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ASRO-DIO: Active Subspace Random Optimization
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Abstract—High-dimensional nonlinear state estimation is at the
heart of inertial-aided navigation systems (INS). Traditional meth-
ods usually rely on good initialization and find difficulty in handling
large interframe transformations due to fast camera motion. We
opt to tackle these challenges by solving the depth inertial odometry
(DIO) problem with random optimization. To address the expo-
nentially increased amount of candidate states sampled for the
high-dimensional state space, we propose a highly efficient variant
of random optimization based on the idea of active subspace. Our
method identifies the active dimensions, which contribute most sig-
nificantly to the decrease of the cost function in each iteration, and
samples candidate states only within the corresponding subspace.
This allows us to efficiently explore the 18D state space of DIO and
achieve good optimality by sampling and evaluating only thousands
of candidate states. Experiments show that our method attains
highly robust and accurate DIO under fast camera motions and
low light conditions, without needing a slow-motion warm-up for
initialization.

Index Terms—Depth-inertial odometry (DIO), evolution
strategy, simultaneous localization and mapping, state estimation.

I. INTRODUCTION

IN THE fields of robotics and vision, extensive research has
been devoted to inertial-aided navigation systems (INS) [1],

[2] for motion estimation in GPS-denied environments such
as indoor rooms. In the literature, INS is typically realized
with either filtering-based [1], [3], [4], [5], [6], [7], [8], [9]
or optimization-based approaches [10], [11], [12], [13], [14],
[15]. The basic principle underlying both approaches is the
linearization of the nonlinear problem of motion estimation. In
particular, the iterated Kalman filter is proven to be equivalent
to the Gaussian–Newton algorithm [2], [16]. The success of
such linearization usually hinges on a good initialization and
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requires that the change of states in each time-step is small so
that the nonlinearity is not high. This makes the existing methods
sensitive to initialization and error-prone when handling fast
camera motion.

To mitigate these issues, a promising approach is random
optimization. Random optimization estimates states by sam-
pling a population of candidates and evaluating them with a
cost function. It excels at finding more global optima in highly
nonlinear optimization problems [17]. Recently, it has also been
adopted to online RGB-D reconstruction under fast camera
motion, showing good performance [18]. However, existing state
estimators based on random optimization are mostly restricted
to low dimensional state space (e.g., 6 DoFs of camera motion).
To ensure a good exploration of state space, the amount of sam-
ples increases exponentially as the dimensionality grows [19],
[20], [21]. This makes random optimization computationally
prohibitive for INS, where a much higher dimensional state
space (e.g., 18 DoFs of IMU states) is involved.

In this work, we present active subspace random optimization
for solving the high-dimensional nonlinear state estimation of
INS. Our key observation is that only a fraction of the dimensions
have a significant impact on the cost function and the subset
of active dimensions changes dynamically over iteration steps.
Similar findings have also been reported and exploited in al-
ternative optimization frameworks [21], [22], [20]. During the
iterations of random optimization, we dynamically identify ac-
tive dimensions based on the sampling efficiency of a dimension.
Given a dimension, its sampling efficiency is measured by the
ratio of the amount of state update over the range of search along
that dimension. The amount of state update is probed with a set
of presampled probing states.

With the active subspace, our method attains a good bal-
ance between the optimality and the computational cost of
the optimization. As such, all states are estimated within the
optimization framework; no specially designed initialization
scheme is needed as in [15], [23], [24]. The main bottleneck of
random optimization is the iterated sampling and the evaluation
of candidate solutions (states). To accelerate the randomized
search, we opt to presample states in the solution space, forming
a presampled state template (PST), and then move and rescale the
PST to explore and search in the solution space, similar to ROSE-
Fusion [18]. Unlike ROSEFusion, where PST is constructed with
uniform sampling, we take advantage of the prior knowledge of
INS state space and work with different sampling spaces for
different components (dimensions) of the states. In particular,
orientation and gravity vector are sampled in SO(3), velocity
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Fig. 1. Tracking and mapping result of our DIO for a sequence drawing
letters “DIO.” The sequence is captured with a hand-held depth camera under
challenging conditions including quick start (no slow-motion warm up; the red
point and the red RGB frame), fast camera motion (blue, zoom in to see the
motion blur), low light (orange). The tracked camera trajectory is depicted with
green curve and the scene is reconstructed with TSDF-based depth fusion.

and position with uniform distribution, and IMU measurement
error from Gaussian distribution. Furthermore, we devise dif-
ferent updating (moving, rescaling, and weighted averaging)
mechanisms for the three sampling spaces for better efficiency.

Although our optimization approach is general and adaptable
to vision-inertial odometry (VIO), we focus on depth-inertial
odometry (DIO) in this work (see Fig. 1). While VIO has
a large body of prior works, DIO has not been extensively
studied, partly due to its special challenges (e.g., lack of reliably
trackable features). However, DIO has several advantages such
as robustness to poor lighting condition and resilience to motion
blur caused by fast motion, making it especially important to
robotic applications. We adopt the truncated signed distance
field (TSDF) based mapping framework [25], [26] which allows
for depth-based fusion. More importantly, TSDF map facilitates
a purely depth-based cost function via measuring the depth-
TSDF conformance [27]. The cost function is parallel-friendly
and admits a GPU implementation, enabling fast evaluation of
candidate solutions in random optimization.

We have evaluated our method on several benchmarks. On the
ETH3D benchmark [28], our method achieves the state-of-the-
art accuracy under fast camera motions (i.e., shaking cameras).
We also contribute a robotic arm shaking (RAS) dataset of
robot-operated fast-motion sequences with quality ground-truth
trajectories. On RAS, our method shows high robustness and
succeeds on all the sequences with low light conditions and high
speed motions. Extensive quantitative and qualitative compar-
isons also demonstrate the significant advantage of our method
over the state-of-the-arts, under extreme conditions and without
a slow-motion warm up for initialization. All source code and
dataset will be released.

Our main contributions include the following.
1) We present a practically robust tightly coupled solution to

DIO based on random optimization.
2) We propose to utilize active subspace random optimization

to tackle the high-dimensional state estimation problem in
inertial-based navigation systems.

