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Harmonic fields have been shown to provide effective guidance for a number of geometry processing

problems. In this paper, we propose a method for fast updating of harmonic fields defined on polygonal

meshes, enabling real-time insertion and deletion of constraints. Our approach utilizes the penalty

method to enforce constraints in harmonic field computation. It maintains the symmetry of the

Laplacian system and takes advantage of fast multi-rank updating and downdating of Cholesky

factorization, achieving both speed and numerical stability. We demonstrate how the interactivity

induced by fast harmonic field update can be utilized in several applications, including harmonic-

guided quadrilateral remeshing, vector field design, interactive geometric detail modeling, and handle-

driven shape editing and animation transfer with a dynamic handle set.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Much work on geometry processing centers around the
specification, computation, and utilization of functions and
operators defined on surfaces. These surfaces are predominantly
modeled in the discrete setting using meshes. A variety of
functions and functional operators defined on meshes have been
studied, laying the foundation and driving numerous applications
in mesh processing. Some of these fundamental geometric
applications include interpolation, sampling, filtering, remeshing,
surface mapping, and many more.

We are interested in a particular class of functions on
meshes—harmonic functions [2]. A harmonic function defines a
scalar- or vector-valued field, thus it is also called a harmonic
field. Harmonic fields can be defined as solutions to Laplace’s
equation with certain boundary conditions. In this paper, we
consider boundary conditions of the Dirichlet type. Over the
discrete manifold surface of a mesh, harmonic fields can
be computed by solving a linear system defined by a discrete
Laplace–Beltrami operator, incorporating boundary conditions
imposed at a set of sites. Site is a general term we use to refer to
the locations of attributes which specify the boundary constraints
of a harmonic field. Certain desirable properties of harmonicity,
such as smoothness and concentration of local extrema only at the
ll rights reserved.
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boundaries (the maximum principle), make harmonic fields
suitable to use in a number of applications [1,9,11,20,29,33,36,40].

Depending on the application, a site for a harmonic field can be
a control handle in mesh deformation [1,40], a feature point for
shape matching [36] or morphing [20], a boundary or other
constraint point for mesh parameterization [11,14,22], or a user-
specified critical point in harmonic-guided quad-remeshing
[9,29,33]. Common to all of these applications is the effective
guidance provided by the choice of sites and their resulting
harmonic fields. As site constraints directly influence results (see
Fig. 1), to be able to provide immediate visual feedback on the
guidance fields, while inserting, deleting, or moving these
constraints, can greatly improve quality control and design
efficiency.

Most previous use of harmonic fields has been restricted to the
static setting [1,9,11,20,29,33,36,40]. When processing large mesh
models with a dynamic set of sites, computing harmonic fields
can be a major bottleneck, impairing interactive applications.
Fisher et al. [12] propose interactive design of harmonic vector
fields which allows dynamic change of constraint vectors.
However, as we will discuss later, directly extending their method
of constraint enforcement to scalar fields will lead to bi-harmonic
rather than harmonic fields. Bi-harmonic fields, while preferred
by several applications, are undesirable in others, such as handle-
based shape deformation, since local extrema may be present at
locations other than the boundaries.

Our main contribution is a method for fast updating of
harmonic fields, both scalar and vector valued, under dynamic
site conditions. Note that the same technique also applies to
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Fig. 1. Iso-contour plots of harmonic fields over the high-genus children model (304K vertices), where red dots mark the chosen sites. Iso-contour strips are colored via

linear interpolation between blue (value 0) and yellow (value 1). Updating time is less than one second, allowing for exploration of varying design choices in real time.
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bi-harmonic fields. We utilize the penalty method [10,35,44] to
enforce constraints which leads to approximate solutions to the
Laplace equation. With suitably chosen penalty weights, the
approximation error of the obtained solution is negligible.
Compared to alternative formulations and execution of harmonic
field computation, including direct elimination [13], substitution
[9], and multi-grid solver [26], our method maintains the
symmetry of the Laplacian system and takes advantage of the
state-of-the-art algorithm of updating1 and downdating of
Cholesky factorization [7], allowing for real-time updating of
solutions to constrained Laplacian systems.

