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Figure 1: Multi-scale partial intrinsic symmetry detection: five symmetry scales (large to small) are detected. Each symmetric region is
shown in uniform color. Note the detection of inter- and intra-object symmetries, as well as cylindrical symmetry of the limbs.

Abstract

We present an algorithm for multi-scale partial intrinsic symmetry
detection over 2D and 3D shapes, where the scale of a symmetric
region is defined by intrinsic distances between symmetric points
over the region. To identify prominent symmetric regions which
overlap and vary in form and scale, we decouple scale extraction
and symmetry extraction by performing two levels of clustering.
First, significant symmetry scales are identified by clustering sam-
ple point pairs from an input shape. Since different point pairs can
share a common point, shape regions covered by points in different
scale clusters can overlap. We introduce the symmetry scale matrix
(SSM), where each entry estimates the likelihood two point pairs
belong to symmetries at the same scale. The pair-to-pair symme-
try affinity is computed based on a pair signature which encodes
scales. We perform spectral clustering using the SSM to obtain
the scale clusters. Then for all points belonging to the same scale
cluster, we perform the second-level spectral clustering, based on
a novel point-to-point symmetry affinity measure, to extract partial
symmetries at that scale. We demonstrate our algorithm on com-
plex shapes possessing rich symmetries at multiple scales.
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1 Introduction

Symmetry is ubiquitous in nature and in manufactured artifacts.
The study of shape symmetry has attracted much attention in com-

puter graphics lately [Mitra et al. 2012]. Most existing works fo-
cus on detecting extrinsic symmetries and a popular approach is
transformation space voting [Mitra et al. 2006]. In the intrinsic
case, most efforts are devoted to global symmetries [Ovsjanikov
et al. 2008; Lipman et al. 2010]. It is generally recognized that
partial intrinsic symmetry detection is a challenging problem since
it has to deal with larger search spaces for both the symmetric re-
gions (compared to global symmetry analysis) and the symmetry-
revealing transforms (compared to extrinsic symmetry detection).

A partial intrinsic symmetry over a shape is a subregion with as-
sociated self-homeomorphisms that preserve all pairwise intrinsic
distances [Mitra et al. 2012]. In this paper, we address the prob-
lem of partial intrinsic symmetry detection over 2D and 3D shapes.
More importantly, our goal is to detect such symmetries at multiple
scales, where we define the scale of a symmetric region based on
the intrinsic distances between symmetric points over the region.

Complex shapes often exhibit multiple symmetries that overlap and
vary in form and scale (see Figure 1). Multi-scale analysis en-
ables the construction of high-level, coarse-to-fine representations
for such shapes [Wang et al. 2011] to improve shape understanding
and facilitate solutions to such problems as shape correspondence,
editing, and synthesis. However, multi-scale symmetry analysis
poses additional challenges. The problem is at first complicated
by a new search dimension, the scale dimension. Also, existing
approaches to intrinsic symmetry detection including those based
on region growing [Xu et al. 2009], partial matching [Raviv et al.
2010], and symmetry correspondence [Lipman et al. 2010], cannot
extract symmetries that physically overlap.

Symmetry detection inherently involves a grouping of shape ele-
ments deemed to be symmetric to each other. A clustering ap-
proach often facilitates the detection of prominent groups. Lipman
et al. [2010] cluster sample points taken from an input shape with
respect to a symmetry correspondence matrix (SCM). In the intrin-
sic setting, each SCM entry measures how symmetric two points
are, based on the geometric similarity (a necessity for symmetry)
between the local neighborhoods of the points. Xu et al. [2009]
let point pairs vote for their intrinsic reflection symmetry axes and
perform symmetry grouping via region growing. However, neither
approach considered scale information.
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Figure 2: Examples of regions possessing intrinsic symmetries and
two symmetric point pairs, {x,z'} and {y,y'}, which support the
symmetries. The distance-based symmetry criterion dictates that
the geodesics shown in the same color have the same length.

Our key idea for multi-scale symmetry detection is to decouple
scale extraction and symmetry extraction. To this end, we perform
two levels of clustering with the first identifying symmetry scales
and the second extracting partial symmetries per scale. The scale
clustering step is performed on point pairs sampled from the in-
put shape, where point pairs which belong to intrinsic symmetries
at similar scales are grouped. By clustering point pairs rather than
points, surface regions covered by points in different scale clusters
can overlap and they generally do. In the second step, we work
within each scale cluster and cluster sample points to obtain partial
symmetries at the corresponding scale. The detected multi-scale
symmetries are quite general, as shown in Figure 1.

Symmetric point pairs. The most fundamental question in sym-
metry detection is how symmetric a pair of points are. The chal-
lenge in identifying potentially symmetric point pairs is to come up
with strong conditions to adequately constrain the symmetry search
so that it is computationally tractable. Instead of relying on local
criteria such as geometric similarity, we judge how symmetric a
pair {a, b} of points are by measuring the global symmetry sup-
port the pair receives. We refer to a point pair whose symmetry
support is sufficiently large simply as a symmetric point pair. The
symmetry support for {a, b} is estimated by the number of other
point pairs which potentially share the same intrinsic symmetry
as {a,b}. This latter determination is made by testing a simple,
distance-based symmetry criterion on two point pairs; see Figure 2
for a few examples and Section 3 for a theoretical analysis.

Overview. The input to our algorithm is either a 2D shape defined
by a closed contour or a 3D shape given by a 2-manifold mesh. The
intrinsic distances are geodesic distances for 3D shapes and inner
distances [Ling and Jacobs 2007] for 2D shapes. The algorithm (see
Figure 3) consists of two levels of spectral clustering, operating on
a set of symmetric point pairs sampled from the input shape:

» Sampling symmetric point pairs (Section 4):

For symmetry scale clustering, we only consider symmetric
point pairs. Prior to clustering, we sample a set of symmetric
point pairs from the input shape. To estimate the symmetry
support received by a point pair 7, we perform a randomized
voting by counting the number of randomly chosen point pairs
which potentially share the same intrinsic symmetry as 7.

* Scale extraction via pair clustering (Section 5):

We introduce the symmetry scale matrix (SSM) for scale anal-
ysis. The SSM encodes symmetry affinities between the sym-
metric point pairs obtained. Each entry of the SSM is scale-
dependent — it gives the likelihood two point pairs belong
to (possibly different) intrinsic symmetries at the same scale.
We perform spectral clustering using the SSM which returns
different symmetry scale clusters.

