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1. Introduction

This supplemental material contains eight parts:

* Section 2 provides an overview and more statistics of
our FineSeg benchmark dataset.

» Section 3 gives extended results of the ablation study
(Figure 7 in the main paper).

* Section 4 reports the details of the subjective study of
our fine-grained segmentation in the ShapeNet chal-
lenge (see Section 4.2 in the main paper).

e Section 5 gives more details of the network in the
application of fine-grained structure driven image-to-
shape reconstruction (Section 5 in the main paper).
Meanwhile, we also demonstrate more results of this
application.

 Section 6 shows the effect of hierarchy construction on
the performance of fine-grained segmentation.

* Section 7 discusses complexity and timing of PartNet.

* Section 8 shows comparison of semantic segmentation
on the Princeton Segmentation Benchmark [2].

* Section 9 provides a visual comparison of seman-
tic segmentation against two non-learned hierarchical
segmentation methods.

» Section 10 shows more results of fine-grained hi-
erarchical segmentation on the FineSeg benchmark
dataset.

* Section 11 shows some sample results of semantic seg-
mentation on the ShapeNet part dataset.
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| aero | bike | chair | heli. | sofa | table

# shapes 600 | 140 | 1000 | 100 | 600 | 500
# avg. parts 8 7 10 15 9 6

Table 1. The detailed statistics of our FineSeg benchmark dataset.

2. FineSeg benchmark dataset

Table 1 reports the detailed statistics of our FineSeg
benchmark dataset. For each shape category, we list the to-
tal number of shapes and the average per-shape part count.

FineSeg dataset contains two versions, one clean set and
one noisy set. The clean set is obtained simply by point
sampling the 3D surface models. The noisy set is created by
adding a moderate level of random noise to the clean point
clouds, which can be used to test the robustness of segmen-
tation against noisy input. Specifically, we use Gaussian
noise with the bandwidth being 3% of the diagonal length
of shape bounding box. In Section 10, we show extended
results of fine-grained segmentation on both the clean and
noisy sets.

3. More results of ablation study

Figure | gives extended results of Figure 7 in the main
paper, on the remaining three categories, i.e., Chair, Heli-
copter and Table.

4. User study for ShapeNet challenge

We conducted a preliminary user study for the ShapeNet
Segmentation Challenge. Specifically, we evaluate the fine-
grained segmentation obtained PartNet on randomly picked
shapes from ShapeNet. In the study, each user is presented

aero | bike | chair | table
Ours 4.24 | 4.66 | 4.15 | 4.00
Baseline | 4.07 | 4.03 | 3.80 | 3.54

Table 2. Average user ratings for the segmentations obtained by
our and the baseline (w/o recursive context feature), on four shape
categoeries.
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Figure 1. Plots of training loss over iterations for the ablation study
of the two key node features (RCF and PSF) on three categories
(Chair, Helicopter and Table). For each category, we plot both
node segmentation loss (left column) and node classification loss
(right column).

with 30 queries. Each query first shows a 3D shape (in sur-
face rendering), and then a fine-grained segmented point
cloud of the shape. The user is asked to rate the quality
of the segmentation in the range from 1 (the poorest) to 5
(the best).

A total of 12 subjects participated in the study; these
subjects are all graduate students from various research di-
rections in computer science. Results are demonstrated in
Table 2, where the average ratings of segmentations are re-
ported. To contrast, we also report the average rating of
the segmentations obtained by a baseline method, i.e., our
method with the recursive context feature (RCF) disabled.
The segmentation results by the full and baseline methods
are shown in a random order. The results show that the seg-
mentations by our full method were generally more favored
by the human subjects.

5. The application network

The part refiner network used at each leaf node is com-
posed of two channels of PointNet, to encode the point
clouds of the part and the full shape, respectively. The re-
sulting two features are concatenated and fed into a four
layer fully-connected networks to generate a refined part

point cloud. To train this refiner network, we use recon-
struction loss computed as the Chamfer distance and the
earth mover’s distance between point clouds [3]. To gain
more training signals, we opt to train the refiner with a hier-
archical reconstruction loss, through a bottom-up composi-
tion of the refined part point clouds, following the hierarchy
obtained by PartNet segmentation. This way, we can com-
pute a reconstruction loss at each node of the hierarchy, with
the corresponding point cloud composed from the part point
clouds within its subtree.

Figure 2 shows the architecture of our application net-
work for fine-grained structure driven image-to-shape re-
construction. Figure 4~6 gives more results of reconstruc-
tion refinement by this method.