3) We propose a carefully designed PST through exploit-
ing the prior knowledge of INS to ensure high sampling
efficiency.

4) We have implemented a navigation system based on our
technique. It realizes robust and accurate tracking under
challenging conditions such as low light and fast camera
motions, without needing a slow-motion warm up for
initialization.

II. RELATED WORK

a) Depth Inertial Navigation System: There is a large body
of literature on INS. We decide to review only those which
are highly related to our work. In [29], a tightly coupled EKF
framework is proposed for pose estimation and IMU-RGBD
extrinsic calibration. Since then, most works focus on how to
incorporate depth information into VIO frameworks. Represen-
tative approaches are formulated either as filters [30], [31] or
with second-order optimization [23], [24], [32], [33].

In the context of DIO system, however, there are only a few
existing works, which leverage the ICP technique and develop
loosely coupled [34], [35] or tightly coupled [32] navigation
systems. Departing from these works, our work contributes the
first random optimization framework for tightly coupled DIO,
achieving highly robust and accurate tracking under various
extreme conditions.

b) State Estimation Based on Sampling-Based Optimiza-
tion: In the robotics and computer vision community, perhaps
the most commonly used sampling-based algorithm is particle
filter, and more specifically, Rao–Blackwellized particle filter
(RBPF) [36]. There has been extensive research on particle filter
based SLAM [37], [38], [39] and object pose tracking [40], [41],
[42], [43]. Different from these works in which sampling-based
algorithm is used for sequential state estimation across time
steps, our method performs sampling-based random optimiza-
tion to estimate the state within a single time step.

Another line of optimization approaches is evolutionary algo-
rithms (EAs), including particle swarm optimization (PSO) [44],
evolution strategies (ESs) [45], random optimization (RO) [46],
etc. These methods involve heuristically designed sampling and
updating strategies, often requiring extremely large comput-
ing resources. EAs are limited to low-dimensional and time-
insensitive scenarios. Recently, Zhang et al. [18] proposed an
online dense reconstruction method in which the core is 6-DoF
camera tracking based on RO powered by PST. We substantially
extend this work to deal with the high dimensional solution space
of DIO through leveraging active subspace.

c) Active Subspace for High-Dimensional Optimization:
High dimensional solution space induces very high computa-
tional and memory cost, and usually causes poor convergence.
To tackle this difficulty, active subspace techniques and exten-
sions [47] are becoming popular for dimensionality reduction on
the fly during optimization. A classic method of obtaining active
subspace is random projection [48], [49], which is simple but
hard to be effective with a totally random selection. Recent works
advance the active subspace idea [19], [21], [22] by evaluating
the importance of different dimensions based on various heuris-
tics or priors. Our method, sharing the same insights, identifies
active subspace via measuring the sampling efficiency along
different dimensions.
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III. METHOD OVERVIEW

In this article, we introduce a novel method for DIO leveraging
active subspace random optimization. Our system is based on
a platform, on which we mount a depth sensor and a 6-axis
inertial measurement unit (IMU). We assume that the trans-
formation between the camera and the IMU is given by prior
calibration. Our proposed method takes as inputs a live stream of
depth observations along with IMU measurements and outputs
the 6 DoF pose of the platform, namely 3-D orientation and
3-D position. We formulate DIO as an online optimization
problem and construct a cost function based on depth-TSDF
conformance [18] and IMU measurement residuals. Compared
with ROSEFusion [18] that is depth-only, our method further
leverages IMU measurement and thus incorporates the IMU
related states into our state space, resulting in a high state space
dimensionality. To achieve robust and real-time optimization
for this high dimensional state estimation problem, we propose
active subspace random optimization method. Note that our
method does not rely on RGB images, which are shown in the
article only for visualization.

Our methodology is structured as follow: We formulate the
optimization problem of DIO in Section IV by first introducing
the variables to be estimated (see Section IV-A and Section IV-
B), also called candidate states in random optimization. To
evaluate the candidate states, we leverage the depth-TSDF con-
formance (see Section IV-C1) and IMU measurement residual
(see Section IV-C2) to construct our tightly coupled cost function
(see Section IV-D). Based on the evaluated candidate states,
we present the random optimization for state estimation (see
Section V). After a brief review of the random optimization
framework (see Section V-A), we then introduce how to extend
the random optimization to high dimensional states estimation
by the predefined state space (see Section V-B) and active
subspace (see Section V-C).

IV. OPTIMIZATION FORMULATION

A. Notations and Definitions

In this article, we deploy the following notations: superscripts
(·)W , (·)C , and (·)B denote variables in the world frame, camera
frame, and IMU body frame, respectively; subscripts (·)C and
(·)B denote quantities associated with the camera and the IMU
body, respectively; (̂·) denotes the values of measurements, in
contrast with their true states (·); subscripts ()t and ()k represent
quantities at the time step t of the high frame-rate IMU measure-
ments and quantities at the kth camera frame, respectively.

Then, in the world frame, we can represent the position, ve-
locity, and orientation of the IMU aspW

B ,vW
B ,qW

B , respectively.
As the IMU measurements are done in its body frames, we can
represent the measurements as ω̂B

t from the gyroscope and âBt
from the accelerometer and their corresponding measurements
errors as EB

a and EB
g , respectively. We further denote gravity

vector as gW .
In this work, we are only interested to estimate the states at

the frame rate of the depth camera. At the kth camera frame, the

state xk to be estimated is shown as the following:

xk =
[
pW
Bk

T
,vW

Bk

T
,qW

Bk

T
,gWT

,EB
ak

T
,EB

gk

T
]T
. (1)

Note that, our method only samples the imaginary part of the
unit quaternion to represent rotation. Our actual state space is
therefore 18-DoF. All the states, including gravity vector gW ,
are estimated by the random optimization framework without
the need for specifically designed initialization like [15], [23].

