
Photo-Inspired Model-Driven 3D Object Modeling

Kai Xu∗† Hanlin Zheng‡ Hao Zhang† Daniel Cohen-Or§ Ligang Liu‡ Yueshan Xiong†

∗National University of Defense Technology †Simon Fraser University ‡Zhejiang University §Tel-Aviv University

Figure 1: Photo-inspired 3D modeling of a chair from four different 3D candidates (cyan). The new models (yellow) are created as geometric
variations of the candidates to fit the target object in the photo while preserving the 3D structure of the candidates.

Abstract

We introduce an algorithm for 3D object modeling where the user
draws creative inspiration from an object captured in a single pho-
tograph. Our method leverages the rich source of photographs for
creative 3D modeling. However, with only a photo as a guide, cre-
ating a 3D model from scratch is a daunting task. We support the
modeling process by utilizing an available set of 3D candidate mod-
els. Specifically, the user creates a digital 3D model as a geometric
variation from a 3D candidate. Our modeling technique consists
of two major steps. The first step is a user-guided image-space
object segmentation to reveal the structure of the photographed ob-
ject. The core step is the second one, in which a 3D candidate
is automatically deformed to fit the photographed target under the
guidance of silhouette correspondence. The set of candidate mod-
els have been pre-analyzed to possess useful high-level structural
information, which is heavily utilized in both steps to compensate
for the ill-posedness of the analysis and modeling problems based
only on content in a single image. Equally important, the structural
information is preserved by the geometric variation so that the final
product is coherent with its inherited structural information readily
usable for subsequent model refinement or processing.
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1 Introduction

Content creation in 3D is one of the most fundamental tasks in com-
puter graphics. The ultimate goal is to allow artists and even novice
users to quickly turn a design concept into a digital 3D model. Cre-
ativity is often called upon during design and modeling and as such

the user needs to be inspired [Chaudhuri and Koltun 2010]. The
inspiration may arise from pure imagination, but more often than
not, it can trace its origins to one or more existing concepts with
the end product being a variation or composition from one or more
existing models [Funkhouser et al. 2004; Kraevoy et al. 2007; Lee
and Funkhouser 2008; Chaudhuri and Koltun 2010]. Moreover, the
modeling process does not end with an initial creation — the cre-
ated 3D model is meant to be subsequently refined and manipulated.
It is therefore highly desirable for the created model to be readily
usable for such further processing.

In this paper, we introduce an algorithm for creative 3D model-
ing where the user is inspired by a single photograph and the cre-
ation process is driven by an available set of 3D candidate models.
Specifically, the user creates a realistic and readily-usable digital
3D model as a geometric variation from one of the 3D candidates.
We focus on the modeling of man-made objects. Even within the
same object class, man-made objects often exhibit immensely rich
shape variability (e.g., consider all the chairs, tables, or lamps we
encounter) which provides the modeling challenge.

Photographs provide perhaps the richest source of creative inspi-
ration. They are easy to find and acquire and the captured objects
are shown in their natural appearance and surroundings to provide
the most inspiring modeling context for the user. Requiring only a
single photograph instead of captures from multiple views allows
direct use of the vast source of images that are already available
on-line or elsewhere. However, with only a photo as a guide, cre-
ating a 3D model from scratch is a daunting task. We support the
modeling by utilizing a set of 3D candidates. The created model
is a geometric variation from the set, obtained by deforming a can-
didate model so that its silhouette in the appropriate view matches
that of the target object in the photograph; see Figure 1.

In our setting, each candidate model has been pre-analyzed so that
its geometry representation is endowed by high-level structural in-
formation to drive the object creation process. On one hand, the
geometry and structure of the 3D candidates can effectively guide
object analysis within the photograph. More importantly, the defor-
mation applied to the chosen candidate is structure-preserving —
it retains the structural information in the candidate so that the pro-
duced variation remains coherent and readily usable. At the same
time, the high-level structure of the candidate is exploited to provide
extra constraints including symmetry to alleviate the ill-posedness
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Figure 2: A matrix of photo-inspired creations (rows: 3D model
candidates; columns: photographic inspirations).

of the modeling problem based only on a single photograph.

Creative modeling from a shape repository is not new. Modeling
by example [Funkhouser et al. 2004] and recent works on sketch-
based modeling, e.g., [Shin and Igarashi 2007; Lee and Funkhouser
2008], rely on part retrieval from large 3D shape databases fol-
lowed by cutting and gluing to compose new models. The key point
to make is that assembling the retrieved parts into an integral and
readily usable model is difficult. Regardless of any stored struc-
ture attributes in the source models, any high-level structure of the
assembled object must be re-discovered through post-analysis.