We demonstrate the utility of interactive harmonic field
update in a number of applications. These include harmonic-
guided quad-remeshing, vector field design, interactive geometric
detail modeling, and handle-driven shape editing and animation
transfer with a dynamic handle set. In all these examples, a user is
able to explore different design options guided by immediate
visual feedback in real time, while working with hundreds of
dynamic sites at a time, on very large mesh models.
2. Related works

There have been many uses of harmonic fields in geometry. In
the volumetric setting, Joshi et al. [19] use harmonic coordinates
for space deformation and Martin et al. [23] use harmonic
functions for volumetric parameterization and trivariate B-spline
fitting. More frequent use of harmonic fields still lies in surface
processing. In handle-driven surface deformation, both the
construction of reduced deformation models [1] and transforma-
tion propagation [1,40] have utilized scalar harmonic fields.
Interactive shape editing is achievable for large models since the
reduced model and the harmonic fields can be pre-computed and
reused during an editing session. However, when the handle set
changes, the required recomputation of harmonic fields hinders
performance.

Dong et al. [9] trace the integral lines of the gradient and co-
gradient of a harmonic field for quad-remeshing, where user-
specified sites serve as allowed singularity points. Tong et al. [33]
compute two piecewise smooth harmonic functions whose iso-
lines provide a quad-tiling. The key feature of their approach is an
extension to the discrete Laplacian operator to allow line-type
singularities and singularities with fractional indices, leading to
more design flexibility. For surface-based shape correspondence,
corresponding harmonic fields computed from matching sites on
1 Note that ‘‘updating’’ of Cholesky factorizations is a specific term in its

relevant literature and should not be confused with the general use of the word

‘‘update’’; the distinction should be clear from the context.
the two surfaces induce the mapping. Such examples include
harmonic maps [11], feature-based non-rigid 3D registration [36],
shape morphing [20], and animation transfer [40]. None of these
applications allow updating of harmonic fields under dynamic site
conditions.

To compute harmonic fields, one solves a linear system defined
by the Laplace–Beltrami operator, while incorporating hard

constraints at the sites. Direct elimination [13] leads to a
symmetric system to which Cholesky factorization applies.
However, it is difficult to update the factorization when the set
of sites change. An alternative is substitution [9], which results in
a non-symmetric system. A multi-grid solver [26] can be applied
and it is efficient, however there is no known fast scheme for
handling dynamic sites. James and Pai [18] take the capacitance
matrix approach to update LU decomposition. However, its
efficiency is far from what can be accomplished by updating
Cholesky factorization [5–7].

Sorkine et al. [31] enforce soft constraints at the sites in their
progressive construction of geometry-aware bases. Their
weighted least-squares (wLSQ) fitting solution, while smooth
and suitable for shape approximation, is generally not a harmonic
function. Instead, it is bi-harmonic which involves the bi-
Laplacian, corresponding to a variational solution to the mini-
mization of thin-plate energy [21]. On the other hand, the
resulting normal equation is a symmetric linear system which
admits efficient Cholesky and supports updates which involve
adding a new row to the system. This is essentially equivalent to
the rank-1 updating in [5].

Works on texture synthesis on surfaces [28,34,38], quad-
remeshing [9,33], and non-photorealistic rendering [15] have
relied on designated vector fields on a given mesh. Their focus has
been on how to obtain results based on a given vector field, which
typically results from user input. A recent and thorough
investigation into generic vector field design is due to Zhang et
al. [42]. A variety of field editing operations are supported. Vector
flow initialization, rotation, and reflection are per-vertex opera-
tions and do not require solving a system. Flow smoothing inside a
given region, which is later utilized for singularity movement and
pair cancellation, is carried out by solving a fresh constrained
Laplacian equation using a bi-conjugate solver each time. None of
these works addressed the problem of interactive field update or
exploration.