B. IMU Kinematic Model

Following the existing works [1], [15], we adopt the IMU
model as shown follows:

âBt = aBt + qB
W ⊗ gW +EB

at

ω̂B
t = ωB

t +EB
gt

EB
at

= bB
at

+ nB
at

EB
gt

= bB
gt
+ nB

gt
(2)

where qB
W = qW

B
−1

is the corresponding quaternion for the ro-
tation from the world frame to the IMU body frame,⊗ represents
the Hamilton quaternion multiplication, the measurement errors
EB

t (can either be EB
at

or EB
gt

) is assumed to be comprised of
an bias term bB

t (i.e., bB
at

or bB
gt

) and an additive noise term nB
t

(i.e., nB
at

or nB
gt

).
Here, we assume the additive noise nB

t are white Gaussian
noise, i.e., nB

at
∼ N (0,σ2

na
), nB

gt
∼ N (0,σ2

ng
), and the bias

terms of gyroscope and accelerometer are modeled as ran-
dom walk, i.e., ḃB

gt
= bB

gt
− bB

gt−1
∼ N (0,σ2

bg
), ḃB

at
= bB

at
−

bB
at−1

∼ N (0,σ2
ba
). Assuming noises from different sources

and different time steps are independent, we can derive that the
measurement errors EB

t are also random walks

ĖB
t = EB

t −EB
t−1

= bB
t−1 + ḃB

t−1 + nB
t − bB

t−1 − nB
t−1

= ḃB
t−1 + nB

t − nB
t−1 ∼ N

(
0,σ2

b + 2σ2
n

)
(3)

We further assume, at time step 0, the initial measurement errors
are from Gaussian distributions, i.e., EB

0 ∼ N
(
0,σ2

E

)
.

C. Cost Function Terms

In this section, we describe the cost function terms of the
optimization problem for state estimation. To ensure the state
estimation is robust to low lighting conditions or motion blur,
we propose to incorporate the following depth-based cost terms
in our cost function.

1) Depth-TSDF Conformance: Given the depth map Idk of
frame k, and the so-far constructed TSDF ψ : R3 → R, the
depth-TSDF conformance measures how well the 3-D point
cloud back-projected from Idk aligns to the zero-crossing surface
of ψ, similar to [18] and [27]. The back-projection is based on
the camera pose. Our goal is to find the camera pose [qW

Ck
|pW

Ck
]

that best fits the depth map Idk into the TSDF, whereqW
Ck

andpW
Ck
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are the orientation and position of camera in world coordinate,
respectively.

For a pixel (i, j) and its corresponding depth value Id(i, j),
we can obtain the corresponding 3-D point pC

ij in camera coor-
dinate system by back-projection. Then, we can transform this
3-D point to the world frame using pW

ij = qW
C ⊗ pC

ij + pW
C .

For a newly captured frame, we fit only the overlapping area
observed by both the current and the previous frames to avoid
overestimation of fitness [18]. We compute the overlapping area
Ok of the depth frame Idk as

Ok =
{
(i, j) | πk−1(πk)

−1[(i, j)] ∈ Idk−1

}
(4)

where the πk is the projection matrix of frame k. Note that,
in (4), we use an approximate overlapping area between the
consecutive frames (πk−1, πk). Under the online tracking, the
transformation between consecutive time instants is relatively
small (tens of centimetres or degrees) even under fast motion,
meaning that overlapping area between consecutive frames is
large. In our implementation, a rough πk can be initialized with
IMU propagation and then updated with camera pose after every
iteration step during the optimization.

We then seek to find the camera pose [qW
Ck

|pW
Ck

] such that
the overlapping 3-D points lie as close as possible to the zero-
crossing surface {x|ψ(x) = 0} of TSDF. Following the same
assumption in [27], the depth measurements contain Gaussian
noise and that all pixels are independent and identically dis-
tributed. Therefore, the depth-TSDF conformance can be de-
fined as

r̂D(xk) =
∑

(i,j)∈Ok

ψ
(
qW
Ck

⊗ pC
ij + pW

Ck

)2

qW
Ck

= qW
Bk

⊗ qC
B

pW
Ck

= qW
Bk

⊗ pC
B + pW

Bk
(5)

where the transformation between the camera and the IMU
[qC

B |pC
B ] is fixed and known from prior calibration. Finally, we

can normalize the depth-TSDF conformance by the number of
valid points in the overlapping area

rD(xk) =
r̂D(xk)

|Ok|
. (6)

The main advantage of the depth-TSDF conformance [see (5)]
over existing methods is that it is correspondence-free, saving
the need for descriptor matching. This also makes it robust to
low lighting conditions or motion blur. Besides, the depth-TSDF
conformance is parallel-friendly, which could be efficiently im-
plemented with GPU for fast candidate states evaluation.

2) IMU Measurement Residual: Sharing the same insight
with the primary INS works [12], [15], we perform IMU mea-
surement residual minimization. At the frame k, we can obtain
the IMU measurements âBt=tk−1:tk

and ω̂B
t=tk−1:tk

between two
consecutive depth camera frames k and k − 1, where tk−1 and tk
are the corresponding time steps of camera frame k − 1 and k in
the IMU rate. We can then propagate the IMU measurements to
obtain the estimated rotation q̂W

Bk
= Q(xk−1, ω̂

B
t=tk−1:tk

,EB
ak
)

and position p̂W
Bk

= P (xk−1, â
B
t=tk−1:tk

, ω̂B
t=tk−1:tk

,EB
ak
,EB

gk
),

Fig. 2. Our cost function is composed of depth-TSDF conformance and the
IMU measurement residual. Given a pose of the depth camera, a point cloud
is back-projected from the depth map and embedded into the TSDF volume.
The pose that causes the best alignment between the depth and the TSDF is the
optimal solution. The transformation between the camera and the IMU is fixed.

where P (·) and Q(·) are the mid-point propagation function
introduced in [15], and EB

ak and EB
gk are included in our state xk

and represent the average IMU measurement error from tk−1 to
tk. Assuming that the time interval between consecutive frames
is nearly constant, it can be proved that both the two errors are
approximative to random walk [see (3)] [50]. Therefore, we can
define the IMU measurement residual as

rT (xk) = pW
Bk

− p̂W
Bk

rR(xk) = θ
(
qW
Bk

−1 ⊗ q̂W
Bk

)
(7)

where the θ(q) extracts the rotation angle of a unit quaternion.
For discrete-time implementation, we leverage the same mid-
point algorithm as [15].