Overview. The input to our algorithm consists of a single photo-
graph containing the target objectO and a pre-analyzed set S of 3D
candidates. S only contains models belonging to the same class as
O. During pre-processing, the candidate models are corresponded
with each other at the part level. The parts are scale-normalized,
fitted with a set of primitives, and geometrically and structurally
analyzed with the results stored. The model creation process is ex-
ecuted in two major steps (see Figure 4):

1. Model-driven object analysis: The goal of this step is to
obtain a labeled segmentation of O, where the labels imply
part correspondence between O and the candidates to facil-
itate subsequent processing. The image-space segmentation
is driven by a roughly retrieved representative model R based
on global shape similarity between silhouette images ofO and
those of the candidates. This step involves some user interac-
tion to select R and to align it with O so as to bootstrap a
multi-kernel graph cut [Delong et al. 2010].

2. Silhouette-guided structure-preserving deformation: At
the core of our algorithm is a silhouette-guided deform-to-fit.
Specifically, we deform a 3D candidate model C to fit its sil-
houette to that of the photographed object O while preserving
the structure of C — this step is automatic. The 3D candidate
model can be automatically retrieved from the set based on the
labeled segmentation available for O so that it resembles O.
The candidate can also be manually chosen by the user (last
three chairs in Figure 1) or randomly chosen from the set. Us-
ing a randomly chosen 3D candidate can sometimes bring a
“modeling surprise” and lead to an interesting creation.

We adapt the component-wise controller setup developed by Zheng
et al. [2011] to compute structure-preserving deformation. How-
ever our problem setting and theirs have several critical differences.
Their work is developed for interactive shape editing where a single
user interaction is propagated, one controller at a time, throughout
the model. We compute the deformed model automatically under
silhouette constraints which simultaneously influence all the con-
trollers. Moreover, we are faced with a 2D-to-3D analysis problem.
Thus the stored high-level structural information in C is not merely
preserved but heavily utilized to compensate for the ill-posedness
of the deform-to-fit with respect to content in a single image.

Contributions. The main contributions of our work are:

• A new approach to creative modeling of 3D objects that is
photo-inspired, model-driven, and structure-preserving: The
produced variation inherits the high-level structure of a pre-
analyzed candidate so that it is readily usable without post-
analysis, in contrast to methods based on part composition.

• An automatic method for silhouette-driven shape modeling
from a single image: Most silhouette-based 3D modeling
techniques require multi-view silhouettes [Rivers et al. 2010]
and are appearance-driven [Kraevoy et al. 2009] rather than
structure-driven. Our method preserves the structures of a
given model and utilizes such structures to maximally exploit
silhouette constraints from a single image.

• An interactive model-driven method for object extraction and
segmentation in a single image: High-level structural infor-
mation in pre-analyzed models is utilized to obtain a labeled
segmentation via multi-kernel graph cuts [Delong et al. 2010].

We demonstrate the effectiveness of our modeling technique on
many examples of man-made objects. While our deformation is
guided by view-dependent cues provided through silhouettes, the
manipulation of the 3D candidate model is conducted in a view-
independent way. We believe that the automation of silhouette-
guided modeling that is structure-preserving will open new oppor-
tunities for future work. A unique strength of our approach is that it
automatically fits a 3D model to a single-view photo and modifies
the model while maintaining its consistency and coherence from
multiple views; see Figure 3. This approach stands out with re-
spect to other silhouette-guided methods, e.g., [Nealen et al. 2005;
Kraevoy et al. 2009; Tan et al. 2010], which rely on smoothness
prior only and are not designed to work on man-made models.

Figure 3: A photo-inspired model creation (yellow) shown in dif-
ferent views. Although our modeling technique is based on a single
view, the result is a full 3D model that is coherent from all views.

2 Related work

Enabling a novice user to easily create digital 3D models has been
a long-standing problem in computer graphics. The literature is
rich with modeling systems that assist the user in interactive free-
form shape deformation or shape editing that matches a sketch or
contents in an image. In the following, we review mainly previous
works most closely related to our modeling approach.



Figure 4: Overview of photo-inspired 3D modeling. Given a single input photograph, a model-driven approach is applied to obtain a labeled
segmentation of the photographed object (step 1). The candidate to be deformed can be randomly chosen or retrieved from the candidate set
(step 2). The chosen candidate is deformed to achieve a fit in the silhouettes while preserving its structure (step 3).

Sketch-based modeling. Freehand drawings provide a rich and
natural source of inspiration for 3D creation. In well-known mod-
eling systems such as Teddy [Igarashi et al. 1999] and SmoothS-
ketch [Karpenko and Hughes 2006], the user sketches representa-
tive feature curves such as silhouettes [Rivers et al. 2010] or crease
lines, in 2D or 3D, and from single view or multiple views. The
main challenge lies in how to meaningfully infer the underlying
3D geometry from just a few casual strokes. In our work, we also
use silhouette contours in the input photo to guide the structure-
preserving deformation. However, by driving the analysis and mod-
eling using a pre-analyzed 3D model, we bypass the difficult task
of interpreting a 3D model from only a set of 2D curves.