6. Effect of hierarchy construction

In the main paper, we mentioned that we build for each
training shape a part hierarchy using the heuristic method
proposed in [5]. To evaluate the effect of hierarchy con-
struction on the performance of fine-grained segmentation,
we compare in Table 3 the segmentation accuracy of Part-
Net trained with pre-built and random part hierarchies, re-
spectively. The results show that our method works better
with pre-built hierarchies.

mean | aero | bike | chair | heli. | sofa | table
ToU Random 58.7 | 80.4 | 63.3 | 56.3 | 53.5 | 36.4 | 62.4
> (0.25 | Pre-build | 84.8 | 95.2 | 97.0 | 91.1 | 83.0 | 65.4 | 77.2
TIoU Random 30.2 | 624 | 21.9 | 24.7 | 29.0 | 7.2 | 35.7
> 0.5 | Pre-build | 72.8 | 88.0 | 89.4 | 80.5 | 69.4 | 46.7 | 62.6

Table 3. Comparing the average precision (AP) of fine-grained
segmentation for our method with pre-built hierarchies (using the
method in [5]) and with random hierarchies. AP (%) is measured
with IOU threshold being 0.25 and 0.5 respectively.

7. Timing and complexity

The training time of PartNet for fine-grained segmen-
tation is given in Table 4. The training is conduced on
a NVIDIA GTX 1080Ti GPU. For fine-grained segmenta-
tion, PartNet test takes less than 1 second to process one 3D
shape; the computational time is proportional to the depth
of the hierarchy, thus the complexity is O(N log M) with N
being the total number of points and M the target number of
fine-grained parts. When doing semantic segmentation, the
computational cost is low since the target number of seman-
tic parts is usually small (< 10); such time is comparable to
the existing methods.

aero | bike | chair | heli. | sofa | table
Times (Hour) 10 2.5 21.0 2.2 11.1 7.6

Table 4. Training time of PartNet on different shape categories of
the FintSeg benchmark.
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Figure 2. Architecture of fine-grained structure driven image-to-shape reconstruction. Given an image, we first reconstruct a 3D point
cloud using the method in [3]. The point cloud is lack of detailed structures. To this end, we use PartNet to decompose the point cloud into
fine-grained parts. Each of the decomposed parts is then passed through a part refiner which is an auto-encoder. The auto-encoder outputs
a refined point cloud for the corresponding part. To train the part refiner, we use the ground-truth parts of the training 3D models, based
on the CD/EMD loss between point clouds [3]. To gain more training signals, we opt to train the refiner with a hierarchical reconstruction
loss, through a bottom-up composition of the refined part point clouds, following the hierarchy obtained by PartNet segmentation. This
way, we can compute a reconstruction loss at each node of the hierarchy, where the corresponding point cloud is composed from the part

point clouds within its subtree.
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Figure 3. A qualitative comparison of segmentation granularity of
different hierarchical methods. PartNet achieves more meaningful
segmentation for varying number of parts, compared to [1, 4].
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8. Comparison on the Princeton Segmentation
Benchmark

Princeton Segmentation Benchmark [2] is used for eval-
uating traditional segmentation methods. It is much smaller
(containing 380 models in 19 categories) and thus inade-
quate for training deep learning models. Nevertheless, it is
interesting to see how deep models trained with ShapeNet
perform on PSB. Table 5 provides a comparison over PSB,
which again demonstrates the advantage of our method.
Note that only four sets, i.e., aeroplane, chair, cup and ta-
ble, are tested, because these are the only categories that are
shared by ShapeNet and PSB. We would include this table
in the revision.

9. Visual comparison of semantic segmentation

Figure 3 provides a qualitative comparison of hierarchi-
cal segmentation granularity between our method and two
baselines [1, 4]. We would add such qualitative comparison
in the revision if requested.

Method mean | aero | chair | cup | table
PointNet 89.6 [82.0] 97.0 |84.6| 94.9
PointNet++ | 92.2 [ 84.4] 959 [90.8 | 97.6
O-CNN 90.3 |76.6|97.2 |89.7| 97.6
SSCN 90.2 | 73.8 ] 93.0 | 98.1 | 96.0
PCNN 91.9 |83.2|97.5|89.6|97.2
SPLATNet | 92.0 | 83.3 | 97.4 |91.1 | 96.1
PointCNN | 92.0 [84.1 | 96.5 | 89.4| 97.9
Ours 93.1 |85.5|96.7 {924 |97.9

Table 5. Comparison of semantic segmentation on four categories
of Princeton Segmentation Benchmark (shapes are point sampled).
Metric is part-wise ToU (%).

mean | aero | bike | chair | heli. | sofa | table
TIoU Clean | 84.8 | 95.2 | 97.0 | 91.1 | 83.0 | 65.4 | 77.2
> 0.25 | Noisy | 83.8 | 95.1 | 96.7 | 90.2 | 81.6 | 624 | 77.0
TIoU Clean | 72.8 | 88.0 | 89.4 | 80.5 | 69.4 | 46.7 | 62.6
> 0.5 | Noisy | 69.4 | 83.7 | 88.5 | 77.7 | 64.5 | 40.8 | 61.2

Table 6. Comparing the average precision (AP) of fine-grained
segmentation on the clean and noisy datasets. AP (%) is measured
with IOU threshold being 0.25 and 0.5, respectively.