D. Formulation of Cost Function

The cost function (see Fig. 2) is composed of the depth-TSDF
conformance (5) and the IMU measurement residual (7)

x∗
k = argmin

xk

{w1rD(xk) + w2rR(xk−1,xk)

+ w3||rT (xk−1,xk)||2
}

(8)

where w1, w2, and w3 are the weights of each cost term. We
empirically set the weights as w1 = 1, w2 = 1, and w3 = 0.1,
considering that the double-integration term rT has a relatively
large error, especially at the initialization stage. Note that, the
cost function does not require RGB inputs, making our method
naturally resilient to the low light conditions and motion blur.

V. ACTIVE SUBSPACE RANDOM OPTIMIZATION

To track the 6-DoF pose, we only need to solve the op-
timization problem in (8) at each camera frame. However,
directly optimizing (8) brings three major challenges to state
estimation algorithms. First, some states, like gravity vector and
velocity, are unknown at initialization. Existing works require
specially designed initialization scheme such as visual-inertial
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alignment [15]. Second, gradient can be undefined when the
depth map is out of the valid scope of TSDF under very large
camera motion. Third, high dimensional state estimation is
highly computationally consuming, especially for sampling-
based algorithms. To mitigate the challenges, we propose active
subspace random optimization by sampling candidate states
only within active subspace. We first briefly review random
optimization, then introduce PST and how to leverage them
to replace random sampling, and finally describe our proposed
active subspace random optimization method.

A. Random Optimization

Random optimization is a class of optimization methods,
which does not require computing gradients of the objective
function and thus is also known as derivative-free optimization.
For a general optimization problem minx∈Ω g(x), where x
represents optimization variables or the states being optimized
in the state space Ω and g(·) represents the objective function,
the basic idea of random optimization is to iteratively sample
around the current optimum x∗ and move the optimum to the
best found position in the state space. More specifically, in each
step of the optimization, a set of candidate states {x(i)}i=1:N

are sampled from a predefined distribution, usually Gaussian
distributions, centered round the so-far reached optimum, i.e.,
N (x∗,Σ).

In this work, we adopt a fast and robust random optimization
method introduced in [18], which we provide a brief recap below.
The key idea is to presample a set of random states {x(i)

PST }i=1:N

around the origin of the state space Ω, which we refer as PST,
denoted by ΩPST, and use them to replace true random sampling
operations used in each iteration of random optimization, for
saving time in performing samplings and accelerating optimiza-
tion.

At each iteration step j, Zhang et al. [18] proposed to evolve
ΩPST in the following way: it rescales each presampled states
xPST from ΩPST anisotropically using a scaling factor rj ∈ RD

(D = 6 for [18] but in our work D = 18) and then add each
of them as a shift to the current optimum x∗

j−1 of step j − 1,
yielding a new set of candidate states Ωj in replacement of true
random sampled states around x∗

j−1

Ωj =
{
x
(i)
j |x(i)

j = rj−1 � x
(i)
PST + x∗

j−1

}
(9)

where � represents element-wise multiplication. We can then
evaluate all the candidate states {x(i)

j | x(i)
j ∈ Ωj} using the

objective function g(·), followed by elitist selection that keeps
only the ones that have lower costs than the previous optimum
and forms Ωe

j . Finally, we perform a weighted average among
the selected candidate states, where the weight is proportional
to the cost margin. This procedure can be formally described as
follows:

Ωe
j =

{
x
(i)
j ∈ Ωj | g

(
x
(i)
j

)
< g

(
x∗
j−1

)}
w(i) = g

(
x∗
j−1

)
− g

(
x
(i)
j

)

w̄(i) = w(i)

/ ∑
x
(i)
j ∈Ωe

j

w(i)

x∗
j =

∑
x
(i)
j ∈Ωe

j

w̄(i)x
(i)
j . (10)

Once the optimum is updated, we can easily adjust the scaling
factor based on the dimensional deviation (v = x∗

j − x∗
j−1) and

objective/cost function g(·)

r̂j = g
(
x∗
j

) v

||v|| . (11)

Here, v
||v|| drives the candidate states toward the so far best

state, which can be scaled by the current best value of objective
function g(x∗

j). This means that the search range is adaptive to
the performance of optimization, which helps the optimization
converge more stably. In [18], rj = r̂j . Our method proposes
further adjustment for computing rj to control the active sub-
space (see Section V-C)

By leveraging this variant of random optimization, Zhang
et al. [18] showed impressive performance for low dimensional
state estimation problem, e.g., 6-DoF camera tracking. However,
we identify two issues of [18] when applying it to our problem:
1) to generate ΩPST, [18] treats all state variables as Euclidean
variables and always perform uniform sampling, which is prob-
lematic for rotations and other variables introduced in our state;
2) when the dimensionality of the state space increases, the
amount of sampled candidate states to cover the state space
needs to increase exponentially, making this method intractable
for high dimensional state estimation problem, such as in INS
and this work. We will tackle these two issues separately in
Section V-B and Section V-C.

B. Sampling and Evolving ΩPST for DIO

For depth inertial odometry, our state x =[
pW
B

T
,vW

B
T
,qW

B
T
,gWT

,EB
a
T
,EB

g
T
]T

contains both

Euclidean and SO(3) variables that follow a variety of
distributions. To presample them and generate our ΩPST, we
want to make reasonable assumptions about the underlying
distributions for each state variables, unlike [18] always uses
uniform distribution. Our general guideline is that, since
states in ΩPST will be used as shift to the current state, their
distributions need to resemble the distribution of the change in
each state variable between two camera frames.

Here, we can categorize the state variables into following three
types.

