GRASS: Generative Recursive Autoencoders for Shape Structures Siddhartha Chaudhuri Ersin Yumer Leonidas Guibas Hao Zhang Kai Xu Jun Li

NUDT

NUDT

Motivation

How can we capture

- Topological variation
- Geometric variation
- Hierarchical composition

of 3D shapes in a single, *generative*, *fixed-dimensional* representation?

"Shape DNA".

Structure encoding by **Recursive Neural Network (RvNN)**

IIT Bombay

Adobe Research

Make It Generative!

Recursive Autoencoder

Low error

Learn a *deterministic* generative model to find the right hierarchy for structure encoding – The hierarchy that gives the lowest self-reconstruction error.

VAE-GAN

Learn a *probabilistic* generative model to generate novel 3D shape structures – A hierarchy of cuboids encompassing parts and their relationships.

SFU

Stanford University

Learn a neural network to map the structure-aware part code of a part into a 3D volumetric representation of its part geometry.

structure-aware part code

Results