetry

Rotational
symmetry

Reflectional
symmetry

• How to encode them to the same code space?
• How to decode them appropriately, given just a code?



𝑓𝑠(𝑥, p)

𝑓𝑎(𝑥1, 𝑥2)

𝑓𝑎(𝑥1, 𝑥2)

𝑓𝑎(𝑥1, 𝑥2)

𝑓𝑠(𝑥, p)

𝑓𝑎(𝑥1, 𝑥2)

𝑓𝑎(𝑥1, 𝑥2)

Refl. sym.Refl. sym.
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Adjacency 
encoder

𝑓𝑎(𝑥1, 𝑥2)



𝑓𝑎(𝑥1, 𝑥2)
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𝑓𝑠(𝑥, p)
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𝑓𝑎(𝑥1, 𝑥2)

Refl. sym.Refl. sym.
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Symmetry 
encoder

Root code

𝑓𝑠(𝑥, p)

Symmetry 
generator

Symmetry 
parameters

How to determine the 
merge order?



RvNN decoder RvNN encoder 

𝑛-D root code

𝐿 = 𝑋 − 𝑋′ 2

𝑋 𝑋′

Training with reconstruction loss

• Learn weights from a variety of randomly sampled merge orders 
for each box structure



In testing

• Encoding: Given a box structure, determine the merge 
order as:

• The hierarchy that gives the lowest reconstruction error

RvNN decoder RvNN encoder 



Inferring symmetry hierarchical reconstruction loss

Low reconstruction loss High reconstruction loss



In testing

• Encoding: Given a box structure, determine the merge 
order as:
• The hierarchy that gives the lowest reconstruction error

• Decoding: Given an arbitrary code, how to generate the 
corresponding structure?

RvNN decoder 
Some code Box structure

?



How to know what type of encoder to use?

Adjacent or 
symmetry ?

Node 
Classifier



maximize

𝑃(𝑋) ≈ 𝑃𝑔𝑡(𝑋)

Making the network generative

• Variational Auto-Encoder (VAE): Learn a distribution that 
approximates the data distribution of true 3D structures

• Marginalize over a latent “DNA” code

Parameters
Likelihood



maximize

𝑧 should reconstruct 
𝑋, given that it was 
drawn from 𝑄(𝑧|𝑋)

Assuming 𝑧’s follow a 
normal distribution

Variational Bayes formulation

maximize



maximize

Reconstruction loss KL divergence loss

En
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er

𝑧
D

eco
d

er

𝑄 𝑧 𝑋 𝑃(𝑋|𝑧)𝑋 𝑋′ = 𝑓(𝑧; 𝜃)

𝐿 = 𝑋 − 𝑋′ 2

𝐾𝐿

Variational Autoencoder (VAE)



Enc Enc Enc

Variational Autoencoder (VAE)
𝑧𝑠~𝑁(𝜇, 𝜎)

𝐸𝑛𝑐(𝑥)
𝑓𝜇

𝑓𝜎

𝜇

𝜎 𝑓𝑙

Encoder
Decoder



Sampling near 𝜇 is robust

(𝜇, 𝜎)

𝑧𝑠~𝑁(𝜇, 𝜎)

𝐸𝑛𝑐(𝑥)
𝑓𝜇

𝑓𝜎

𝜇

𝜎 𝑓𝑙

Encoder
Decoder



Sampling far away from 𝜇?

(𝜇, 𝜎)



𝑧𝑠~𝑁(𝜇, 𝜎)

𝐸𝑛𝑐(𝑥)
𝑓𝜇

𝑓𝜎

𝜇

𝜎 𝑓𝑙

Encoder
Decoder

𝑧𝑝~𝑝(𝑧)



Adversarial training: VAE-GAN

• Reuse of modules!
• VAE decoder  GAN generator

• VAE encoder  GAN discriminator

𝑧𝑠~𝑁(𝜇, 𝜎)

𝐸𝑛𝑐(𝑥)

Variational Auto-Encoder
Generative Adversarial Network

𝑓𝜇

𝑓𝜎

𝜇

𝜎

𝑧𝑝~𝑝(𝑧)

𝑓𝑙

Encoder
Decoder or 
Generator

𝐺(𝑧)

Discriminator

Real box 
structures



VAE

Benefit of adversarial training



Part geometry synthesis

32D

part code

32x32x32 output 
part volume

Concatenated part code 

?



Results: Shape synthesis



Results: Inferring consistent hierarchies



Results: Shape retrieval



Results: Shape retrieval
Concatenated part code 



Results: Shape interpolation

3-fold

4-fold

4-fold 5-fold

5-fold 6-fold4-fold

5-fold



Results: Shape interpolation



Discussion

• What does our model learn?
• Hierarchical organization of part structures

• A reasonable way to generate 3D structure
• Part by part

• Bottom-up

• Hierarchical organization

• This is the usual way how a human modeler 
creates a 3D model
• Hierarchical scene graph

Refl. sym.Refl. sym. Refl. sym.Refl. sym.



Discussion

• A general guideline for 3D shape generation

• Coarse-to-fine:
• First generate coarse structure

• Then generate fine details

• May employ different representations and models
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Thank you!
Code & data available at 

www.kevinkaixu.net