1) Unit Quaternions: The orientation qW
B is a quaternion

representing a rotation in SO(3). Gravity vector gW can also be
seen as a rotation multiplies [0, 0, g]T (g = 9.81). Considering
arbitrary and rapid change in camera orientation, we thus assume
these quaternions follow uniform distribution in SO(3). We
then adopt the uniform rotation sampling algorithm proposed
by [51]. And we use the positive-dot-product to check that all
the quaternions are on the same hemisphere, which indicates the
quaternions are continuously distributed. Note that, for these unit
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Fig. 3. Visualization of the rescaling of the state template (sphere) correspond-
ing to rotations (represented with quaternions). The color map on the sphere
depicts the Gauss map of the rotations. Initially, the rotations are perturbed
with a random scaling (a). The dispersion of the rotations then converges over
iteration steps (b). (c) shows anisotropic rescaling. (a) Initially scaled rotation
state template. (b) After uniform scaling. (c) After nonuniform scaling.

quaternions, we only use their imaginary part [qx, qy, qz] as state
variables.

2) Position and Velocity: Due to the same reason, we assume
the change in velocity vW

B and position pW
B may follow a uni-

form distribution, we thus sample the corresponding variables
from uniform distribution U([−1, 1]).

3) IMU Measurement Errors: According to (3), the change
in IMU measurement errors EB

a ,E
B
g follow Gaussian distri-

bution, so we presample them from N (0, σEa
= 10−3) and

N (0, σEg
= 10−4), respectively. To ensure unbiased sampling,

we use 3-D Poisson disk sampling [52].
As vW

B , pW
B , EB

a ,E
B
g are all Euclidean variables, we can use

the previous way in [18] to evolve their states (9) and update
state x (10). Note that both uniform distribution and Gaussian
distribution are closed under scaling and translation operations.

However, it is highly nontrivial to evolve and update unit
quaternion variables, i.e., qW

B ,gW .
To scale a unit quaternion q = qw + qxi+ qyj+ qzk, we

devise a scale function φq(q, rq) : S3 × R3 → S3, where S3 is
the unit hypersphere that quaternions lie in. The imaginary part
of q′ = φq,rq output is simply the element-wise multiplication
of the imaginary part of the quaternion and rq , and the real part

is then computed usingqw =
√

1− q′2
x − q′2

y − q′2
z Finally, we

can evolve the quaternion variables in the following way.

q
(i)
j = φq

(
q
(i)
PST, rjq

)
⊗ q∗

j−1 (12)

where q
(i)
PST, q∗

j−1, rjq are the corresponding portions in x
(i)
PST,

x∗
j−1, rj . In fact, rq always stay between 0 and 1, leading to

a decrease in the angle of rotation and attracting the rotation
axis of q to ||rq|| (see Fig. 3). Finally, to update a quaternion
variable qj in x∗

j , we need to perform weighted averaging over
many quaternions, which we propose to do as the following:

q̂j =
∑

x
(i)
j ∈Ωe

j

w̄(i)q
(i)
j

q∗
j =

q̂j

||q̂j ||
. (13)

There are other options for quaternions averaging, like Eigende-
composition [53] or high dimensional rotation averaging [54].
However, for a relatively small rotation (tens of degrees) under

Fig. 4. Change of the sampling efficiency [see (14)] of the 18 dimensions of
the solution space over increasing iterations.

the online tracking, the directly averaging (13) shows com-
parable performance with the fastest calculation (2.35x faster
than [53] and 8.17x faster than [54]).

C. Active Subspace

To tackle the large dimensionality (18 DoFs) with random
optimization, we propose the method of active subspace. More
specially, we evaluate which dimensions in the state space are
most crucial for the optimization and only optimize them.

We apply the sampling efficiency from sampling theory [55]
and extend it to the dimensional sampling efficiency. The idea
is that within the given sampling range/size, the favourable
samples should lie as further as possible to the sampling center,
which means these samples introduces more posterior knowl-
edge to the optimization. Given finite candidate sampling states
(x

(i)
d )d=1:D over given range rd, the dimensional sampling effi-

ciency ed of each dimensionality can be formulated as follows:

ed =
|x∗

d − x̄d|
rd

(14)

where the x̄d is the sampling center of each dimensionality (local
optimum at last step) and x∗

d is new optimum calculated by (10).
Based on ed, our method selects the top-k (in implementation,

we set k = 6) dimensions with highest ed as active subspace
Ωa. The active subspace represents the most crucial subspace
that can be used to replace the whole state space in random
optimization. But the dimensions in active subspace may not
stay high effiency, especially when close to a local optimal.
Therefore, we still maintain a small search size for inactive
dimensions and re-evaluate the ed in each step for updating
the active subspace. Here, we use the rd to control the active
subspace and inactive subspace

rd =

{
r̂d + ε, xd ∈ Ωa

ed
2r̂d + ε, xd /∈ Ωa

. (15)

The square term of the ed can significantly shorten the search
size of inactive subspace and the r̂ is calculated from (11). We
use a small number ε (10−3) as a lower bound of search size
to avoid degenerating dimensionality. The lower bound is far
smaller than camera motions, which suppresses the sampling
of inactive subspace while promoting that of activate one. This
helps avoiding local optima.
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Fig. 4 visualizes the change of the sampling efficiency of
different dimensions over increasing iteration steps. From the
visualization, we can see that the dimensions corresponding
to position contributes the most to the minimization of the
cost function, while those corresponding to IMU measurement
errors contributes the least. This means that the position part
of the candidate states are initially far from the optimum. As
the iteration proceeds, the sampling efficiency of all dimensions
reduces to a low level, indicating convergence of optimization.
In our implementation, we set the number of sampled candidate
states to 3072 at each iteration for a good trade-off between
accuracy and speed.

VI. EXPERIMENTS

The experimental evaluation is designed and conducted to
validate our key claims: first, the proposed active subspace
random optimization can achieve good optimality for the high
dimensional optimization problem of DIO; second, our DIO is
robust to low light conditions and fast camera motions without
the need of warming up initialization.

In the video of our supplementary material, we show live demo
of several challenging sequences. Especially on the camera
shaking sequences, our method is able to achieve perhaps the
fastest camera motion tracking ever seen for odometry in indoor
environments.