We define a scale-aware signature for each symmetric point

pair 7, called the intrinsic distance profile (IDP). The IDP en-
codes information about the intrinsic distances between pairs
of points that belong to the same symmetry as 7 and char-
acterizes the scale of that symmetry. The SSM is defined by
affinities between the IDPs of the point pairs.

* Symmetry extraction via point clustering (Section 6):

Given a set of points belonging to (point pairs in) the same
symmetry scale, we perform a second-level spectral clustering
to detect symmetries at that scale. We construct a new SCM
where the symmetry affinity measure between sample points
is defined by the distance-based symmetry support. The sym-
metry support is again estimated via voting.

Contributions. Our main contributions are:

* A global, distance-based approach to identify potentially sym-
metric point pairs by measuring symmetry support.

* Multi-scale symmetry detection enabled by scale clustering of
sample point pairs using scale-aware symmetry affinities.

* A robust, voting-based point-to-point symmetry affinity mea-
sure which enables the detection of partial and general intrin-
sic symmetries via spectral clustering.

Our algorithm leads to the extraction of prominent and overlapping
intrinsic symmetries at multiple scales; see Figure 1. We demon-
strate results on complex shapes exhibiting rich symmetries which
vary in form and scale. We also show an application of the results
to hierarchical segmentation. However, as an approach that is based
on measuring intrinsic distance, it can be influenced by “topologi-
cal shortcuts” which could alter the distance. It is worth noting that
in Figure 1, each dancer has a single foot planted on the base, i.e.,
no topological discrepancy.

2 Related work

The collection of papers on symmetry detection has grown substan-
tially in recent years [Mitra et al. 2012]. We shall not be exhaus-
tive but only discuss works more closely related to ours. Methods
for global intrinsic symmetry detection include [Ovsjanikov et al.
2008] and [Kim et al. 2010], which apply specific transforms to
facilitate the symmetry search. Other works take a more direct ap-
proach by explicitly searching for the maximal distance-preserving
self-maps, most notably in [Bronstein et al. 2009; Raviv et al.
2010]. The search is generally expensive, and more importantly,
these works do not detect nested symmetries at multiple scales.

For partial intrinsic symmetry detection, Xu et al. [2009] explic-
itly extract partial intrinsic reflectional symmetry axes over a shape
and Ben-Chen et al. [2010] analyze the discrete Killing vector field
to detect local cylindrical symmetries. Our method is able to de-
tect other forms of symmetries. The distance-based voting scheme
in our paper draws inspiration from the work of Xu et al. [2009].
However, we generalize it for more general intrinsic symmetry de-
tection and adapt it to multi-scale symmetry analysis.

We are not aware of existing works on multi-scale intrinsic sym-
metry detection. Wang et al. [2011] extract hierarchical extrinsic
symmetries for man-made objects. Their analysis is at the part
level and seeks a compact structural representation of a given shape.
The symmetries associated with the nodes of the hierarchy do not
overlap. Simari et al. [2006] introduce the folding mesh hierarchy,
which recursively divides a given shape along the dominant reflec-
tional symmetry axis. Our work deals with the more difficult prob-
lem of detecting more general intrinsic symmetries; the detected
multi-scale symmetries can be processed to produce a hierarchy.
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(a) Identifying symmetric point pairs by
symmetry support voting.

(b) Clustering point pairs using
symmetry scale matrix (SSM).

(c) Clustering points per scale using
symmetry correspondence matrix (SCM).

(d) Detected partial intrinsic symmetries
at various scales.

Figure 3: Outline of our multi-scale symmetry detection algorithm. After a voting step which identifies a set of (sufficiently) symmetric sample
point pairs (a), we perform clustering of these point pairs based on a scale-aware affinity matrix (the SSM) to determine scale clusters. In
each scale cluster, we perform the second-level clustering of sample points to detect symmetries at that scale (c-d).
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Figure 4: Challenges of partial and multi-scale symmetry analy-
sis. (a) Local geometric similarity can be unreliable as a necessary
condition for symmetry: two symmetric points (red) may have dis-
similar local signatures. (b) A single clustering based on point-wise
symmetry correspondence [Lipman et al. 2010] may fuse different
symmetries and return false positives: the three dancers (each sym-
metric on its own) are deemed to possess an intrinsic symmetry, yet
the set does not possess an isometric intrinsic self-map.

Transformation-space voting for symmetry detection [Mitra et al.
2006; Pauly et al. 2008] is able to extract overlapping symmetries.
However, this is only applicable in the extrinsic setting since only
in this setting is the dimensionality of the transformation space
tractable. One may be tempted to utilize the spectral transform
to turn intrinsic symmetries into extrinsic ones, as done by Ovs-
janikov et al. [2008] for global symmetry detection, and then apply
a transformation-space voting. Unfortunately, partial intrinsic sym-
metries generally do not turn into extrinsic ones in the spectral em-
bedding space. The voting approach by Podolak et al. [2006] can
also detect overlapping symmetries, however it is only applicable
to extrinsic reflectional symmetries.

Partial symmetry detection is related to partial matching. Many
works have been proposed for partial matching, some presented in
the context of symmetry detection, e.g., [Pauly et al. 2008; Bokeloh
etal. 2009; Berner et al. 2011], and some not, e.g., [Gal and Cohen-
Or 2006]. These methods all work in the extrinsic setting and via lo-
calized feature analysis; they are designed to extract partial match-
ings at small scales. Intrinsic approaches such as [Bronstein et al.
2009; Raviv et al. 2010] can detect partial matchings between large
sub-shapes under articulation, but the results cover maximal regions
and are not multi-scale. Our definition of partial intrinsic symmetry
can be seen as a restricted case of the most general form of partial
matching (see Section 3). By restricting the definition of the par-
tial intrinsic symmetries we seek, we are able to achieve multi-scale
analysis results and more discrimination.