Modeling from single images. Producing sketches which suffi-
ciently and accurately convey a shape is challenging for most ev-
eryday users. Photographs are much easier to acquire using con-
sumer cameras or from online resources. 3D shape reconstruction
from 2D images has been an extensively studied problem in com-
puter vision. When the input is a single image, the problem can
be severely ill-posed and necessitates additional cues such as sym-
metry [Shimshoni et al. 2000] or user hints [Lau et al. 2010]. This
latter work allows the user to sketch a customized object over a sin-
gle photo. The photo provides references for the perspective and
relative dimensions of the object and also helps the user define var-
ious constraints on the sketches. Then the 3D model is recovered
via an optimization. Instead of reconstructing the exact shape from
a photo, our method uses the photo as a reference to inspire the user
without committing to its fine details or appearance.

Data-driven object modeling. Existing 3D shape repositories
have provided the base for model creation. The recent work of Xu
et al. [2010] performs co-analysis of a set of man-made 3D models
at the part level and allows synthesizing new objects with different
styles; the creative inspiration in their work comes from a set of
3D models. Perhaps the most classic approach is to compose parts
from existing models, tracing back to the work of Funkhouser et
al. [2004] on modeling by example. In their work, a new model
can be created by replacing some of its parts by other similar parts
retrieved from a large database. The Shuffler system of Kraevoy et
al. [2007] allows the user to create new models by shuffling inter-
changeable components from a set of compatible 3D models. Cre-
ative inspiration for the parts can come from user sketches [Shin and
Igarashi 2007; Lee and Funkhouser 2008] with the modeling pro-
cess supported by sketch-driven shape retrieval. The exploratory
tool of Talton et al. [2009] allows model creation based on para-
metric design spaces. Chaudhuri and Koltun [2010] introduce an
approach for generating data-driven suggestions for creativity sup-
port in 3D modeling. All works involving part composition require
assembling parts from different sources into a single model. Stitch-

ing parts with varying scales and orientations into a coherent model
can be a highly non-trivial task, especially for man-made objects.
Simple smooth blending often produces unnatural results that break
engineering principles. If there are topological variations between
the part boundaries, the problem is not even well-defined.

Data-driven methods have also been used in the modeling of human
faces [Blanz and Vetter 1999] and full bodies [Allen et al. 2003;
Anguelov et al. 2005]; these works are based on morphable models
learned from the given databases. The work of [Xi et al. 2007] is
driven by single photos. Specifically, they model the variation of
body parts by segmenting a collection of human bodies and then
building a human body model from a single photo by learning a re-
lationship between the 3D meshes and their 2D silhouettes. These
modeling techniques on organic shapes rely on the construction of
continuous parametric or statistical models. Our work focuses on
man-made shapes where the large variability between correspond-
ing parts makes it difficult to compute correspondence and to build
morphable models leading to meaningful shape variations.

Interactive shape editing. Rather than creating a new model,
the user can create a variation by interactively editing an exist-
ing shape. There have been numerous such methods designed for
organic shapes [Sorkine and Botsch 2009], which are carried out
by manipulating different editing handles such as anchor vertices,
skeletons, cages, and silhouettes. The works of [Kraevoy et al.
2009] and [Tan et al. 2010] make use of user sketches and images,
respectively, to manipulate 3D organic shapes, where a template 3D
model is aligned and then deformed to match the target. Recently,
1D feature wires [Gal et al. 2009] and 3D bounding primitives
called controllers [Zheng et al. 2011] are used as editing handles
in an analyze-and-edit framework for man-made models, where the
detected structures in the models are preserved during editing. We
adopt the controller-based deformation setup from [Zheng et al.
2011], not for interactive editing, but in an automatic setting, to
modify a given 3D model under silhouette constraints.

3 Model-driven image-space object analysis

Given an input photograph containing the object O to be modeled,
the goal is to obtain a labeled segmentation of O. This is accom-
plished using a multi-kernel graph cut driven by a representative
model R roughly retrieved from S. Figure 5 illustrates the process
in some more detail. The labeled segmentation can be used to query
S to retrieve a candidate C that resembles O.

Candidate model set. The candidate set S is pre-processed to
possess part correspondence throughout. Due to possible variations
in the part scales of the models, we adopt the recent method of Xu
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Figure 5: Steps of model-driven object segmentation. Given an input photograph, the user draws a box (a) to seed a graph cut algorithm and
produce a rough object silhouette (b). A 3D model (c) is retrieved based on the silhouette, then overlaid onto the photo (d). Convex hulls of
the model parts (e) provide seeds to a multi-kernel graph cut to produce the final segmentation (f); color labels reflect object parts.

et al. [2010] to perform part correspondence and subsequently nor-
malize the anisotropic part scales of each model. With their method,
each part of a candidate model is associated with a tight oriented
bounding box (OBB). To enable silhouette-driven model variation
(see Section 4 for details), each model is also fitted with a refined
set of controller primitives with their geometric interrelations, e.g.,
symmetry and proximity, detected and stored. The vast majority of
the candidate models were those used in the prior work of Xu et
al. [2010]. Additional models from http://archive3d.net/ were also
added to enrich the candidate sets by number.