Most relevant to our work, Fisher et al. [12] compute harmonic
vector fields by interpolating discrete differential 1-forms given a
sparse set of wLSQ constraints on mesh edges. The same method
can work on 0-forms with wLSQ constraints on vertices to obtain a
scalar field. However, this leads to the same bi-Laplacian system
as in [31]. To facilitate interactive vector fields design, Fisher et al.
[12] utilize incremental updating of Cholesky factorizations [5,6].
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Our method exploits a more efficient updating/downdating
method based on the state-of-the-art dynamic supernodal
algorithm of Davis and Hager [7], allowing for insertion/deletion
of larger sets (up to hundreds) of sites on a dense mesh in real
time.
3. Harmonic fields and constraints handling

Let u be a harmonic function, a solution to the Laplace equation
Du ¼ 0 subject to Dirichlet boundary conditions. We regard u as a
scalar function for now; these functions are harmonic 0-forms
following Gu and Yau [14]. For vector-valued functions, each
vector component can be treated separately. In the manifold
setting, D is the Laplace–Beltrami operator. On a triangle mesh
surface, D can be discretized in several ways [24,37], sometimes
resulting in a non-symmetric Laplacian matrix. We adopt the
symmetric operator first derived by Pinkall and Polthier [27],
since it leads to symmetric and positive-definite linear systems
when computing harmonic fields, allowing for fast Cholesky
factorization. For a closed manifold triangle mesh, the matrix is
given by L ¼ D�W. W is defined by the well-known cotangent
weights:

Wij ¼
1
2ðcotaij þ cotbijÞ,

where aij and bij are opposite angles to edge ði; jÞ in the mesh and
if ði; jÞ is not an edge, Wij ¼ 0. The matrix D is a diagonal matrix of
the row sums of W.

Denote by S � f1;2; . . . ;ng the index set for the sites. The site
constraints dictate that uðiÞ ¼ ui ¼ si for all i 2 S, where si is the
prescribed value of the harmonic field at site i. Different ways to
incorporate constraints into the Laplace equation lead to different
linear systems. Direct methods are often used to solve the system
since factorization of the system matrix can be reused for different
constraint values at the sites. However, if the site locations change,
the factorization is no longer applicable. Re-factoring the system
is generally time-consuming. A better option is to update, for
which the choice of methods to enforce site constraints is critical.

We compare three commonly used methods for constraint
handling in solving partial differential equations (PDEs), e.g., via
the finite element method (FEM), and show that the penalty
method is the best choice in terms of efficiency, stability and
support for factorization updates.

Direct elimination. This method [13] eliminates from the
original system matrix the variables corresponding to the site
vertices with known constraints. The unknown harmonic field
values are computed by solving the re-arranged system,

LS̄S̄ LS̄S

LSS̄ LSS

" #
uS̄

uS

 !
¼

0

s

� �
,

where uS̄ is the vector of unknowns, uS ¼ ðuiÞ
T
i2S the vector of site

vertices, and s ¼ ðsiÞ
T
i2S the vector of corresponding pre-assigned

site constraints. LS̄S̄; LS̄S; LSS̄; LSS are corresponding block matrices
in the Laplacian L; LS̄S ¼ LSS̄. The solution is uS̄ ¼ �L�1

S̄S̄ LS̄SuS.
Since the modified system matrix LS̄S̄ is symmetric, efficient

Cholesky factorization can be applied. However, when the set of
sites change, so does the set of unknowns. It is difficult to update
an existing Cholesky factorization since the structure of the
system matrix changes with the unknowns.

Substitution. This method [9] does not eliminate any un-
knowns. It substitutes the diagonal element of each row
corresponding to a site with 1 and other elements in the row
with 0. Meanwhile, the corresponding entry of the right-hand side
vector is substituted with the constraint value. This results in the
linear system Au ¼ b, where

Aij ¼

Lij if ieS;

1 if i 2 S and j ¼ i;

0 if i 2 S and jai;

8><
>: bi ¼

0 if ieS;

si if i 2 S:

(
(1)

This sparse system is no longer symmetric and should be solved
via LU decomposition, which is less efficient than Cholesky. More
importantly, although an algorithm for updating LU factorization
with a change of site locations is known [18], the state-of-the-art
updating algorithm coupled with the supernodal method is
available only for Cholesky factorization; this is significantly
more efficient than updating of LU factorization.