Most closely related to our approach is the work by Lipman et

al. [2010], which also relies on spectral clustering. The top eigen-
vectors of their geometric similarity based SCM characterize or-
bits, where each orbit includes all points symmetric with one an-
other. However, their work is not suited for multi-scale partial sym-
metry detection. First, exploiting local point similarities as sym-
metry invariants is only appropriate for global intrinsic symmetry
detection. In the partial setting, it is not always reliable to judge
whether two points are symmetric by comparing their point sig-
natures, e.g., when one point lies on the boundary of symmetric
regions, as shown in Figure 4(a). Second, a single clustering step is
unable to identify overlapping symmetries that a point belongs to.
In our work, we perform two levels of clustering.

Finally, clustering sample points using the SCM in their work is
not scale-aware since the symmetry affinity in their SCM is based
on comparing local shape signatures and does not reveal scale in-
formation: two symmetric points can be close or far apart. Hence,
it is possible that sample points belonging to multiple symmetries
are clustered together, e.g., see Figure 4(b) and contrast it with our
multi-scale results in Figure 3(d). In our work, both the pair-to-
pair symmetry affinity in the SSM and the point-to-point symmetry
affinity in our new SCM are scale-dependent.

3 Theoretical setup

In this section, we give a more formal description of the problem we
address. In particular, we define the input, the output, and the kind
of intrinsic symmetries our algorithm is designed to detect — they
are isometric involutions. We derive a distance-based symmetry
criterion, a provable necessary condition for isometric involutions,
which plays an important role in our symmetry analysis.

The reason for restricting the focus to isometric involutions is two-
fold. First, having a provable necessary condition is of theoreti-
cal interest. Second, the symmetry criterion bounds the symmetry
search, making it computationally tractable. That being said, we
observe that in the context of partial symmetries, the restriction to
involutions is not nearly as limiting as might first be suspected. We
discuss this further at the end of this section and in Section 8.

Input shapes. Our problem domain is a compact, connected 2-
manifold, M, with or without boundary. M is either a “2D shape”,
ie., M C R?is a planar re§ion enclosed by a closed contour, or
a “3D shape”, i.e., M C R>. In both cases, distances on M are
given by the intrinsic or geodesic distance, daq, where daq(x, y) is
the length of the shortest curve in M which connects x and y. In
the remainder of the paper, we use the term intrinsic distance and
geodesic distance interchangeably.
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Figure 5: Two scenarios where the symmetry criterion (1) fails to
hold: d(x,y') # dm(y,z’). In both cases, x is mapped to x'
and y to . (a) There is a “rotational” symmetry over the region
of the bumpy triangle, but the symmetry is not an involution. (b) A
repeated pattern of two arrows without an intrinsic symmetry.
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Output. The output of our algorithm consists of clusters of sam-
ple points on M, after the two levels of clustering analysis. Inherent
to the clustering approach, the output is not a complete description
of the partial intrinsic Ssymmetries, but rather just the domains (sub-
sets D C M) associated with the partial symmetries.

Symmetry as isometric involutions. The isometric automor-
phisms f : M — M form a group G that acts on M. In gen-
eral, any subgroup G’ of G is considered to be an intrinsic symme-
try of M. A partial intrinsic symmetry of M is a symmetry of a
closed subset D C M, where distances are measured by d . The
smallest possible non-trivial subgroup G’ consists of two elements:
G’ = {e, f}, where e corresponds to the identity transformation of
M. In this case, f is an involution, i.e., f is its own inverse, and
we may identify the symmetry G’ with f itself. Involutions play
a central role in our analysis. The symmetry criterion we employ
to test whether two point pairs share a common intrinsic symme-
try is derived from a consideration of isometric involutions defined
over geodesically convex domains. We say that a subset D C M is
geodesically convex if for any x, y € D there is a minimal geodesic
between x and y which is contained in D.

By focusing on isometric involutions over geodesically convex do-
mains, we can derive a provable necessary condition for such sym-
metries (see Appendix for a proof):

Lemma 1 Let D be a geodesically convex set in a smooth surface
M C R®, and let f : D — D be an isometric involution. Then,

for any two points x,y € D, dp(z, f(y)) = dm(y, f(2)).

Symmetry criterion. Lemma 1 implies a simpe-to-check crite-
rion to test whether two point pairs potentially share the same iso-
metric involution. Specifically, given two point pairs {z, =’} and
{y, '} on M, the distance-based criterion

’ dm(z,y) = dm(z’,y") AND dym(z, y') = dm(y, z') ‘ )]

is necessarily satisfied if the pairs correspond to the same isometric
involution. Figure 2 shows three examples of isometric involutions
that are covered by (1). This will be our distance-based symme-
try criterion, which we employ both for symmetry support voting
(Section 4) and the construction of the SCM (Section 6).

Undetected symmetries. Our algorithm is not designed to de-
tect symmetries for which (1) fails to hold. Figure 5 illustrates two
scenarios. In 5(a), the region of the bumpy triangle has a 3-fold ro-
tational symmetry over a gedeosically convex domain, yet (1) does
not hold on the pairs {z,z'} and {y,y'}. In 5(b), the two arrows
form what may be perceived as a translational symmetry, though

they do not possess an intrinsic symmetry. The criterion (1) fails
to hold in this situation. Generally speaking, our algorithm is not
designed to detect all forms of repeated patterns, especially if the
patterns are “non-symmetrically connected”. Figure 4(b) is such an
example: the three dancers repeat, but the distances between them
are unequal. Figure 2(c) is the opposite: the two L’s are symmetri-
cally connected and we can detect the involution.

Generality of symmetry criterion. Applying the symmetry cri-
terion (1) allows us to detect more general symmetries beyond iso-
metric involutions, as evidenced by the numerous results we ob-
tained, e.g., see Figures 10-13. This can be attributed to a “symme-
try fusion”, discussed further in Section 8. For example, any per-
mutation can be decomposed as a product of transpositions [Clark
1984, §80]. A transposition is a transformation that interchanges
two objects: it is an involution. The many symmetries we are able
to identify over sets of isometric figures can be explained by a fu-
sion of such pairwise transpositions.

Weak partial intrinsic symmetry. We finally remark on a relax-
ation of our partial intrinsic symmetry definition. While our defi-
nition is a commonly used one [Xu et al. 2009; Raviv et al. 2010;
Mitra et al. 2012], a subtlety that arises in the context of partial sym-
metries should be mentioned. A symmetry of D C M with respect
to the intrinsic metric of D itself, need nor be a partial intrinsic
symmetry of M by our definition, since in general, for z,y € D,
the shortest path between = and y may not lie entirely in D. In this
latter case, one can define dp(z,y) = oo if x and y lie in different
connected components of D. We call a symmetry of D with re-
spect to dp a weak partial intrinsic symmetry. Figure 5(b) and the
isolated humans in Figures 4(b) give examples of weak partial in-
trinsic symmetries. Such a relaxed definition corresponds to partial
matching, which is generally a more challenging problem.

