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Abstract

We propose a fast method for 3D shape segmentation and labeling via Extreme Learning Machine (ELM). Given
a set of example shapes with labeled segmentation, we train an ELM classifier and use it to produce initial seg-
mentation for test shapes. Based on the initial segmentation, we compute the final smooth segmentation through
a graph-cut optimization constrained by the super-face boundaries obtained by over-segmentation and the active
contours computed from ELM segmentation. Experimental results show that our method achieves comparable re-
sults against the state-of-the-arts, but reduces the training time by approximately two orders of magnitude, both
for face-level and super-face-level, making it scale well for large datasets. Based on such notable improvement,
we demonstrate the application of our method for fast online sequential learning for 3D shape segmentation at
face level, as well as realtime sequential learning at super-face level.

Categories and Subject Descriptors (according to ACM CCS): 1.4.6 [Computer Graphics]: Segmentation—

1. Introduction

Labeled segmentation is one of the essential issues towards
the high-level understanding of 3D shapes. Extensive re-
search has been devoted to this important problem, with the
help of recent advances on machine learning techniques.
Existing approaches to this problem can be broadly cat-
egorized as supervised and unsupervised methods. In su-
pervised methods, some learning techniques, such as Joint-
Boost [KHS10] or AdaBoost [BLVDI11], have been utilized
to train a complex classifier. Based on the initial labeling,
the actual segmentation is formulated as, e.g., Conditional
Random Field (CRF) [KHS10], graph cuts [VKTS*11] or
Snake [BLVDI11], to obtain smooth segmentation results.
For these methods, the state-of-the-art works can obtain seg-
mentation accuracy of about 94% [KHS10]. However, the
training process is extremely time-consuming, which can
easily take several hours. On the unsupervised side, clus-
tering methods has been utilized for segmentation and la-
beling [SVKK* 11, HFL12]. To accelerate the computation,
these methods often cluster super-faces [HKG11,WAvK* 12]
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obtained via over-segmentation. Super-face-level clustering
can greatly improve the running time, but the segmentation
results are generally inferior to those by the supervised meth-
ods working at face level.

The goal of this work is to improve the training per-
formance of supervised approach, making the highly accu-
rate segmentation and labeling scale well for large datasets
and furthermore, available for online learning scenarios. To
this end, we employ the recently developed Extreme Learn-
ing Machine (ELM) to train a neural networks classifier.
ELM works on generalized single-hidden layer feedforward
networks (SLFNs) and provides good generalization at a
much cheeper learning cost due to the avoidance of hid-
den layer tuning [HWL11]. Moreover, ELM can automat-
ically set weights for each dimension of the feature vec-
tors, acting similar to the boosting methods. We use the
trained ELM classifier to predict labels for all mesh faces.
Based on that, we perform graph-cut based segmentation op-
timization, constrained by the refined boundaries from both
over-segmentation and ELM-based segmentation, leading to
a smooth segmentation.

Our work makes two contributions. Firstly, we introduce
ELM into the labeled segmentation of 3D shapes to reduce
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Figure 1: The pipeline of our ELM-based segmentation al-
gorithm. Stage 1: An ELM classifier is trained with an ex-
emplar dataset. Stage 2: The classifier is used to predict the
face labels on test models. Stage 3: The final smooth seg-
mentation is obtained by graph-cut optimization constrained
by the super-face boundaries obtained by over-segmentation
and the active contours computed from ELM segmentation.

the training cost of supervised method significantly. Sec-
ondly, we demonstrate how this efficient ELM-based ap-
proach can be extended for the task of online sequential
learning for 3D shape segmentation. To the best of our
knowledge, we are the first to provide a realtime online se-
quential learning application on 3D shape segmentation.

2. Related work

Supervised methods for segmentation and labeling. Su-
pervised methods train a mesh face classifier from a collec-
tion of labeled 3D meshes and then use it to predict the face
labels on test 3D meshes. Advanced machine learning tech-
niques have been successfully utilized in training the clas-
sifier. The actual segmentation can be formulated as Con-
ditional Random Field (CRF) or graph cuts to generate the
final smooth segmentation.