Retrieval of representative model. The representative modelR
is a retrieved candidate that serves to guide the labeled segmenta-
tion of O in the photo. As we allow user interaction in aligning
R to O before executing the graph cut, R only needs to roughly
match O. To this end, we extract a rough silhouette of O using
GrabCut [Rother et al. 2004], where the user only needs to place
a bounding box around O in the photo to seed the process. The
segmented shape ofO is then compared to all the 2D projections of
each model in S captured from different views.

Each 3D candidate is projected from 100 viewpoints uniformly dis-
tributed over a bounding sphere. A projection contains both sil-
houette and region information of the shape from a certain view.
We adopt the integrated 2D shape descriptor of Zhang et al. [2002]
to measure the similarity between O and a projection; the descrip-
tor combines contour-based Fourier descriptors and region-based
Zernike moments. We retrieve a small number (10 in our exper-
iments) of candidates that are most similar to O from their best
views. The user selects one of them as the representative R. The
integrated shape descriptors are fairly compact; they are computed
for all the views in preprocessing and stored with the set S.

Model-driven labeled segmentation. To effectively guide the
graph-cut segmentation, the representative R should be properly
overlaid onto the photo to align with the object O. We rely on user
interaction to achieve this, where the user takes R in its retrieved
view to overlay it onto O and then adjusts the view and part scales.
View adjustment is done by rotating R; since the retrieved view of
R already roughly matches that ofO in the photo, the rotational ad-
justment is typically minor. Since R has been pre-segmented with
each segment bounded by an OBB, the user is allowed to scale the
parts via their OBBs to obtain a better alignment; this is designed to
handle discrepancies between part scales inR andO. WithR prop-
erly aligned with O, we use it to bootstrap a graph cut algorithm to
obtain a labeled segmentation of O. Note that the labels are not se-
mantic, they merely serve to establish correspondence between the
segments of O with those of the candidate models.

Let {R1, . . . , Rn} be the set of connected parts from R and let Hi

be the convex hull of Ri in the projected view. We define the back-

ground Hn+1 as the complement of H =
⋃L

i=1 Hi in the image
plane. The segmentation of O is expressed as the problem of label-
ing each pixel with one of the n + 1 labels corresponding to the n
parts and background. We use the multi-kernel graph cut algorithm
of Delong et al. [2010], which executes an energy minimization on
a weighted sum of three terms: the data term, the smoothness term,
and the label term; see the referenced paper for details. We define
the data term using Hi ∩ H(O) for each label 1 ≤ i ≤ n + 1,
where H(O) denotes the region enclosed by the rough silhouette
of O obtained from the previous step. The weights for the three
terms above are set at 1, 1, and 20, respectively, throughout. Note
that a precise segmentation from this step is not necessary as it only
serves to guide the refined, part-level retrieval in the next step.

Candidate retrieval. The 3D candidate C for photo-inspired
modeling can be chosen randomly or manually. We can also re-
trieveC that best resemblesO from S. With a labeled segmentation
of O available, such a retrieval can be done at the part level. The
key advantage of part-level retrieval is that we are able to handle
a target object O whose part scales differ significantly from those
of the 3D candidates. The retrieval bears some similarity with the
rough retrieval of R before, but with two differences. First, we
measure similarity between the image of each segment of O and
the images of the corresponding model parts in S. The similarity
scores are summed up over all the segments in O. Second, instead
of enumerating views, we enumerate the scalings in three axis di-
rections of the OBB of each model part. Along each direction, we
sample 5 values, resulting in 125 total images per part. The simi-
larity measure between the projected images again uses the Zernike
moments. We retrieve 10 models based on the combined similarity
score and the user selects among them the best candidateC. Similar
to view-based global retrieval, Zernike moments for all the scales
can be pre-computed and stored with the candidate set S.

User interaction. In this step of the modeling process, user in-
teraction is involved in several situations. To assist the labeled
segmentation, the user draws a bounding box and then performs
interactive view alignment and part scaling to seed the graph cut
algorithm. View and pose estimation, as well as semantic segmen-
tation, are difficult computer vision problems that are particularly
challenging with only a single view given. We have opted to rely
on light user interaction rather than resorting to automatic analysis.
The user also chooses among a small set of retrieved 3D models
the representative R and then the candidate C to deform. Such
user involvement is not so critical since even randomly chosen 3D
candidates would lead to inspired model creations. However, the
obtained results would vary in their degree of conformation to the
given photographs, e.g., see Figure 11 for an example.



Figure 6: Fitting controllers to 3D models. Cuboids and gen-
eralized cylinders allow close approximations of many man-made
shapes with relatively small controller counts (numbers in red).

4 Model-driven deformation

In this core modeling step, we deform a 3D candidate C automat-
ically to fit the photographed target object O. The deformation
is guided by silhouette correspondence between C and O, where
the user-specified view for the photograph, obtained in the previous
step, is reused. Different from previous silhouette-driven deforma-
tion techniques [Nealen et al. 2005; Kraevoy et al. 2009; Tan et al.
2010], we utilize the pre-analyzed structure of C and develop a
novel iterative procedure which allows significant geometric varia-
tions at the part level of C while preserving its structure. The final
model is thus coherent and readily usable.