4 Symmetric point pairs by voting

Our symmetry analysis algorithm operates on a set X' of n sample
points, uniformly taken from a given input shape. Prior to sym-
metry scale clustering, which we describe in the next section, we
extract a set of symmetric point pairs over X’; only these pairs are
clustered during scale extraction. We now describe a voting ap-
proach based on our symmetry criterion (1) to accumulate symme-
try support and extract the symmetric point pairs.

Voting for one pair. Recall that a point pair 7 is symmetric if
it has a sufficiently large symmetry support, which is measured
by the number of point pairs which satisfy the criterion (1) with
m. A straightforward approach is to randomly choose a pair o« =
{z,x'} C X and let a randomly chosen set of sample pairs vote
whether they satisty (1) with « (a positive vote) or not (a nega-
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Figure 6: Comparison of symmetry pairs voting for one pair (c)
vs. for two pairs (d). A point pair {x,z'} can belong to two dis-
tinct symmetries (a-b), in which case voting for just the pair {x,x’}
can result in pairs supporting multiple symmetries (c). Two pairs
{z,x'} and {z, 2’} have a better chance of pinning down one sym-
metry (d).



tive vote). A positive vote results if each distance difference is less
than €4 of the maximum of the two compared distances, where €4
is a user-specified threshold. Note however that one point pair may
belong to distinct symmetries; see Figures 6(a) and (b). We find
that voting for one pair often yields many point pairs which belong
to different symmetries; see Figure 6(d). This is undesirable since
the symmetry support we seek is meant to correspond to the same
symmetry.

Voting for two pairs. To address the above issue, we employ a
voting scheme where the strategy is to vote for rwo pairs, instead
of one. Specifically, we randomly sample two point pairs « and
[ which satisfy the symmetry criterion (1). Then for any other
sampled point pair 7, we determine whether it satisfies (1) with
both o and 3. The key motivation for voting for two pairs is that
other pairs which cast positive votes with respect to both pairs are
more likely to share a common symmetry compared to the case of
voting for one pair; see Figure 6 for an illustrative example.

Let IT denote the set of all point pairs over X and N = () = [II].
If the number of point pairs casting positive votes with respect to
both a and S is greater than some fraction p. of NV, then we regard
this set of point pairs (including « and (3) to potentially form a
symmetry. We denote this set of pairs by £*? and designate the
tuple (o, B) as the representative of this symmetry. We repeat the
above voting process with new random pairs « and 3 and collect all
the resulting 27 into a single set & = UX*"?, which provides the
set of symmetry point pairs for scale clustering. The voting process
stops when |®| reaches a fraction p; of N.

The sets ©*° are only potential symmetries, which we utilize for
scale and symmetry detection; the final set of symmetries are the re-
sult of the two levels of clustering. All the sets X% and their repre-
sentatives are pre-computed and stored for the subsequent analysis
steps. For any symmetric point pair 7 € %%, we refer to X*°
as its supporting set. If m belongs to more than one such set, we
choose the largest one. Accordingly, the point pairs in %° are
referred to as the supporting pairs for .

5 Multi-scale symmetry analysis

In order to sort out the partial intrinsic symmetries at different
scales, we opt to cluster the symmetric point pairs rather than the
sampled points. We define for each symmetric point pair a scale-
aware signature to encode scale information. Based on the scale-
aware signatures, we perform clustering over the point pairs, where
each cluster contains symmetries of a particular scale.

For an intrinsic symmetry, we define its symmetry scale as that of
the isometric self-map, measured by a scale or distance profile for
the point pairs within the symmetry support set. Since the sym-
metries of different scales are unknown, computing their support
region is intractable. Instead, we measure symmetry scale locally
at every symmetric point pair by an encoding of intrinsic distances
between pairs of points that support the symmetric point pair.

Intrinsic distance profile (IDP). Given a symmetric point pair
{p, q}, we compute a signature /i, 43, called the intrinsic distance
profile (IDP), where the distances are measured between p and ¢
and between points in each supporting pair for {p, q}. The IDP
is scale-aware since it encodes information about the intrinsic dis-
tances and scale is characterized by these distances.

To define the profile signature for {p, ¢}, we form [ bins, {b;}\_;,
each containing a subset of supporting point pairs for {p, ¢}. Dis-
tribution of the supporting pairs into the bins is based on a pair-to-
pair distance measured from {p, q}. Specifically, the pair-to-pair

(b)

Figure 7: Examples of symmetric point pairs (black dots), their
supporting pairs (linked by blue lines), and plots of IDPs. (a-c)
Six symmetric point pairs and their supporting pairs whose weight
contributing to the IDP is larger than 1075, (d) The corresponding
IDPs (by matching colors) show their discriminative power.

distance between {p, ¢} and another point pair {s, ¢} is defined as

dm({p ), {s t}) =

i { dm(p, s) +dmlg,t) dam(p,t) +dm(g, s) }
2 ’ 2 ’

where min is used to account for the permutation of point labels.

Each of the [ bins contains the subset of supporting point pairs
for {p, ¢} whose distance to {p, g} falls within a sub-interval of
[0, Lx], where Lx is the geodesic diameter of the set of sample
points X, Lx = maxqasex dm(a,b), and hence it is the maxi-
mum possible pair-to-pair distance from {p, g}. The sub-intervals
are uniformly sized. Thus bin b; contains pairs whose distance to
{p, q} is between [(¢ — 1)/I] - Lx and (¢/1) - Lx.

Within each bin b;, one can encode any information about the set of
point pairs belonging to that bin. We would like an encoding that
is simple (for efficiency), scale-aware, and discriminative. To this
end, we compute a weighted average of the geodesic widths for the
point pairs belonging to b; as follows,

Z{s,t}ebi w{s,t}d/\/l (8, t)
i,y (bi) = ;
Zi:l Z{Svt}ebi Wis,t}

with a Gaussian weight wys ¢ = e~ (dmpad{sit})/(opLx))?
Note that the geodesic width for a pair {p, g} is simply the geodesic
distance between p and g. We introduce the new term for conve-
nience of presentation: It avoids overloading the word “distance”.