Penalty method. This method finds extensive use and leads to
good results in solving constrained variational problems [35,44].
In computer graphics, it has appeared in shape approximation
[30], vector field design [12], and rigid body simulation for fast
and stable contact handling [10]. Other applications are found in
solving PDEs for fluid simulation and physically-based deformable
models. Here we show its effectiveness in constraint handling and
computation for harmonic fields.

Roughly speaking, the penalty method converts a constrained
optimization problem into an unconstrained one. Instead of
minimizing the original objective function, the penalty method
minimizes a weighted sum of this objective and a quadratic
penalty term involving the constraints. A well-known example is
the least-squares mesh of Sorkine and Cohen-Or [30],

u ¼ arg min
x
kLxk2 þ a

X
i2S

jxi � sij
2

( )

¼ arg min
x
fkLxk2 þ kP1=2

ðx� bÞk2g, (2)

where L is the unconstrained Laplacian matrix defined at the start
of this section, b is defined as in (1), and P is the diagonal penalty
(weight) matrix

Pij ¼
a if i 2 S and i ¼ j;

0 otherwise:

(

Least-squares meshes minimize a weighted sum of the 2-norm of
the Laplacian and the penalty term. The penalty factor, a, is used
to tweak the importance of constraint satisfaction. Differentiating
(2), we obtain the linear system

ðLTL þ PÞu ¼ ðL2
þ PÞu ¼ Pb. (3)

Note that we adopt a symmetric L, thus LTL ¼ L2. We see that the
above yields a bi-harmonic solution, corresponding to the
minimization of the thin-plate energy [21]. It is also the case
when using the method of Fisher et al. [12], interpolating 0-form
with least-squares constraints, to compute scalar fields. To obtain
constrained harmonic functions, we instead minimize the mem-
brane energy [21],

u ¼ arg min
x

1

2
xTLxþ

1

2
kP1=2

ðx� bÞk2

� �
,

leading to the linear system

ðL þ PÞu ¼ Pb. (4)

It can be shown that the solution to (4) converges to that of the
original constrained membrane energy minimization as a
approaches infinity, as long as matrix P is singular. This is the
case for us as the number of sites is smaller than the total number
of mesh vertices (also the dimensionality of L). While for the
penalty weight, we choose a ¼ 1:0� 108 for all the examples
demonstrated in this paper.

The penalty method has several advantages over the other two
alternatives. First, in contrast to substitution, the systems in (3)
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Table 1
Timing for re-computing (Comp.) versus updating (Updt.) harmonic fields,

recorded in seconds.

Model #V jSinsj jSdelj Comp. Updt.

Armadillo 173K 40 30 2.65 0.25

Armadillo 173K 200 0 2.65 0.63

Armadillo 173K 0 300 2.65 1.10

Raptor 42K 150 160 0.36 0.10

Raptor 84K 150 160 0.79 0.21

Children 304K 60 50 5.85 0.87

Children 304K 100 80 5.85 1.09

Children 304K 1 1 7.68 0.002

The machine is a 2.5 GHz Intel Core 2 Duo PC with 2 GB of RAM.
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and (4) are symmetric which admit fast Cholesky factorization.
Second, the method does not change the set of unknowns, in
contrast to direct elimination. In fact, it maintains the zero-
nonzero structure of the system matrix for different sets of sites.
Third, the addition of the diagonal penalty matrix in (4) can only
improve the conditioning of the system matrix and hence its
numerical stability. Last but not least, constraint handling via the
penalty method facilitates fast Cholesky updating/downdating [7].

Although the use of penalty can only provide approximate
constraint satisfaction, our experiments show that the resulting
approximate solution is sufficiently close to those obtained by an
exact method. In particular, maximum errors measured between
solutions obtained by the penalty method and solutions obtained
by the substitution method (an exact method) are in the order of
10�6, with our choice of the penalty weight a.