Component-wise controller setup. Our deformation algorithm
adopts the component-wise controller setup of Zheng et al. [2011].
The controllers are simple primitives which enclose the components
of a model segmentation and the deformation operates entirely on
an organization of the controllers. Our method differs from [Zheng
et al. 2011] in several critical aspects. First, their algorithm in-
volves interactive shape manipulation which propagates an edit one
controller at a time. Manipulating individual controllers to respect
silhouette constraints can be a tedious task. In particular, the user
must operate in a single view (that of the photo) with a constrained
object pose; this not only introduces occlusions but also obscures
operations such as controller rotation. From a computational view,
optimizing for one controller at a time can easily lead to suboptimal
and instable solutions that are counterintuitive and counterproduc-
tive to the user. Our deformation is fully automatic and the silhou-
ette constraints simultaneously affect all controllers in the subse-
quent optimization. Secondly, our problem is not merely one that
involves deformation; we are also faced with an ill-posed 2D-to-3D
modeling problem whose solution benefits from a model-driven ap-
proach. In particular, we exploit object symmetry in combination
with silhouette constraints to first reconstruct the shape and pose
of controllers contributing to the model’s silhouettes before using
them as handles to deform and fit the whole model.

We use two types of primitives as component-wise controllers only:
cuboids and generalized cylinders (GCs); their simplicity allows
straightforward transforms and in our particular setting, it also fa-
cilitates silhouette detection and feature extraction. The controllers
are built by recursive primitive fitting [Zheng et al. 2011] on the
geometry of C; see Figure 6 for a few results. The silhouette SC of
C’s controllers can be traced based on the user-specified view di-
rection from the previous step. The controllers that contribute to SC

are called external controllers and the other controllers the internal
controllers. SC is segmented into a sequence of curve segments,
according to the external controllers. The inter- and intra-controller
symmetries along with proximity are automatically detected and

Figure 7: Improvements by using label constraints (red) vs. without
(blue) in silhouette correspondence. Plotted are error rates mea-
sured against ground truths produced by manually and consistently
labeling over-segmentions of the silhouette contours.

stored to constrain the deformation. Controller construction gener-
ally takes few minutes (on average 2 minutes) per model. Structural
analysis of the controllers takes about 20 to 500 ms per model. Note
that these and other preparations for the candidate models in S are
performed offline prior to the modeling process.

Overview. Deformation of the controllers is performed in two
steps. First, we reconstruct the shape, position, and orientation of
the external controllers (Section 4.1) under the guidance of silhou-
ette correspondence between C and O. Then we iteratively op-
timize the structure of the entire set of controllers guided by the
external controllers and other constraints (Section 4.2). Finally, the
underlying geometry of C is deformed according to the final con-
figuration of the controllers to obtain the final model.

4.1 Silhouette-guided external controller construction

We wish to reconstruct the external controllers which would repro-
duce the silhouette SO of the target object O. First, we establish
correspondence between curve segments of SC , the silhouette of
the external controllers, to segments along SO . To this end, we
exploit the part correspondence between O and C implied by the
labeled segmentation ofO. However, given the segment correspon-
dence, the controller reconstruction problem is ill-posed. We show
how object symmetry can be exploited to alleviate the problem; this
is particularly useful when modeling man-made objects.

Silhouette correspondence. We first compute a point corre-
spondence between SC and SO . The problem is not new and there
are many existing solutions. We adopt the recent graph match-
ing method of [Duchenne et al. 2009] for the task as it utilizes
constraints on high-order local structures. With part correspon-
dence between C andO, we enforce label constraints in their graph
matching formulation. Specifically, we modify the similarity func-
tion to assign a large value to two local structures with inconsistent
labels, thus penalizing invalid correspondences. Figure 7 demon-
strates improvements made by incorporating label constraints.

For each curve segment belonging to an external controller, its cor-
responding segment on SO is naturally implied by the point corre-
spondence. Note that segment correspondences are not one-to-one;
not all segments on SO have counterparts in SC . This raises no is-
sues since all we need is for each external controller to have a target
on SO to guide its reconstruction.

2D-to-3D reconstruction by reflectional symmetry. Based on
the segment correspondences, we wish to reconstruct the transfor-
mation (rigid or non-rigid) for each external controller to align its
silhouette segment to its counterpart on the target object. The core
problem is how to recover the 3D position of a curve segment along
the 2D silhouette. The 2D-to-3D problem is clearly ill-posed. Ad-
ditional cues must be exploited to resolve the ambiguities.



Figure 8: Illustration of 3D position recovery by reflectional symmetry. To reconstruct the two front legs (a), two pairs of symmetric
points along the edges of the two cuboid controllers are used (b). The edges are reconstructed by recovering the 3D positions of the
corresponding symmetric point pairs in the photo (c). With the symmetry constraint, the reconstructed controllers approximately preserve the
global reflectional symmetry (blue plane) of the candidate model; see top and front view in (d). Simply fitting the cuboids in the XY plane
breaks the symmetry (e). Note that the recovered symmetric legs differ in lengths due to (weak) perspective projection in the photo; this is
fixed by the structure optimization scheme described in Section 4.2.