)

Since our algorithm focuses on partial symmetries, we obtain local-
ity of the IDP signature by using the Gaussian weighting function to
truncate the bins which are far away from {p, ¢}. The localization
parameter, i.e., the Gaussian width, is chosen as g, = 0.2 in our
implementation. The number of bins [ is fixed at [ = 10. Figure 7
demonstrates that the scale descriptor captures well the scale of the
local symmetry supported by a point pair.



Scale-aware clustering of point pairs. With the scale-aware
pair signature IDP, we can perform pair clustering based on spec-
tral analysis. To this end, we build a dissimilarity matrix, called
the symmetry scale matrix (SSM). The dimension of the SSM is
M x M, where M is the size of symmetric pair set ®. Each en-
try is computed as the earth mover’s distance [Pele and Werman
2009] between the IDPs of the two corresponding point pairs. To
automatically determine the number of clusters, we employ self-
tuning spectral clustering [Zelnik-Manor and Perona 2004], where
the eigen-decomposition of the symmetry scale matrix is computed
with ARPACK [Lehoucq et al. 1998]. After clustering, the set of
symmetric point pairs ® is divided into k clusters: ® = U{®;}*_,,
where each contains symmetries of the corresponding scale. Fig-
ure 8 (b-d) demonstrates a result of pair clustering.

Alternatives to IDP. The definition of IDP requires computing
and binning intrinsic distances and the signature is a vector. A sim-
pler signature would be the average geodesic width taken over all
the supporting pairs. Even simpler would be the intrinsic distance
between p and q. However, compared to the vector-form IDP, the
two simpler alternatives are not sufficiently descriptive of the sym-
metries to which they belong since they are based on single numer-
ical values. In particular, the IDP along with the earth mover’s dis-
tance can capture the local geometry of a supporting pair set while
the simpler alternatives are too coarse. Experimentally, we have
found the results from these simpler signatures to be unsatisfactory.

6 Partial intrinsic symmetry extraction

In this section, we introduce the construction of the symmetry cor-
respondence matrix (SCM), which captures the intrinsic symme-
tries of a particular scale based on the corresponding pair cluster.

Definition of intrinsic SCM. As in [Lipman et al. 2010], we de-
fine the dissimilarity measure for detecting intrinsic symmetries be-
tween a pair of points x;,z; € X by considering all possible in-
trinsic mappings f that take z; to x;,

Si]' :S(l‘i7l‘j) = Df(va(X))v

inf
feF:f(zi)=x;

where F denotes the set of intrinsic self-mappings and

1

> pgex ([Am(p, @) — dm(f(p), f((ﬂ))"’) 2
N b

Df(X>f(X)) = <

measures the intrinsic deviation between two point sets X and
f(X), with N being the number of all point pairs. To accommodate
partial intrinsic self-mappings, D should return a low distance if f
matches some sufficiently large part of X. This has been reflected
in the symmetric point pairs voting (Section 4) where we used the
fraction p. for identifying all potential intrinsic symmetries.

The dissimilarity matrix S € R™"™, where n is the number
of sample points, is then converted into a symmetry correspon-
dence matrix (SCM) C' € R™ " using a Gaussian kernel C;; =

e’(sij/("s”””))z, where we use 0 = 0.01, and Sj,q, is the maxi-
mum value of all S;;.

Computation of dissimilarity matrix S. One needs to find the
proper self-mapping to compute the SCM. For the extrinsic case,
the self-mappings are rigid transformations each of which is found
through aligning the local frames at two points and observing how
much the shape is aligned by the transformation [Lipman et al.
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Figure 8: Symmetry clusters (shown with different colors) detected
with all symmetric point pairs do not reveal multiscale symmetries
(a). (b-d) show the symmetric point pairs in three scale clusters and
the corresponding multi-scale symmetries detected in each scale.

2010]. However, intrinsic mappings cannot be easily parameter-
ized and computed this way. We instead rely on the discretized
approximation of intrinsic self-mappings represented by the sym-
metric point pairs ¢ we have computed in Section 4.

Suppose we wish to detect symmetries for the scale cluster ®;.
We first initialize the entries of S as S;; = oco. For each rep-
resentative (v, ) and the corresponding supporting set ©*7, if
¥ is sufficiently covered by the current scale cluster, specifically
2PN @, > 0.9]S*7], we measure the intrinsic deviation for

the intrinsic self-mapping f*° supported by 2% as the averaged
local deviations of all point pairs in 2% w.r.t. & and 3:

2\ 4
Dyon = <zﬂeza,ﬁ ma}é‘i(,gj’”)’é(ﬁ’”)} ) o

where §(-,-) is the local deviation measured between two point
pairs derived from distance criterion (1):

6({z, 2"}, {y,v'}) = max{|dm(z,y) — drm(a’,y)],
ldr(z,y') — dam(y, )|}

We then update the entries of Sp, for all {p,q} € X*¥# as
min{Spq, D a5}

Upper bound of entries of S. Similarly to [Lipman et al. 2010],
we find an upper bound for those entries which are not updated in-
stead of leaving them as co. Looking for a good upper bound in the
entire space of intrinsic mapping is by no means easy. However, it
is possible to find an upper bound within the space of rigid trans-
formations which is a subspace of the intrinsic transformations.

We therefore consider a translation t"7 = x; — x; which takes x;
to z; and compute D(X, X + t*7) as the upper bound for S;;.
However, the estimation of this upper bound is not trivial as in the
extrinsic case. Specifically, we first apply "7 on X’ and compute a



Figure 9: Symmetry detection on 2D shapes sorted by scale. Ob-
serve the inter- and intra-object symmetries detected at multiple
scales, even down to the small scales of the limbs in (d).

point correspondence by finding the mutually closest points. Using
this point correspondence, we can compute the intrinsic deviation
D,:,; using Equation (2). At the end of the voting process, we
translate the minimal value of S to zero and take the minimum of
each entry of S;; with D,:;. We find this upper bound is easy to
compute and works well in practice.