10. More results of fine-grained segmentation

Figure 7~12 demonstrate the extended results of fine-
grained segmentation on the clean set of FineSeg, while
Figure 13 and 14 show the results of that on the noisy
set. From the results in Figure 13 and 14, our method is
robust against random noise in the point clouds. Table 6
further compares the average precision (AP) of segmenta-
tion on clean and noisy sets. It can be seen that the perfor-
mance drop is insignificant under a moderate level of ran-
dom noise.

11. Visual results of semantic segmentation

From Figure 15 to Figure 30, we show visual examples
of semantic segmentation on shapes from the ShapeNet part



dataset [6]. The quantitative evaluation can be found in the
main paper.
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Figure 4. A few chair examples on refining point clouds reconstructed from single view images, guided by the fine-grained segmentation
of PartNet. In each row, we show from left to right the input image, result of holistic reconstruction, fine-grained segmentation of the
reconstruction, and the final refinement result by our method.
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Figure 5. A few airplane examples on refining point clouds reconstructed from single view images, guided by the fine-grained segmentation
of PartNet. In each row, we show from left to right the input image, result of holistic reconstruction, fine-grained segmentation of the
reconstruction, and the final refinement result by our method.



Figure 6. A few bike examples on refining point clouds reconstructed from single view images, guided by the fine-grained segmentation
of PartNet. In each row, we show from left to right the input image, result of holistic reconstruction, fine-grained segmentation of the
reconstruction, and the final refinement result by our method.
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Figure 7. Fine-grained point cloud segmentation on clean dataset (Airplane). For comparison, we show for each shape the fine-grained
segmentation result (bottom) and the corresponding ground-truth (top).



Figure 8. Fine-grained point cloud segmentation on clean dataset (Bike). For comparison, we show for each shape the fine-grained
segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 9. Fine-grained point cloud segmentation on clean dataset (Chair). For comparison, we show for each shape the fine-grained
segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 10. Fine-grained point cloud segmentation on clean dataset (Helicopter). For comparison, we show for each shape the fine-grained
segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 11. Fine-grained point cloud segmentation on clean dataset (Sofa). For comparison, we show for each shape the fine-grained
segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 12. Fine-grained point cloud segmentation on clean dataset (Table). For comparison, we show for each shape the fine-grained

Ours \‘ l\}

segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 13. Fine-grained point cloud segmentation on noisy dataset (Airplane, Bike and Chair). For comparison,

we show for each shape
the fine-grained segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 14. Fine-grained point cloud segmentation on noisy dataset (Helicopter, Sofa and Table). For comparison, we show for each shape
the fine-grained segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 15. The visual result of semantic segmentation on ShapeNet part dataset (Airplane). For comparison, we show for each shape the

semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 16. The visual result of semantic segmentation on ShapeNet part dataset (Bag). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).



GT

Ours

GT

Ours

GT

Ours

Figure 17. The visual result of semantic segmentation on ShapeNet part dataset (Cap). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).



Figure 18. The visual result of semantic segmentation on ShapeNet part dataset (Car). For comparison, we show for each shape the semantic
segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 19. The visual result of semantic segmentation on ShapeNet part dataset (Chair). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 20. The visual result of semantic segmentation on ShapeNet part dataset (Earphone). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 21. The visual result of semantic segmentation on ShapeNet part dataset (Guitar). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 22. The visual result of semantic segmentation on ShapeNet part dataset (Knife). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 23. The visual result of semantic segmentation on ShapeNet part dataset (Lamp). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 24. The visual result of semantic segmentation on ShapeNet part dataset (Laptop). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 25. The visual result of semantic segmentation on ShapeNet part dataset (Motorbike). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 26. The visual result of semantic segmentation on ShapeNet part dataset (Mug). For comparison, we show for each shape the

semantic segmentation result (bottom) and the corresponding ground-truth (top).



Figure 27. The visual result of semantic segmentation on ShapeNet part dataset (Pistol). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 28. The visual result of semantic segmentation on ShapeNet part dataset (Rocket). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 29. The visual result of semantic segmentation on ShapeNet part dataset (Skateboard). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).
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Figure 30. The visual result of semantic segmentation on ShapeNet part dataset (Table). For comparison, we show for each shape the
semantic segmentation result (bottom) and the corresponding ground-truth (top).