We show how object symmetry can be exploited in our setting.
Symmetry is quite common in man-made objects and has been ex-
tensively used as an important clue for reconstruction from a single
image, e.g., [Shimshoni et al. 2000]. Our setting is a bit different
from the general reconstruction problem as we have a 3D silhouette
whose correspondence with the image is already established. We
develop a scheme to recover the 3D positions of a pair of points on
the controller silhouettes that are reflectionally symmetric to each
other in object space. The scheme operates under the assumption
that the input photo was captured under weak perspective, i.e., an
approximately orthogonal projection. If the effect of perspective
projection is strong, the geometry recovery can be less faithful,
e.g., a trapezoidal box, albeit with reflectional symmetry, may result
from a perspective photo of a rectangular box.

Suppose that two points p1 = (u1, v1, w1) and p2 = (u2, v2, w2)
on SC are reflectionally symmetric with respect to the plane π0 =
(p0,n0) defined by point p0 and normal n0. Let p̃1 = (x̃1, ỹ1)
and p̃2 = (x̃2, ỹ2) be the corresponding points on SO , respectively;
see Figure 8(a). Let q1 = (x1, y1, z1) and q2 = (x2, y2, z2) be
the 3D positions of p̃1 and p̃2, respectively, that are to be recov-
ered. Suppose that the view direction is along the z-axis. Then the
view transformation (R, t) can be computed from the user speci-
fied view direction. The reflectional plane π = (p,n) between q1

and q2 is then calculated as p = Rp0 + t,n = Rn0. The 3D
positions of q1 and q2 must satisfy the following two constraints:

(q1 −q2) ·n = ||q1 −q2||, (q1 −p) ·n = −(q2 −p) ·n; (1)

(xi, yi) = (x̃i, ỹi)(i = 1, 2), z1 + z2 = w1 + w2; (2)

where (1) ensures that q1 and q2 are symmetric about π, as shown
in Figure 8(b), and (2) is used to constrain the projections and the
depths of q1 and q2. Finally, q1 and q2 can be obtained by solving
a nonlinear least-squares problem composed by the two constraints
above. See Figures 8(c) and (d) for a result and comparison with an
alternative without relying on reflectional symmetry.

External controller reconstruction. While reflectional symme-
tries are ubiquitous in man-made objects, in the absence of such
symmetries, other assumptions have to be made. We have opted
for a simple remedy. Given two corresponding silhouette segments
γC and γO , we “recover” the 3D position of γO by orthogonally
(with respect to the image plane) projecting it onto a supporting
plane for γC in 3D space. The supporting plane is determined as
the best fitting plane to the segment γC and its corresponding seg-
ment along the medial axis of the external controller containing γC .

This scheme is applied to any γO whose corresponding γC is not
part of a reflectional symmetry — most generalize cylinder (GC)
controllers fall into this category.

Given the recovered target segment γ̂C for silhouette segment γC

belonging to an external controller ci, we now describe how the
new external controller ĉi is constructed. If ci is a cuboid, we per-
form re-fitting using the mesh-less deformation method of [Müller
et al. 2005] based on shape matching, which computes an optimal
transformation to match the initial configuration ci to the target ĉi
under the soft constraints provided by γC and γ̂C . As for allowed
transformations, we consider rigid transformation and non-uniform
frustum scaling along its three principal axes.

If ci is a GC controller, we create a new GC that interpolates γ̂C .
If only one side of the silhouette of ci is recovered, we compute
the new medial axis of ĉi by offsetting γ̂C with the original radius
distribution along the medial axis segment corresponding to γC in
ci. If both sides of the silhouettes are recovered, we compute the
new medial axis, as well as the radius, by tracing along the locus
of midpoints between the two silhouette segments. The new GC
is reconstructed from the new medial axis based on the obtained
radius distribution.

4.2 Structure-preserving controller optimization

We have so far only reconstructed the external controllers. In this
section, we optimize the structure of all the controllers with the
help of structural information pre-analyzed for the candidate model.
The optimization problem is difficult to formulate and solve glob-
ally since there are multiple, not just one [Zheng et al. 2011], con-
trollers that constrain each other. Therefore, we opt to greedily and
iteratively optimize the structure of the controllers. The process is
described in Algorithm 1.

Respected constraints. First, the reconstructed external con-
trollers pass on the silhouette constraints, which may be altered
during the iteration. Intrinsic to the controllers themselves, we
maintain their self-symmetries, inter-symmetries, proximities and
other mutual relations (co-planarity, parallelism, and orthogo-
nality). While symmetry constraints are enforced at the con-
troller level, other constraints are modeled by feature curves.
The definition and enforcement of these constraints (carried out
by StructOptController and StructOptCurve in Algo-
rithm 1) are as in [Zheng et al. 2011].