Spectral analysis of scale-aware SCM. After constructing the
SCM for a particular scale, we perform spectral analysis to detect
the partial intrinsic symmetries in that scale. Here we again adopt
self-tuning spectral clustering. For the 2D shape in Figure 8 (a), we
demonstrate the multiscale symmetries detected via spectral anal-
ysis over the scale-aware symmetry correspondence matrices; see
Figure 8 (b-d). As shown in the figures, our method robustly de-
tects symmetries at different scales.

For a given scale, there might exist some symmetry clusters encom-
passing very few point pairs belonging to that scale, meaning that
they are not well supported and do not reveal any symmetry of the
particular scale. Such void clusters should be discarded in the final
results. We employ a simple scheme to identify the void clusters:
for the clusters obtained in a given scale, we measure the voidness
of a symmetry cluster by computing its point pair coverage, based
on all point pairs belonging to the scale. Specifically, if the pair cov-
erage of a cluster is less than 10% of the sample points in the whole
scale cluster, we regard it as a void cluster. In figures throughout
the paper, void clusters are shown in gray in the 2D cases and in
transparent rendering in the 3D cases.

7 Results

In this section, we demonstrate and discuss results obtained by our
multi-scale partial intrinsic symmetry detection algorithm on both
2D and 3D shapes. Comparison to closely related approaches [Xu
et al. 2009; Lipman et al. 2010] is also given. We also show how
the detected symmetries can be utilized to obtain hierarchical seg-
mentations that better reveal the semantics of a shape. Additional
results can be found in the supplementary material.

All the experimental results shown in the paper were obtained by
using the same set of parameters. Specifically, the threshold used
for testing the criterion (1) is ¢4 = 0.03. The fractions used in
symmetric pairs voting are: p. = 0.003% and p; = 0.06%~0.1%
(depending on the smallest scale the user wishes to detect).

Pre-processing. Geodesic distances for 3D models are com-
puted using the algorithm and available implementation of Surazh-
sky et al. [2005]. Some 3D models contain close-by but discon-
nected parts. Since we require the input mesh to be connected, we

fuse the disconnected parts. In cases where a model contains too
many disconnected, we resort to voxelization and use inner distance
in the constructed volume as the intrinsic distance for symmetry de-
tection. For sample point selection, we use the uniform sampling
module from MeshLab.

Segmentation enhancement. A natural consequence of using a
sampling and clustering approach is that the cluster boundaries may
be imperfect. Also, the symmetries are sometimes imperfect and
only approximate. To obtain higher-quality boundaries, we apply a
post-processing step which we call segmentation enhancement. We
first over-segment the models using any shape segmentation method
based on the minima rule [Shamir 2008] and then merge the seg-
ments with the corresponding symmetry clusters we have detected
in various scales. All the detection results on 3D models shown
in the paper were obtained using segmentation enhancement unless
otherwise noted (see Figures 10, 11 and 12).

In most cases, the raw clustering results are very close to being
identical to those from segmentation enhancement, except for the
case of imperfect symmetries, as shown in Figure 12. We ob-
serve that the symmetries covering the small fingers all have cor-
rect boundaries. The imperfect boundaries in (a) and (b) can be
attributed to the size discrepancy between the arms.

Symmetry detection. Figures 3, 9, and 18 demonstrate several
2D results and Figures 10-13 show results for 3D models with in-
tricate structures. In each displayed model, a sub-shape shown in
the same color represents a detected intrinsic symmetry. The gray
color (in 2D) and transparent rendering (in 3D) indicate regions
which are not covered by the current scale cluster. There are sev-
eral observations to be made from these results:

* Multi-scale symmetries: The ability of our method to iden-
tify multiple and nested partial intrinsic symmetries is evident.
The extracted symmetry scales range from those of groups of
objects undergoing approximately isometric deformations to
those that cover individual components of an object that pos-
sess various forms of self-symmetry, e.g., individual limbs in
2D having reflection-like symmetry (see Figure 9), and simi-
larly for 3D limbs (see Figures 10-14).

* Intra- and inter-object symmetries: Our method is able to de-
tect the self-symmetry in an integral object such as a human,
as well as inter-object symmetries. The former can lead to
meaningful object identification while the latter allows one to
recognize groups of similar objects.

* General symmetries: Observe that the arms of the octopus in
Figure 10 and the thumbs of the hand-arm model in Figure 12
represent symmetry groups that are more general than those
detected by the algorithm of Xu et al. [2009], which analyzes
intrinsic reflectional symmetries only. For example, one can-
not find a proper reflectional symmetry axis on the surface of
the hand-arm model that links the two thumbs.

* Disconnected symmetries: The symmetry regions detected
are not necessarily geodesically convex; they may be discon-
nected, e.g., see several examples of distinct figures being de-
tected in Figures 10-13. In these cases, two distinct figures
may be connected by a thin bridge of geodesics joining them,
thus forming a convex domain. However, the bridge between
them may be too thin to be captured by the sampling resolu-
tion. Hence only the disconnected regions are returned.

¢ Noise: Our method is statistical in nature, with the use of ran-
domized voting and distance averages for IDP, for example.
Hence it is fairly robust against reasonable levels of noise.
Figure 11 demonstrates such robustness on two models with
synthetic Gaussian noise added.
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Figure 10: A gallery of 3D symmetry detection results sorted by scale. From left to right and top-down: Children, Octopus, Kung Fu Panda,
IndoLady, and Thai Statue. The last two models show raw clustering results. Observe again the inter- and intra-object symmetries detected at
a significant range of scales. The IndoLady and Thai Statue models were chosen to demonstrate the performance of our algorithm on models
which are not compositions of articulated characters. For the children model, not all arms or legs are detected in the last shown scale due
to scale discrepancies and some parts fused with the body. For the IndoLady, our method does not return all perceived symmetries, e.g., the
self-symmetries of the individual limbs. To save space, the first image for the Kung Fu Panda contains the first five scales, each revealing a

self-symmetry of the four characters and the base.

Statistics. Our experiments were performed on an Intel Core
(TM) 3.40GHz machine with 4.00GB RAM. For all the 2D ex-
amples, we employ 500 samples. For 3D models, the number of
sample points is about 3K with small discrepancies due to criteria
employed by the MeshLab sampling routine. Figure 13 shows that
more samples allow finer-scale symmetries to be detected but at a
cost of processing times. Table 1 reports various statistics includ-
ing timing. The most time consuming part is the SSM analysis, of
which at least 85% of the time was spent on the computation of the
earth mover’s distance for the profile signatures (IDP).

