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Motivation
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Key: How to determine node 
type during decoding?
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Learning a node classifier!

Learn a deterministicgenerative model to find the right hierarchy for structure 
encoding ïThe hierarchy that gives the lowest self-reconstruction error.

Learn a probabilisticgenerative model to generate novel 3D shape structures 
–A hierarchy of cuboids encompassing parts and their relationships.
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Part Geometry Synthesis

Low error High error

Learn a neural network to map the structure-aware part code of a part 
into a 3D volumetric representation of its part geometry.

Shape interpolation

Consistent hierarchies Partial structure retrieval

Shape synthesis

How can we capture

of 3D shapes in a single, generative, 
fixed-dimensionalrepresentation?
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