Before starting the iteration, the algorithm first computes the ref-
erence shape for each controller, which is used in Refit after the



Figure 9: One iteration step of controller optimization when deforming a 3D candidate (b) to fit a photo (a). The result of reconstructing
external controllers (c), though fitting well to the photo silhouette, violates the inherent structure of the candidate, e.g., proximity and symmetry
(see insert) between the controllers. We first symmetrize the individual controllers (d) and then optimize the structure using symmetry (e) and
proximity constraints (f). The final controllers are well structured (g) and the underlying geometry is deformed accordingly (h).

Algorithm 1: Controller structure optimization
input : Original controllers ΩO ={cOi }i∈Ω; Reconstructed

controllers ΩR ={cRi }i∈Ω;
output: Deformed controllers ΩD ={cDi }i∈Ω

foreach controller cRi ∈ ΩR do
if cRi is a GC controller then

cRi ←SymmetrizeGC (cRi , c
O
i );

cDi ← cRi ;

while Termination criteria not met do
ΩD ←StructOptController (ΩD);
ΩD ←StructOptCurve(ΩD);
foreach controller cDi ∈ ΩD do

cDi ←Refit (cDi , c
R
i );

shapes of the controllers are altered by structure optimization. For
a GC controller, we symmetrize its shape (SymmetrizeGC) if it
is symmetric according to its original configuration. Cuboid con-
trollers already have regular shapes since they have been refitted in
the reconstruction stage (Section 4.1).

Iterative optimization. The algorithm iteratively alters all the in-
put controllers, starting from the external controllers, based on sym-
metry and proximity constraints. Figure 9 shows one iteration of
the process of structure optimization. For each group of symmet-
ric controllers, we take the transformation of the controller which
is closest to the viewpoint and apply the transformation to all other
members in the group (adjusted according to symmetry). In deal-
ing with proximity constraints, the algorithm operates on all feature
curves of the controllers, including the occlusion silhouettes of the
external controllers whose type is GC. For each controller c, we up-
date its individual feature curves with respect to the feature curves
of the other controllers in ΩD , and then restore the shape of c via
refitting. The influence over a curve of c from its proximate curves
is found by local frame encoding [Gal et al. 2009], weighted ac-
cording to the distance between the centers of the two curves.

Since the resulting curves may violate the original shape charac-
teristics of a controller, we perform refitting (Refit) to restore the
shape characteristics using the method of [Müller et al. 2005] that is
based on shape matching, as in Section 4.1. Since the target shapes
of the controllers were initialized with the reconstructed configura-

tion, the refitting respects the reconstruction results while ensuring
valid shapes and structures of the individual controllers. To respect
the silhouette constraint during the optimization, we simply assign
higher weights to feature curves at the silhouettes in the setting of a
least-squares refitting [Müller et al. 2005].

Termination and geometry update. The iteration terminates
when either the maximum movement of all controllers is lower
than a threshold (1% of the length of bounding box diagonal of
C) or a maximum number of iteration step is reached. Finally, we
transfer the deformation applied to the controllers to the underly-
ing geometry. For a cuboid controller, we simply apply the same
transformation of the controller onto the geometry it encloses. For
a GC controller, we perform skeleton driven deformation using dual
quaternion [Kavan et al. 2007].

5 Modeling results

The results presented in this section mainly demonstrate the power
and versatility of photo-inspired 3D object modeling. This is high-
lighted by a small stress test which we call the “Google chair chal-
lenge”. Chairs exhibit amazing varieties and are constantly the sub-
ject of creative design. We performed a Google image search on
“chair” and tested our technique on the returned images one by
one, using the 3D chair models created by the prior work of Xu
et al. [2010]. Figure 10 shows the models produced based on the
first 11 images. We are unable to produce reasonable results on
three of the photos due to lack of reasonable candidates from S.

Figure 11 shows a gallery of model creations for different object
classes, where one 3D candidate is deformed to create variations
based on three photographic inspirations. We emphasize again that
although our modeling is based on a single view, the result is a full
3D model that is coherent from all views and structure-preserving
with respect to the 3D characteristics of the shape, e.g., symmetry.
This is demonstrated in Figure 3.

Structure preservation and conformation to silhouette constraints
are clearly evident. However, these characteristics of our method
may lead to certain unnatural results. One may observe that the
model created out of the third photo in the Google chair challenge
has an odd deformation; this is caused by the extra piece under the
seat which the graph cut was unable to segment out. For the chair
created from the marked photo (red box) in Figure 11, one may
expect the back to be deformed to better fit the image silhouette.
However, the deformation allowed is dictated by the controllers and



Figure 10: The “Google chair challenge”: modeling chairs after Google image search returns on “chair”. Top row lists the top 11 returned
images from the search. We are unable to model objects contained in the images marked by red boxes. 3D models created from other photos
(yellow) are shown below where the candidates were retrieved from the database for best resemblance to the photographed targets.

in that case, the back is modeled by cuboids which would not allow
a free-form bend. We indeed consider preserving the characteristics
of the controllers as part of the structure preservation.