For all the applications considered in this paper, the highly
accurate solutions we obtain via the penalty method have proved
to be sufficient. Therefore, we believe that the penalty method is
the most advantageous in terms of speed, stability, and more
importantly, factorization updating. Note also that while fast
updating of Cholesky is applicable to both harmonic and bi-
harmonic solutions, we focus only on harmonic fields, as
harmonicity is desired in the applications considered.
4. Fast updating of harmonic fields

Lacking a fast harmonic field update scheme under dynamic
site conditions, previous shape processing works typically assume
that the boundary sets are generally not changed frequently. In
practice however, design flexibility and immediate visual feed-
back are vital in an interactive setting, which then require
dynamic site selection capabilities. This provides the user with
an important way to interact with harmonic fields and hence to
control shape processing behavior.

We adopt the supernodal algorithm [7] for efficient updating
and downdating of a sparse Cholesky factorization. Given an n� n

sparse, symmetric positive definite matrix A with Cholesky
factorization A ¼ GGT, supernodal methods gather the columns
of G that have an identical or similar nonzero pattern into a set of
dense submatrices, called supernodes of G. Exploiting supernodal
structures improves the locality for large sparse matrices, leading
to higher performance in computation and memory access.
However, most existing Cholesky updating schemes are non-
supernodal since both updating and downdating can change and
invalidate the supernodes. The algorithm we use [7] can detect
supernodes dynamically as updating proceeds.

If a multi-rank modification to A can be written in the form of a
matrix addition, i.e., Ā ¼ Aþ RRT for updating and Ā ¼ A� BBT

for downdating, the supernodal algorithm of [7] can be utilized to
update/downdate the Cholesky factorization of A. Using the
penalty method, the site constraints are imposed as an addition
of the penalty matrix to the Laplacian matrix (4). As a result,
inserting/deleting site constraints can be written as matrix
additions:

L þ P̄ ¼ L þ Pþ RRT
� BBT, (5)

where the modification matrices R and B have entries:

Rij ¼

ffiffiffi
a
p

; i ¼ j 2 Sins;

0 otherwise;

(
Bij ¼

ffiffiffi
a
p

; i ¼ j 2 Sdel

0 otherwise

(

with Sins the set of indices for newly inserted site constraints and
Sdel the indices of site constraints to be deleted. It is obvious that
the multi-rank updating procedure described above also applies
to the bi-Laplacian (3). As a result, our method also supports fast
updating of bi-harmonic fields.

The cost for update/downdate depends on the nonzero
patterns of L and the pattern of the update. For a rank-one
update/downdate operation, the cost is proportional to the
number of changed entries in the Cholesky factor G, which is
typically much smaller compared to the size of the mesh, leading
to efficient results. Note also that diagonal modification does not
change the nonzero patterns of the system matrix and its
Cholesky factor. As a result, the supernodes do not change and
our problem can be solved even more efficiently with the
supernodal updating algorithm, since no dynamic detection is
needed. More details about the algorithm can be found in [7]. The
updated harmonic field can be easily derived from the updated
Cholesky factorization via back substitution. An implementation
of the dynamic supernodes algorithm for Cholesky is available in
the CHOLMOD package [4].

In applications such as critical point selection for quad-
remeshing [9], feature selection for shape matching [36], and
boundary selection for parameterization [11,14,22], the number of
inserted or deleted constraints is typically small, making the
modification to the system matrix (5) low-rank. In the case of
handle-driven shape editing, although the handle regions may
contain a large number of vertices, harmonicity of the field
ensures that we only need to sample along the region boundaries,
as explained in Section 5.2. With our current implementation, we
are able to process models of sizes up to a few hundred thousand
vertices and update their harmonic fields with up to 300 inserted
and deleted sites in real time. Table 1 lists some timing statistics
comparing the updating of harmonic fields with our method and
computing them from scratch after inserting and/or deleting sites.
Evidently, updating can be done much more efficiently than re-
computation, especially when the number of changed sites is
relatively small.
5. Applications and results

We present several applications and visual results to demon-
strate effective use of dynamic harmonic fields.