Kalogerakis et al. [KHS10] proposed the first supervised
labeled segmentation for 3D shapes, demonstrating signif-
icant improvement over traditional methods based on lo-
cal analysis of shape concavity/convexity. van Kaick et
al. [vKTS™*11] incorporated prior knowledge imparted with
a set of pre-segmented and labeled models with content-
driven analysis to perform part correspondence. Benhab-
iles et al. [BLVDI11] presented a fully automatic 3D mesh
segmentation algorithm based on boundary edge learning,
which could obtain better segmentation boundaries.

To date, the state-of-the-art supervised methods have ob-
tained segmentation accuracy of 94%. However, the costly

training process has been a major obstacle hindering its scal-
ability for large datasets and availability for online scenarios.

Unsupervised segmentation and labeling. Much re-
search has been dedicated to unsupervised approach for seg-
menting a set of 3D meshes simultaneously and consistently,
which is also referred to as co-segmentation. Based on dif-
fusion map in descriptor space, Sidi et al. [SYKK*11] pro-
posed a method to co-segment a set of shapes with large
variability. However, their method relies on initial segmenta-
tions for each input shape and may fail if the per-shape seg-
mentation is poor. Huang et al. [HKG11] presented a novel
linear programming approach to joint segmentation of a het-
erogeneous shape collection, producing comparable results
to the supervised approaches on the Princeton Segmentation
Benchmark (PSB) [CGF09]. Xu et al. [XLZ*10] clustered
man-made objects based on their anisotropic part propor-
tion styles in a correspondence-free manner, obtaining co-
segmentation used for generating shape variations. Hu et
al. [HFL12] employed subspace clustering to perform con-
sistent shape segmentation. Meng et al. [MXLH12] built a
statistical model to describe each cluster of parts obtained
by an initial segmentation, and employed the multi-label op-
timization to iteratively improve the co-segmentation.

To accelerate unsupervised methods, researchers opt to
compute features at patches, or super-faces [SVKK*11,
HKG11]. Clustering at patch level is computationally much
cheaper, but still takes several minutes. In general, unsuper-
vised methods produces inferior segmentation and labeling
results than supervised ones.

Extreme learning machines. Neural networks and sup-
port vector machines (SVMs) are two very important tech-
niques for training classifiers in a supervised fashion. How-
ever, it has been shown that both the two techniques
face some challenges, such as slow learning speed, inten-
sive human intervention, etc. Extreme learning machine
(ELM) [HZS06], as an emerging learning technique, aims
to overcome these challenges and has received much atten-
tion lately. Among all the advantageous properties of ELM,
the reduced training time is perhaps the most attractive to its
various applications. ELM works with generalized single-
hidden layer feedforward networks (SLFNs). The key fea-
ture of ELM is that the hidden layer of SLFNs need not be
tuned [HZDZ12], making it achieve better scalability with
the much faster learning speed.

3. Learning theory of extreme learning machines

In this section, we give a brief introduction to the fun-
damentals of ELM [HWLI11]. For N arbitrary samples
(xi,t;) € RY xR", a single-hidden layer feedforward net-
work (SLFN) with L hidden nodes can be mathematically
modeled as:

~

L
Zﬁigi(xj‘): Bl-G(ai,b,-,xj):oj. j=1....N (1)
i=1 i

Il
-
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The SLFN can approximate these N samples with zero er-
ror means, i.e., Y& | |loj —t;|| = 0, meaning that there exist
(@;,b;) and B; such that

L
B:G(ai,bi,xj)=t;. j=1,...,N )
=1

The above N equations can be written in the matrix form:

HB=T, €)]
where
h(x); G(ay,by,x1)
H=| i |=|
h(x)y G(ay,b1,xy)
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H is called the hidden layer output matrix of the SLFN;
G(a;,bj,x;) (i =1,...,n) are the hidden layer feature map-
ping. After randomly generating the hidden node parameters
(a;,b;), training an SLFN is equivalent to finding a least-
squares solution B of Equation (3) [HZS06]:

p=H'T “
where H' is the Moore-Penrose generalized inverse of H.

For the case where the number of training examples is
huge, Huang et al. [HZDZ12] proposed a faster implemen-
tation of ELM. In their training process, every input feature
has a weight term. In this paper, we discard this term in order
to fully exploit the feature weight choosing mechanism of
ELM. For online sequential training, we modify the online
sequential ELM (OS-ELM) [LHSS06] by putting an ELM
testing step in every training update step, to be able to termi-
nate and output testing results at any time.