A. Experimental Setup

We evaluate the methods on three indoor scene benchmark,
including two public available benchmarks and one new bench-
mark, RAS benchmark, contributed by this work. All bench-
marks contain RGB, depth, and inertial measurements (though
our method does not use RGB images).

Existing Benchmarks:
1) The ETH3D benchmark [28] is captured by synchronized

global shutter cameras together with an Asus Xtion Live
Pro. We are especially interested in three challenging
sequences, namely camera_shake_1/2/3, which contain
severely fast motions without slow-motion warm up. For
a comprehensive evaluation, we also test on 12 less aggres-
sive sequences, named in four categories including sofa,
table, einstein, and mannequin_face. They are explicitly
marked as slow motion sequences in ETH3D.

2) The VCU_RVI benchmark [56] contains a set of sequences
captured by structure core under different environment
conditions. We take three most challenging sequences,
namely, lab-motion, lab-light, and bumper, which are cap-
tured under fast camera motions, low light conditions and
robot-scanning, respectively.

RAS Benchmark: To thoroughly evaluate different odometry
methods in the presences of fast motions, we curate a new bench-
mark, namely RAS. The RAS benchmark contains 24 sequences
captured by Azure Kinect DK. We intentionally use a different
depth sensor to the ones in the previous two datasets, which may
help examine the methods against different depth sensor quali-
ties. During capture, we fix the camera on a robot arm AUBO-i5
and move the arm following one pregenerated path, which was
pregenerated by human demonstration [57]. Unlike the existing

datasets, we keep the path constant as a control variable but
vary the lighting conditions (normal/low light conditions) and
motion speeds (fast/slow with the maximum linear speeds above
or below 2 m/s, respectively). The combination of two light
conditions and two motion speeds yields four different settings,
for each of which we capture six sequences to cover randomness
in depth and IMU measurements. We obtain the ground truth
trajectories using hand-eye calibration method [58].

Evaluation Metrics: Following the existing works [24], [33],
[56], we adopt the following evaluation metrics. 1) Absolute
Trajectory Error (ATE): It measures the root mean squared
distance between the ground truth and estimated trajectories.
If a dataset contains many sequences, we use mean absolute
trajectory error (mATE) to compute the mean ATE among all
the successfully tracked trajectories. 2) Success Rate (SR): It
is defined as the ratio of successfully tracked sequences to
total sequences and thus indicates the robustness of navigation
systems under challenging conditions. In both two metrics, a
tracking is successful if it satisfies both the accuracy condition
(ATE< 5 m) and the completeness condition for at least half
of the sequence. 3) Relative Pose Error (RPE): It evaluates
the relative pose differences between the estimated and the
ground-truth motion. This metric is well-suited for evaluating
local trajectory accuracy.

B. Quantitative Comparisons

1) Sequence camera_shake_1/2/3 in ETH3D: The three
camera_shake sequences mainly contain rapid shaking motions
and exhibit increasing moving speeds from camera_shake_1
to camera_shake_3. The shaking motions could cause signif-
icant difficulties in the initialization of inertial-aided methods.
We compare our method with previous state-of-the-art (SOTA)
RGB-D SLAM and inertial-aided methods based on traditional
optimization methods (e.g., Gaussian–Newton and Levenberg–
Marquardt). Besides, we also consider removing the dense pho-
tometric term of the tightly coupled RGB-D-Inertial SLAM [32]
to come up with a tightly coupled DIO baseline. However, as
the authors of [32] did not release their source code and the
associated data for evaluation, we tried our best to faithfully
implement their method and turn it into a depth-inertial version,
which we name as D-Inertial SLAM*. As shown in Table I, our
method achieves successful tracking with the highest tracking
accuracy on all three sequences.

Note that, all the other inertial-aided methods fail in all the
three sequences. The reason is that the warm-up step of the ex-
isting inertial-aided methods are quite vulnerable to fast motion
under which the input visual signals have been severely degraded
by motion blur and the elevated nonlinearity in the optimization
problem caused by large interframe rotations hampers their
optimization. On the contrary, our method does not rely on
RGB input and our random optimization demonstrates more ro-
bustness under high nonlinearity than second-order optimization
methods.

Compared with ROSEFusion [18], which is the previous
SOTA method on the three sequences and uses only depth,
our method further incorporates IMU measurements into the
optimization, taking the best of both worlds and thus leading
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TABLE I
RESULTS OF ATE ON CAMERA_SHAKE_1/2/3 SEQUENCES IN ETH3D

TABLE II
MEAN ATE (CM) ON 4 LESS AGGRESSIVE CATEGORIES INCLUDING SOFA,

TABLE, EINSTEIN AND MANNEQUIN_FACE OF ETH3D

to significant performance improvements, especially on the se-
quence camera_shake_3 with the fastest camera motion.

2) Slow Camera Motion Sequences in ETH3D: We have
tested our method on 12 less aggressive sequences of ETH3D in
Table II. They are explicitly marked as slow-motion sequences
with no warm-up initialization. Here, we only show the average
ATE of each category. The detailed results of the 12 sequences
are provided in the supplemental material. Compared with the
top two methods (BAD SLAM [28] and DROID-SLAM [63]),
our method attains comparable performance. Note that our
method does not include any postprocessing of global pose
optimization or loop closure, which were employed by the two
methods. Our method performs better than the inertial-based
methods (DUI-VIO [23] and D-Inertial SLAM* [32]), clearly
demonstrating its effectiveness in incorporating inertial infor-
mation without needing a warm-up initialization.

3) RAS: We evaluate our method against the SOTA inertial-
aided methods, including VINS-Mono, VINS-RGBD, and DUI-
VIO, on the 24 sequences of the RAS dataset under various
combinations of acquisition conditions: slow motions (S), fast
motions (F), normal lighting (L), and dark (low light) (D).
“All” means the average results of all sequences. As shown in
Table III, our method demonstrates strong robustness to low
light conditions and fast motions by successfully tracking all the
sequences while always maintaining the highest accuracy. Under
low light conditions, our method is the only working method
with perfect tracking, while all the other methods fail completely.