Comparisons. The two methods most closely related to ours are
[Xu et al. 2009] and [Lipman et al. 2010]. The former can detect
partial intrinsic reflectional symmetries while the later is designed

Figure 11: Raw symmetry clusters in multiple scales detected on a
noisy Neptune model and a noisy IndoLady model. The noise level
is 1.0, which is the ratio of the average vertex displacement over
the average edge length in the original mesh.

(d)
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Figure 12: Raw clustering results for symmetry detection. Imper-
fect boundaries (a-b) are due to discrepancy between the arms.

to deal with partial extrinsic symmetries. However, if the symmet-
ric sub-shapes do not undergo significant pose variations, the global
alignment component of [Lipman et al. 2010] may allow it to detect
certain partial intrinsic symmetries. Regardless of the case, both
methods can only detect partial intrinsic symmetries that only pro-
vide a single coverage of the input shape. Our method, on the other
hand, detects nested intrinsic symmetries which include symmetries
detected by these two methods and more, as shown in Figure 14.

A
> &//

© @

Figure 13: Denser sampling results in finer-scale symmetries de-
tected. (a-c) 2,016 sample points. (d) 3,080 sample points.

Model #s | tyote #sp | tssm | #l | tsem
Ballet (1) 3,260 59 | 6,045 915 5 571
Family (9) 500 7 | 2,294 234 4 16
Birds (9) 500 5 | 1,760 189 4 13
Children (10) 2,933 50 | 5,845 852 4 417
Octopus (10) 3,045 58 | 6,175 939 2 273
Panda (10) 2,817 42 | 5,906 929 4 442
IndoLady (10) | 2,227 36 | 4,209 594 2 174
Thai (10) 3,136 43 | 5,268 767 3 343
Neptune (11) 2,742 39 | 5,848 874 4 361
Arm (12) 2,563 38 | 5,441 763 4 381
Soldier (13) 2,016 32 | 3,923 371 3 216
Soldier (13) 3,080 42 | 5,657 816 4 402
Dancer (16) 2,600 46 | 5,802 836 4 349

Table 1: Statistics on some experiments. The numbers appearing
in parentheses refer to figure numbers in the paper. #s: number of
sample points; #sp: number of symmetric point pairs, #l: number
of scales detected. Running times are reported in seconds for sym-
metric pairs voting (tyote), SSM, and SCM analyses; they do not
account for intrinsic distance computation.
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Figure 14: Comparison between our multi-scale results (a) to the
symmetry detection results of [Lipman et al. 2010] (b) and [Xu et al.
2009] (c), which both provide only a single coverage of the shape.
Our method detects overlapping symmetries and these results com-
bine those from the other two methods.
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Figure 15: Plots of the top two eigenvectors of GPS (a-b), HKS
(c-d), and our multisale partial intrinsic SCM in two scales (e-h).
The partial intrinsic symmetries are more clearly revealed in (e-h).

Symmetry invariants, e.g., the Global Point Signature (GPS) [Rus-
tamov 2007] and the Heat Kernel Signature (HKS) [Sun et al.
2009]), have been used for global intrinsic symmetry detec-
tion [Lipman et al. 2010]. However, they are not effective in the par-
tial intrinsic setting. Figure 15 compares the top two eigenvectors
of our multiscale partial intrinsic SCM (in two scales) against those
of the GPS and HKS. The plot shows that our method can more
clearly reveal the partial intrinsic symmetries at different scales.

Hierarchical segmentation. As several previous works [Simari
et al. 2006; Podolak et al. 2006; Xu et al. 2009] have demonstrated,
symmetry, as a high-level cue, can lead to more semantic segmen-
tation results since common objects all possess self-symmetries.
With our multi-scale approach, we can easily obtain a symmetry-
driven hierarchical segmentation using the following scheme. We
first construct a directed graph whose nodes are the segments (in-
cluding the whole shape) induced by the multiscale symmetries and
whose directed edges encode the spatial inclusion relations between
the segments. Specifically, there is an in-edge from node A to B if
segment A is a subset of segment B. Then starting from the node
representing the whole shape, we repeatedly remove the nodes (one
at a time) with only zero in-degree and all its associated out-edges.
The sequence of removals reflects the levels of segments, which is
then used to construct the hierarchy in a top-down manner. Fig-
ure 16 shows such a hierarchy for the Dancer model.

Figure 17 shows comparison results between our segmentation and
those from two state-of-the-art algorithms. The first is the hierar-
chical segmentation based on fitting primitives [Attene et al. 2006].
The second is the randomized cut approach of [Golovinskiy and
Funkhouser 2008], which is not hierarchical. We show results ob-

Figure 16: A hierarchical organization of detected symmetries on
the Dancer model. The hierarchy can be used to derive a hierarchi-
cal segmentation of the model (see Figure 17).

Figure 17: Comparison between our symmetry-driven hierarchi-
cal segmentation scheme (top row) and hierarchical segmentation
based on primitive fitting [Attene et al. 2006] (middle row) and
normalized cut [Golovinskiy and Funkhouser 2008] (bottom row).
Each column shows the same segmentation count. It is evident that
our results conform better to the shape semantics.

tained for the same segmentation counts. As can be seen, with sym-
metry considerations, our results are qualitatively superior, beyond
boundary qualities, with better conformation to shape semantics.

It is interesting to consider the usefulness of our segmentation re-
sults for object identification and partial matching in the large scale.
Past works on repeated pattern detection using symmetry analy-
sis [Mitra et al. 2006; Pauly et al. 2008] are designed for such pur-
poses. They typically rely on localized analysis and are able to de-
tect repeated patterns at the low level. The same can be said about
approaches developed for partial matching, e.g., [Gal and Cohen-Or
2006], as they often cannot return a partial matching between large-
scale objects. We believe that our approach is able to accomplish
this task due to its multi-scale nature.