5.1. Interactive harmonic field design

Several surface processing applications, e.g., quad-remeshing
and texture synthesis, can benefit from the use of harmonic fields
in an interactive setting. One can build and control a smooth field
over a mesh surface by placing and moving sites. In certain
applications, e.g., quad-remeshing [9], the sites are preferably
placed at feature points such as shape extremities. These
extremities, e.g., the top of the children’s heads and the wing tips
of the Pegaso in Fig. 2, can be extracted automatically via Poisson
[9] or average geodesic distance fields [41] defined over a mesh.
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Fig. 2. Iso-lines of harmonic scalar fields can be displayed to help steer quad-mesh design [9]. On high-genus models, interactive operations on site (critical point)

selections allow the user to obtain harmonic fields that are more conforming to the shape—(b, d). (a, c) Fields resulting from assigning sites to automatically extracted

shape extremities.

Fig. 3. Interactive design of harmonic vector fields on the Pegaso model (120K vertices). The user specifies a few constraint vectors (red arrows) over the mesh surface. Our

method updates the harmonic vector field accordingly in real time. With more constraints inserted, the resulting vector field is further refined everywhere (see right figure).

Note that we only plot a sparse set of vectors in the field to facilitate visualization; our update scheme is applied to the entire dense set of mesh vertices.
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However, not all useful features are easy to detect this way, for
instance, when extremities are merged into other parts of a shape
like the feet of the Pegaso and children models. These sites are
typically assigned manually to steer the mesh design. However,
when a model is high-genus or the number of sites is large, the
effect of site positioning on the resulting iso-lines becomes non-
intuitive, making the design difficult.

As a result, immediate visual feedback is especially useful in
interactive design of harmonic fields. Our fast updating method
allows us to provide three interactive operations: site insertion,
deletion, and movement, where the latter is implemented as a
sequence of site deletions and insertions. These operations are all
supported in real time even on a very dense mesh; see the last row
of Table 1. Fig. 2 compares the harmonic fields on two high-genus
models obtained by interactive design versus those computed
with extremities extracted from Poisson fields. Note that some
recent works on quad-remeshing utilize the Laplacian eigenfunc-
tions [8,16] instead of harmonic fields. It would be interesting to
see whether interactive control of singularity placements is
possible within such a framework.

The use of harmonic fields is not restricted to scalar-valued
attributes. Smooth tangential vector fields on surfaces have been
applied to control rendering of surfaces, e.g., in texture synthesis
[34] and non-photorealistic rendering [15]. By solving Laplace’s
equation for each direction separately, our method can compute a
harmonic vector field given a set of constraint tangential vectors.
Since the harmonic vectors are not necessarily tangential to the
mesh surface away from the constraint sites, we project them
onto estimated local tangent planes to obtain a tangential vector
field that is approximately harmonic. Although less accurate, our
method can be faster than [12] in terms of both computing and
updating due to the simple formulation and more advanced
updating method we employ. As a result, our method computes
approximate harmonic vector fields interactively and in practice,
these fields exhibit similar properties as true harmonic fields
andwork very well in applications such as texture synthesis. The
constraint vectors selected through such an interactive design
session can then be used to drive a more advanced method such
as [12] to more accurately compute the final vector field. We have
implemented four interactive operations to facilitate interactive
design of tangent vector fields: insertion, deletion, movement, and
rotation of the constraint vectors; see Fig. 3.
5.2. Shape deformation with dynamic handles

In handle-driven shape deformation, harmonic fields have
been used to guide the propagation of transformations from the
manipulated handles to the rest of the shape [1,40]. So far the
deformation model is based on harmonic fields pre-computed for
a set of prescribed handles. With our real-time harmonic field
update, dynamic handles are now possible. Dynamic handles add
more design flexibility and better control to interactive editing, as
the user is not constrained by a particular selection of the handle
set. Similarly, Laplacian [32] or Poisson [39] shape editing can also
benefit from our method which can update the Cholesky
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Fig. 4. Hierarchical editing of the raptor (84K vertices). (a) Shows our deformation model with colored dots representing deformation clusters. The raptor’s head is first

raised (b), using three coarse-level handles. Then, its left hand is manipulated to grasp the right one (d)–(f), with a new set of finer-level handles inserted. Finally, its tail is

curled up (g). If all the coarse and fine-level handles were selected at the start (c), the effect of raising the head would be limited (c), unlike the one shown in (b).