Given a pre-analyzed candidate set, the creation of a model out of a
given photo is interactive. The user mainly needs to adjust the view
and part scales to align a 3D candidate to the target object in the
photo. These interactions are fairly quick and the silhouette-driven
deformation is performed in real time.

6 Discussion, limitation, and future work

Despite much effort invested in developing a large variety of 3D
modeling tools, it still remains a challenge for a novice user to
quickly create a realistic and readily usable digital realization of a
design concept or physical 3D object. Creating a digital 3D model
of any complexity from scratch is difficult, whether the creative in-
spiration comes from sketches or photographs. It has been a com-
mon practice to utilize the growing collection of 3D models so that
the created model is a variation or composition from them. In our
approach, the variation is a geometric one which allows us to pre-
serve the structural properties of a candidate model.

Creative inspiration. We believe photographs and sketches truly
provide the richest source of creative inspiration for 3D object mod-
eling, far beyond what existing 3D shape repositories can offer at
this point. One of the main motivations of this work is to effectively
leverage that source. However, 3D inference from a single photo or
sparse sketches is highly non-trivial; we alleviate that difficulty by a

model-driven approach. While our current work is photo-inspired,
to adapt it to work with user sketches is not too far-fetched. The
user mainly needs to sketch out the silhouette of the target object
to guide the candidate retrieval and structure-preserving deforma-
tion. A photo and sketch can even be combined allowing the user
to sketch over the photo, perhaps to tune the fine-scale appearance
of a model already created by our current technique.

Reusability. 3D modeling is a time-consuming and delicate pro-
cess, and as such any effective modeling system must encourage
reusability. Modeling via part composition encourages reusability
at the part level while our approach reuses higher-level structures,
which we believe to be more expensive to acquire. Unlike image
synthesis, where the end goal is typically a satisfactory visual re-
sult, object modeling is a continuous process where any created
model is meant to be further refined and manipulated. Hence it is
highly desirable for the model to be integrated and coherent rather
than merely being a disorganized assembly of parts. In this context,
the structure, rather than the appearance, of the model plays a more
useful role. We envision that as more effort is geared towards the
modeling of man-made objects and as the complexity of the objects
increases, structure reuse becomes even more crucial. As a result,
the library of models which serve to support creative 3D modeling
will have to become more structurally organized beyond possessing
only their low-level segmentations.

Geometry vs. structure variation. Our core modeling approach
is intrinsically limited by the available structures in the candidate
set; it creates new geometric variations but not new structures. This
choice is intentional as we aim for structure reuse. At the same



Figure 11: A gallery of 3D model creations for different object classes and from varying photographic inspirations. In each case, one 3D
candidate is deformed to fit three photographed objects. Note that the model created out of the marked chair photo does not match well the
image silhouette since its cuboid controllers are not allowed to bend. The 3D candidate was chosen randomly from the chair set.

time, we argue that the generation of new structures is facilitated by
having an existing one and only having to modify it. Building a new
structure from scratch or inferring the high-level structure from a
low-level representation, such as one obtained via part composition,
is more difficult [Xu et al. 2010; Zheng et al. 2011].

Structure vs. appearance. Our modeling approach is structure-
oriented and is not meant to reproduce the fine-scale appearance of
the photographed object. Man-made objects with highly detailed
silhouettes, for example, may not be well handled by our tech-
nique; methods aimed at reconstruction are more suitable. With
the high-level structures modeled using our method, reconstructing
fine-scale details of the shape, e.g., guided by sketches, is possible.

Other limitations. Results from the previous section show that
the meaningfulness of the models created using our technique de-
pends on the extraction of meaningful silhouettes and the availabil-
ity of the appropriate controllers. The major cue employed in our
external controller construction step is reflectional symmetry; we
do not consider rotational or other forms of symmetries which may
strengthen the analysis. The remedy provided to handle cases in
the absence of symmetries is quite basic. Figure 12 shows how
our method performed on an asymmetric target object. Since the
3D candidate is symmetric, structure preservation leads to a model
not in close resemblance to the input. Giving more weights to con-

Figure 12: Modeling results from an asymmetric target object re-
veals a conflict between silhouette conformation (left result) and
structure preservation (right result); neither is really satisfactory.

formation with the image silhouette leads to an incoherent model.
More advanced means to handle asymmetry are needed.

Future work. We feel that it is promising to treat the result from
our modeling technique as a starting point for further model refine-
ment. We plan to investigate effective means of structure modifi-
cation and editing of fine-detailed features. The interesting ques-



tion is how we can develop a model-driven approach to allow their
reusability. We would also like to incorporate additional constraints
such as crease curves to better steer the structure-preserving defor-
mation. Of general interest is the interesting problem of part stitch-
ing, for which we believe a data-driven approach is worth investi-
gating. Finally, it will be our continuing pursuit to find more means
to inspire the user in creative 3D modeling.
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