Limitation. Perhaps the most fundamental limitation of our ap-
proach should be attributed to its reliance on global intrinsic dis-
tances. In the presence of a topological “shortcut” (see Figure 18(a)
for an example), perhaps due to noise, perceived symmetric regions
may have topological discrepancies. As a result, certain inter-object
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Figure 18: Limitation to the use of intrinsic distances (a 2D case).
Having one foot of the right figure planted into the base (a) or dis-
connected from the base (b) has a drastic effect on the multi-scale
symmetries detected, since the distances changed drastically.
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Figure 19: Limitation to the use of intrinsic distances (a 3D case).
Our method returns erroneous symmetry regions in the first two
scales (a-b). The input model is the same as the one in Figure 1
except that the last dancer now has both feet planted into the base,
creating a topological inconsistence among the three dancers. Sym-
metry detected for the remaining scales are the same as Figure 1.

symmetries may not be detected as we might expect. Figure 19
shows a similar case in 3D, where comparing to Figure 1, now the
last dancer has both feet planted into the base, making it topolog-
ically inconsistent with the other two dancers. The cases involv-
ing topological shortcuts are encompassed by weak partial intrinsic
symmetries: the two outermost dancers in Figure 19 represent such
a symmetry. Sensitivity to topological changes is a fundamental
limitation of any approach that relies on global intrinsic distances
for shape analysis. With the presence of topological noise, the use
of defect-tolerant geodesics [Campen and Kobbelt 2011] may pro-
vide a remedy.

Our method is purely geometry-based without considering semantic
knowledge, hence some perceived symmetries may not be detected.
Also limited by the reliance on sampling and clustering, we cannot
hope to detect all possible symmetry scales. For example, in the
IndoLady model in Figure 10, we do not return the self-symmetries
of the individual limbs. In the children model, in the last scale, one
pair of legs (of the first child) is missed. Additional limitations of
our current approach are discussed in the next section.

8 Conclusion, discussion, and future work

We present an algorithm for multi-scale partial intrinsic symme-
try detection on 2D and 3D shapes. While the results obtained are
quite encouraging, we still regard our work as only a preliminary
attempt at a complete and verifiable solution to the general prob-
lem. We now discuss additional issues pointing to limitations of
our approach and possible future works to address these issues.

General symmetries beyond isometric involutions. Although
our symmetry criterion is designed for detecting isometric involu-
tions over geodesically convex domains, in practice we are able to

detect symmetries that do not correspond to involutions or whose
domain is not convex. The detected symmetry encompassing three
soldiers in Figure 13 provides an example. An explanation is that
pairwise transpositions transitively create a high correlation be-
tween the three figures, whereas the bridges of geodesics joining
the figures in pairs are not correlated together. Therefore to some
extent, our algorithm can capture weak partial intrinsic symmetries.
This demonstrates an effect of “symmetry fusion”, the fusion of the
pairwise transpositions, which is the result of applying clustering.

Symmetry fusion. Multi-scale analysis using pair clustering
does not completely prevent symmetry fusion from occurring in the
SCM clustering step. When multiple symmetries share the same
scale, implying that their sample points would belong to the same
scale cluster, SCM analysis may fuse these symmetries together.
An example is the children model shown in Figure 10. Symmetries
between the adjacent children all share the same scale (the third
scale in the children sequence). The algorithm returns the fused
point cluster but not the children pairs.

From clusters to self-maps. One of the inherent limitations of
clustering-based symmetry analysis is that the resulting symmetry
is represented by a set (of samples) and it is typically not asso-
ciated with an isometric automorphism (the symmetry map). On
the other hand, extrinsic approaches relying on partial matching or
transformation-space voting do return the symmetry maps. How-
ever, the computation of the symmetry maps is made easy by con-
fining the search to a given region. Once the self-symmetric region
is known, we are left with the problem of global intrinsic sym-
metry detection to which existing methods such as [Raviv et al.
2010; Ovsjanikov et al. 2008] can potentially be applied to obtain
the maps.

The notion of scale. The scale of a symmetry is perhaps more
intuitively equated to its size or area of coverage. Our scale analysis
however is not based on area, but intrinsic distances. This is mainly
attributed to the fact that our definition of partial intrinsic symmetry
is distance-based and so is our detection scheme. There is no direct
correlation between the area of a symmetry coverage and distances
between symmetric points. For example, two symmetric regions
that are very small in area but far apart geodesically are considered
to possess a large scale by our SSM analysis. Characterizing and
clustering symmetries based on their area of coverage appears to be
more challenging. With incomplete information about the symme-
tries, it is difficult to reliably estimate the area of a region from a
sampling of points or point pairs.

Small-scale symmetries. When a symmetry covers a very small
region, there may not be sufficient sampling over that region. The
clustering scheme may then be unable to detect such a small cluster.
That said, symmetry detection schemes are generally more focused
on identifying prominent symmetries rather than ones that are very
local. For example, any geodesic circular region possesses an in-
trinsic symmetry, however small the region is, but we are often not
interested in returning such small-scale symmetries.

Future work. Besides addressing the above issues, we would like
to improve the performance of our algorithm. Parallelization is al-
ways a possibility since the entries in the SSM or SCM can all be
computed in parallel. It would be desirable to enhance the algo-
rithm so as to detect weak partial intrinsic symmetries. In this case,
a purely distance-based approach may need to be augmented with
additional considerations. Finally, it would be useful to extend our
method to work on imperfect and even incomplete geometry data.



Acknowledgements. We would first like to thank the anony-
mous reviewers for their valuable feedback. Thanks also go
to Daniel Cohen-Or for fruitful discussions on the paper. Part
of the 3D models in this paper is from the shape reposito-
ries of AIM@SHAPE and Stanford. This work is supported in
part by grants from NSFC (61202333, 61232011, 61161160567,
61025012, 61103084, and 61070071), NSERC (No. 611370), Na-
tional 863 Program (2011AA010503), Shenzhen Science and In-
novation Program (CXB201104220029A, JC201005270329A), the
973 National Basic Research Program of China (2011CB302400).

Appendix: Proof of Lemma 1.

Proof Let« : [0,] — D be an arclength parameterized min-
imizing geodesic between = and f(y). Thus a(0) = z, a(f) =
fly),and £ = £(a) = dm(z, f(y)), where £(«) denotes the length
of a. Now consider the curve & = f o .. Since f is an isometry, &
is a geodesic of the same length as cv. Also, we have &(0) = f(x),
and &(¢) = f(f(y)) = y, where the last equality follows from the
assumption that f is an involution.

Thus dam(f(2),y) < €(&) = dm(z, f(y)). A symmetric ar-
gument starting with a minimizing geodesic between y and f(x)
yields the reverse inequality, and the result follows.
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