K. Xu et al. / Computers & Graphics 33 (2009) 391–398396
factorization efficiently whenever the user changes the region of

interests (ROI).
In what follows, we first use hierarchical shape editing as an

example to illustrate the above point. Then we discuss site
selection for harmonic field computation. Finally, we describe an
improved deformation model which can be more quickly updated
from a renewed harmonic field, further speeding up the use of
dynamic handles.

Hierarchical shape editing. In many real-world design scenarios,
an editing task has to be carried out in a hierarchical manner.
Refer to the editing example illustrated in Fig. 4. While raising the
raptor’s head is a higher-level pose change, best accomplished
with a coarse handle set, moving its hands or fingers belongs to
lower-level editing, which is more suitably controlled by a finer
set of handles.

In general, one cannot select all the handles across the editing
hierarchy at the beginning since anticipating the entire set of
handles that will be needed is difficult. Even if this were possible,
doing so would be limiting as the presence of finer-level handles
may limit the degree of freedom required to achieve higher-level
pose editing; see Fig. 4(c). A coarse-to-fine approach requires
finer-level handles to be inserted as editing proceeds, while these
handles should be removed when we move up the editing
hierarchy. With dynamic handles, the user can freely insert and
remove handles at any time without sacrificing interactivity.

Site selection. A handle typically encompasses a small region of
the manipulated shape, e.g., a hand of the raptor. For a dense
mesh, a single handle may contain a large number of vertices or
sites. If the number of sites to insert or remove is too large, real-
time update may not be achievable. Fortunately, harmonicity of
the guidance fields implies that treating all vertices in the handle
regions as sites is not necessary. It suffices to only sample along
the boundaries of the handle regions. Indeed, if the boundary
points of a connected region take on a common harmonic field
value and the region contains no other sites, then the whole
region must take on that value due to the maximum principle. In
practice, we only sample dozens of boundary vertices from each
handle as sites, ensuring real-time performance.

Improved deformation model. With a renewed harmonic field
due to handle insertion or deletion, generating plausible deforma-
tion over the whole mesh is still computationally demanding,
especially for a dense model and a non-linear approach to handle
rotations [1]. Thus the model representation needs to be reduced
so that expensive operations are only performed on the reduced
model, with results then propagated to all vertices.

An elegant reduced model utilizing harmonic fields is based on
extracting the fields’ iso-lines [1]. Our reduced model is built by
clustering sampled points with the same harmonic value into a
point set which we call a deformation cluster; see Fig. 4(a). Each set
of sites corresponding to a handle is also a cluster. Since sampling
point sets is easier than extracting iso-lines, our model is more
efficient to build. To each deformation cluster, we associate a rigid
transformation. The mesh is then deformed by linearly inter-
polating the transformations at the deformation clusters based on
a harmonic field. The clusters are sampled in overlapping fashion
so that transformation propagates via points shared between
neighboring clusters.

When the user drags a handle, we perform shape matching
[25] on the corresponding handle cluster to find the optimal rigid
motion for that handle. Due to cluster overlapping, the other
clusters obtain reasonable rigid motions, also via shape matching.
Keeping the local transformations rigid leads to detail-preserving
deformation. We replace polar decomposition adopted by Müller
et al. [25] by singular value decomposition (SVD), so as to ensure a
pure rotation factorization [17]. Precomputation is only needed
for shape matching. For each cluster, it only involves inverting a
3� 3 matrix. This cost is negligible compared to that of Cholesky
factorization and matrix multiplications as in Au et al. [1]. Overall,
combining a more efficient reduced model and shape matching
via SVD for pure rotation factorization, our deformation model can
be quickly updated from a renewed harmonic field.
5.3. Deformation transfer with dynamic handles

Harmonic scalar fields, computed on two meshes with mean-
ingful correspondence between their sites, provide a dense
correspondence (iso-line correspondence) for deformation trans-
fer between the two meshes [1,40]. Dynamic handles can facilitate
this process. For example, if the target deformation is not
satisfactory, the user may wish to tune the source one through,
say, changing handles. In harmonic-guided deformation transfer,
changing of handles is more expensive since the harmonic fields
of both meshes must be recomputed. Our fast update scheme
allows us to apply our reduced deformation model to interactive
editing and deformation transfer with a dynamic handle set.