TABLE III
COMPARING THE SR AND ACCURACY (MEAN ATE (M)) OF FOUR METHODS ON

THE RAS BENCHMARK

TABLE IV
COMPARISON THE SR AND ACCURACY (MEAN ATE (M)) ON THE THREE

CATEGORIES OF THE VCU_RVI DATASET: BUMPER, MOTION, AND LIGHT

This is because our method does not rely on RGB input by
utilizing the depth-TSDF conformance as cost function, thus
being naturally independent on lighting conditions. This verifies
the necessity of choosing depth-only inputs under challenging
lighting conditions.

Under adequate lighting, we can see the switching from slow
to fast motion leads to severe performance degradation for the
alternative methods: VINS-Mono and VINS-RGBD both fail
more frequently and their ATEs increase by 661.3% and 104.1%,
respectively; the ATE of DUI-VIO also increases 195.7%. In
contrast, our method incurs only a slightly decrease in accuracy
and always maintains successful tracking (low ATEs). For the
persequence results, please refer to the supplementary material.

4) VCU_RVI Sequences (Lab-Light, Lab-Motion, and
Bumper): To avoid the bias induced by the quality of initializa-
tion, we skip the warm-up part and start from three uniformly
sampled timestamps. The average results are reported. “All”
means average results of all the three sequences. Note that ATE
(m) is measured only for successfully tracked sequences. The
results are demonstrated in Table IV.

Our method shows robustness over the three sequences, espe-
cially on the bumper sequences that contain severe camera shak-
ing when the wheeled robot moves on a bumpy ground plane.
However, on the sequences of lab-light and lab-motion whose
trajectories contain multiple loops, the accuracy of our method
is lower than the alternative methods. The reason is due to the
lack of global pose optimization or loop closure in our method
and these postprocessing can be the following future works.
To reveal the effect of these postprocessing, we also compare
to a downgraded version of DUI-VIO which turns off the loop
closure and bundle adjustment, named as DUI-VIO-NoBA. This
is achieved by setting a small number of keyframes (n = 3). Our
method works significant better than DUI-VIO-NoBA in both
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TABLE V
COMPARISON OF SR AND ACCURACY (MEAN RPE (M)) ON SHORT SEQUENCES

SAMPLED FROM THREE VCU_RVI SEQUENCES

Fig. 5. Plots of cost value at different iteration steps over all frames for our
ASRO and GN. For our method, we also show the range of cost value of all
sampled states. The results are reported for both camera_shake_3 (fast motions)
and sofa_3 (slow motions).

robustness and accuracy. Furthermore, with two keyframes, the
DUI-VIO fails on all the sequences.

5) Comparison of Fast Initialization: To test the ability of
fast initialization, we evaluate our method and DUI-VIO on
uniformly sampled short sequence of 10 s, to see if they can
quickly start up. For each short sequence, we skip the warm-up
part and start from a uniformly sampled timestamp. The results
are reported in Table V. Note that RPE (m) is measured only
for successfully tracked sequences. Here, DUI-VIO adopts a
visual-inertial alignment algorithm for system initialization,
which is widely used in existing optimization methods [15],
[33]. Our method, on the other hand, does not require an explicit
initialization step. The results in Table V show that our method
achieves better performance on the short sequences with 100%
SR and thus faster initialization. More details can be found in
the supplementary material.

6) Comparison With Second-Order Optimization Method:
To verify the superiority of our method (ASRO) over the second-
order optimization methods, we conduct a comparison based
on the same cost function proposed in this work (8). To do
so, we build a Gauss–Newton (GN) based method where we
use second-order derivatives of depth-to-TSDF based objective,
similar to [27]. The two methods are tested on two sequences,
i.e., camera_shake_3 (fast motion) and sofa_3 (slow motion)
of the ETH3D benchmark. We compare the performance of
optimization by evaluating the converging cost (8) for each frame
with the same initial (center) state. To make a fair comparison,
we let both methods iterate sufficiently to converge.

Fig. 6. 2-D visualization of optimization process of our ASRO and GN for a
given frame. For our method, we plot the cost value (color-coded) of sampled
states at different iteration steps of optimization. The samples of each iteration
are circled with an grey ellipse. For GN, we plot the states being optimized with
black triangles (connected sequentially with black line segments). The right plot
in each row is a zoom-in view of the gray box in the left plot.

As shown in Fig. 5 (left, fast motion), GN quickly converges
to an average cost of 0.47, which is significantly higher than
0.217 of ours. The reason is that the least square optimization
finds difficulty in handling highly nonlinear situations, e.g., large
rotation, as found by many previous works [18], [64]. Another
reason is that, with the depth-TSDF based objective, only 68.3%
of the points of a depth frame lie in the valid region of TSDF
(within 20 cm from the surface) to ensure a valid gradient
evaluation. The limited gradient information makes GN easily
get stuck in local optima. In Fig. 5 (right, slow motion), the
cost values of GN are mostly larger than the medium half of
ASRO (see the slim boxes). This demonstrates that our method
outperforms the GN with a significantly faster convergence on
two separate sequences.

In the plots of Fig. 6, we provide a breakdown study of the
performance of ASRO versus GN. The plots visualize the pro-
gressive evolution of state estimation. The states are embedded
in 2-D using sparse random projection [65]. Starting with the
same initial state, GN quickly gets stuck in a local optimum
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Fig. 7. Visual results of tracking and mapping on four challenging sequences. For each sequence, we compare the tracked trajectories of our method and three
alternatives. The trajectory is not drawn when the method failed on a sequence completely. The 3-D reconstruction is obtained with our method, via meshing the
zero-crossing surface of the TSDF.

when initialized far from the global optimum. In contrast, ASRO
realizes a good trade-off between exploration and exploitation
and converges to much better local minima for both slow- and
fast-motion sequences.