Similar to other works [1,40], our method requires the source
and target shapes to have similar semantic correspondence and
initial poses to ensure semantically meaningful and visually
pleasing results. However, their sizes and shapes can be different.
The corresponding handles on the two meshes are assigned
interactively by the user. To avoid undesirable scaling on the
target due to possible shape differences, we only transfer the
rotational component of the rigid transformations and use shape
matching (Section 5.2) to compute the local translation on each
deformation cluster. Fig. 5 shows an interactive deformation
transfer session with dynamic handles.
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Fig. 5. Deformation transfer with dynamic corresponding handles. The user

manipulates the cat, changing handles in real time. The deformations are

transferred to the wolf.

Fig. 6. Interactive geometric detail modeling. A part of the Bimba model (115K

vertices) is cut by drawing a curve on the surface (top row). A harmonic membrane

is computed with respect to the boundary curve to fill the cut region and serve as

the base for detail transfer. Geometric details are modified via a morphing

between the original surface and the membrane (middle figures). When the user

enlarges the boundary curve (bottom row), introducing 284 new sites, the new

membrane can be updated in only 0.23 s.
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5.4. Interactive geometric detail modeling

In contrast to detail-preserving shape editing, geometric detail
modeling changes the appearance of a surface by modifying its
high-frequency content. The user selects an ROI and cuts it away,
forming a hole on the surface. The hole is filled by a smooth
membrane or thin-plate base mesh computed with respect to the
boundary of the hole. All the mesh vertices along the boundary
curve serve as sites to define the harmonic or bi-harmonic base
mesh. The base mesh can then be enriched with new geometric
details, either synthesized by sample [3] or transferred from
another shape [32].

As shown in Fig. 6, the user selects an ROI by drawing a curve
on the surface. The ROI is cut and then filled with a harmonic
membrane, having the same connectivity as the original ROI. In
the current experiment, the geometric details are modified simply
by interpolating between the original surface over the ROI and the
membrane. By changing the interpolation weight continuously,
we obtain a morphing sequence as shown in the figure.

During interactive modeling, the ROI often needs to be changed
frequently. However, for a dense mesh, computing the base mesh
can be time-consuming. The key to note is that our method can
update the base mesh in real time, according to the new boundary
of the changed ROI, facilitating interactive geometric detail
modeling. Note that our fast update scheme can also be applied
to thin-plate base meshes since solving a bi-Laplacian also
involves Cholesky factorization, as we have explained in Section 3.
6. Conclusion and future work

We present a method for quick updating of harmonic fields
with respect to a dynamic set of sites. The penalty method is
employed to enforce site constraints and this allows the use of fast
updating and downdating to Cholesky factorization. We demon-
strate that our method endows several surface processing
applications with effective, interactive harmonic field guidance.
The immediate visual feedback enabled by real-time dynamic
harmonic fields adds design flexibility and interactive exploration
to the user experience.

Our current software implementation allows us to interactively
update several hundred sites on moderate large meshes, with up
to several hundred thousand vertices. To alleviate the constraint
on low-rank updating to Cholesky factorization so as to handle
much larger sets of sites on even denser meshes, a GPU
implementation of the Cholesky updating algorithms [7] is called
for. In future work, we would first like to consider such a GPU
implementation using data-oriented GPU programming models
such as Nvidia’s CUDA.

Using the penalty method to enforce site constraints, the
obtained harmonic fields are approximate. Although these
approximate solutions are highly accurate as judged by maximum
approximation errors, this does not necessarily imply that all the
theoretical properties of a harmonic filed, e.g., those related to the
number of critical points, are preserved. These issues deserve
further investigation.

Finally, as harmonic functions are almost ubiquitous in surface
processing, we shall look into more applications, interactive or
otherwise, which can benefit from dynamic harmonic fields. One
such example is harmonic-guided shape matching. It is possible to
incorporate harmonic fields into a deformation-driven shape
correspondence framework [43] to obtain a significant perfor-
mance boost, as the deformation corresponding to different sets of
matching feature pairs can be obtained much more efficiently
through field updates.
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