C. Qualitative Results

1) Real Captured Sequences Under Challenging Conditions:
To demonstrate the superiority of our method under low light
conditions and fast camera motions without warm up initial-
ization, we further collect the following extremely challenging
trajectories using man-hold Azure Kinect DK.

a) Lab: One sequence was captured under fast camera mo-
tions but with slow motions at the beginning (blue point)
for warm up initialization. At the half of the scanning
(red point), the light was turned off [see Fig. 7 Lab (w/
warm up)]. We also get rid of the slow motions from the
beginning and start the methods directly under the fast
motions [see Fig. 7 Lab (w/o warm up)].

b) Meeting_room: two visual comparisons on challenging
sequences captured under fast camera motions (see Fig. 7
Meeting_room_I and Meeting_room_II).

Here, we provide qualitative results (please refer to the video
in supplementary material for more information). As shown
in Fig. 7 Lab [w/ warm up)], DUI-VIO, VINS-RGBD, and
VINS-Mono all fail after the light is turned OFF, due to their
failure to obtain informative visual features under low light
conditions. Meanwhile, in Fig. 7 Lab (w/o warm up), they also
suffer from erroneous initialization under the fast motions. And
even after the initialization, the output trajectory of DUI-VIO
still suffer from large drift under fast motions. In contrast, our
method performs well under all the challenging conditions.

Fig. 8. 3-D plots of trajectories of our method on camera_shake_1/2 [28]. The
ground-truth is indicated as the gray dash line. And the colors on our trajectories
encode the relative error against ground-truth (the closer to blue, the smaller).

2) ETH3D Sequences: For a more comprehensive study,
we further provide the results of our method under both the
fast-motion and slow-motion sequences on ETH3D benchmark.
For fast-motion sequences, we select the camera_shake_1 and
camera_shake_2 for evaluation. Specifically, We plot the 3-D
visual trajectories of our method against the ground-truth trajec-
tories in Fig 8 . Here, our method obtains robust tracking results
while the existing inertial-based methods failed (see Table I).
And a related breakdown study is conducted in Fig. 10, where
we plot the position and orientation errors along the time. From
Fig. 10, the well-aligned curves demonstrate that our method
can perform robust tracking under vibratory shaking motions.
For slow-motion sequences, we compare the trajectories of our
approach with DUI-VIO. This experiment shares the same slow-
motion sequences in Table II. The results are shown in Fig. 9.
Our approach demonstrates more accurate tracking performance
against DUI-VIO. Moreover, our trajectories are more complete
because of the fast and robust initialization at the beginning of
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Fig. 9. 2-D plots of trajectories of our method on slow-motion sequences of
ETH3D [28]. The ground-truth is indicated as the gray dash line. And the colors
of our approach and DUI-VIO are encoded in orange and blue, respectively.

TABLE VI
ABLATION STUDY OF VARIOUS DESIGN CHOICES, EXPERIMENT SETTINGS AND

ALGORITHMIC COMPONENTS

each given sequence. More results on ETH3D can be found in
the supplemental material.

D. Ablation Studies on the RAS Benchmark

In this section, we conduct ablation studies on the sequences
of RAS to validate the necessity of the two key designs of our
method, i.e., active subspace and predefined sampling space (see
Section V-B). In Table VI, we add the designs to the basic
random optimization framework (see Section V-A), including
the use of gyroscope readings (Gyr) and accelerometer readings
(Acc), and the utilization of active subspace (AS) and prede-
fined space (PS), tested for different DoFs of search space.
All methods share the same parameter setting, including the
number of sampling states (3072), the initial scaling factor
(following ROSEFusion [18]) and the maximum iteration times
(20). M1, M2, and M3 share the same random optimization
framework of ROSEFusion performing uniform sampling for
all dimensions. Comparing M1 with M2, we notice that simply
leveraging gyroscope measurements and thus incorporating EB

g

into the state space, forming a 9-DoF optimization, could lead
to higher accuracy. Here, the gyroscope provides a rough prior
of the change in rotation between consecutive frames, which
can benefit the optimization at the cost of a slight increase of
the dimensionality of state space. However, when we further

Fig. 10. Plots of position and orientation errors of our method versus ground-
truth on camera_shake_2.

Fig. 11. Plots of the average and the range of cost function values at different
iteration steps for our method (blue) and random optimization in 18-DoF state
space (orange).

introduce accelerometer measurements, as in M3, the state space
becomes 18D, immediately causing a significant performance
drop, with an accuracy even worse than M1. By introducing
active subspace in M4, the accuracy is greatly improved and is
further boosted by utilizing predefined state space (M5).

In Fig. 11, we plot the cost function values (IV-D) of all frames
and all sequences at different iteration steps with M3 and M5.
For each method, we plot both the average and the range of cost
values of all states (left) and the individual boxplot (middle and
right). In accord with the result in Fig. 11, we notice that our
method achieves fast convergence with higher confidence. And
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compared to the smooth convergence of M3, our method shows
the rugged convergence which could be caused by the active
subspace update.

E. Runtime

We have implemented our core algorithm based on C++ and
CUDA. Both the main optimization pipeline and the volumetric
fusion run on a workstation with an Intel CoreTM i7-5930 K CPU
@ 3.50 GHz × 12 with 32 G RAM and an Nvidia GeForce RTX
2080 SUPER GPU with 8 G memory. To enable flexible scan-
ning, we implemented a front-end program running on a laptop
for RGB-D-inertial measurements capturing, compressing, and
streaming to the workstation via WiFi. Our pipeline runs with
a framerate of 30 Hz for all shown test sequences. The readers
are welcome to watch our accompanying video.

VII. CONCLUSION

We have presented an efficient and robust DIO method based
on random optimization with active subspace. Through identi-
fying active subspace and sampling candidate states only within
it, our method is able to explore the 18D state space of DIO effi-
ciently and achieve good optimality under extremely challenging
conditions. Although, we adopt a depth-TSDF-based cost func-
tion based on which fitness evaluation is parallel-friendly, our
method is general and adaptable to other settings. In the future,
we would like to investigate the integration of visual features
especially when the camera motion slows down, to ensure high
tracking accuracy at all time, thus enjoying the strength of both
worlds. We would also like to exploit random optimization in
back-end optimizations such as bundle adjustment, pose graph
optimization. Finally, our method could be further improved by
more efficient sampling strategies like CMA-ES [66].
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