4. 3D shape segmentation and labeling via extreme
learning machine

In this section, we provide the details of our ELM-based
mesh segmentation method, including the shape descriptors
involved and the three-stage training-segmentation process.

4.1. Algorithm overview

Our ELM-based segmentation algorithm proceeds in three
stages (Figure 1). In the first stage, we calculate feature de-
scriptors for all faces of the input meshes and feed these
feature vectors to ELM for classifier training. In the second
stage, the trained ELM classifier is used to segment and la-
bel the test meshes. Finally, we over-segment the test meshes
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into super-faces on which we perform graph-cut optimiza-
tion to obtain smooth segmentation results.

4.2. Shape descriptors

We compute a set of shape descriptors for each face of an in-
put mesh. These descriptors capture different aspects of the
face properties, such as local shape geometry around the face
as well as contextual information. The main idea of using a
collection of descriptors is that their union is expected to
be informative enough for face discrimination [VKTS*11].
Specifically, we extract the unary features used in the super-
vised segmentation of Kalogerakis et al. [KHS10], including
those based on principal component and curvature analysis
over the neighborhood of a face, shape diameter, average of
geodesic distances, and geodesic shape contexts.

Besides unary ones, Kalogerakis et al. also use pairwise
features including five different categories of descriptors for
each pair of adjacent faces. The extraction of these pair-
wise features is much more expensive than that of unary
ones. In their method, the JointBoost needs to be trained for
both unary and pairwise features. The two trained JointBoost
classifiers are then integrated into a CRF model. On the con-
trary, our ELM classifier is trained using only unary features,
making the training process extremely fast. In our method,
the pairwise segmentation optimization is incorporated into
graph cuts (Section 4.4.2).

4.3. ELM classifier training and testing

In the training stage, we first normalize the features com-
puted for all input meshes. Then the parameters, such as the
number of hidden neurons, the number of training meshes
and the activation function, are chosen. The details of pa-
rameter settings are described in Section 5.1.

The key change to the original ELM made by our method
is that we discard the feature weight term in the training pro-
cess, which means that we weight all features uniformly.
In fact, ELM can automatically choose weights for every
dimension of the features, similar to the feature selection
of boosting methods. The output of the ELM training is a
classifier and the associated accurate classification rate for
the training data. In the testing stage, every face of the test
meshes is classified into a specific class by the ELM clas-
sifier. The output will be used as the initial labeling for
the graph-cut based segmentation optimization, which is de-
scribed in the following.

4.4. Segmentation optimization

The labeling results obtained by ELM are usually noisy and
the segmentation boundaries are jaggy. Therefore, we per-
form graph cuts to optimize the initial labeling into a smooth
segmentation. To achieve smooth boundaries, the graph-cut
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Figure 2: An overview of segmentation optimization. (a):
Initial segmentation result by ELM. (b): Active contours of
the ELM segmentation boundaries. (c): Over-segmentation
computed by normalized cuts. (d): Segmentation result from
combining the boundaries from both (b) and (c). (e): Final
segmentation obtained by graph-cut optimization.

(e)

optimization is constrained by the combination of the super-
face boundaries obtained by over-segmentation, and the ac-
tive contours computed based on ELM segmentation.

4.4.1. Boundary extraction

Boundaries of over-segmentation. We first over-segment
each mesh into primitive patches [HKG11]. Given a mesh,
we first employ the normalized cuts [GF08] to decom-
pose it into primitive patches, and then optimize the patch
boundaries to align them against shape features using
fuzzy cuts [KTO03]. Let us denote the boundaries of over-
segmentation by Boverseg Which is a set of boundary edges.

Active contours of ELM segmentation. Another type of
boundaries we consider is the segmentation boundaries of
ELM. However, ELM segmentation often produces jaggy
and even incomplete boundaries. To extract complete and
smooth boundaries from the ELM segmentation results, we
perform contour completion and active contour movement,
similar to the work of Benhabiles et al. [BLVDI11]. Fig-
ure 2(b) shows the extracted contours from ELM segmen-
tation of the right arm of a human model. Let us denote the
refined boundaries of ELM segmentation by Bgpm.-

Boundary combination. We combine all the boundaries
obtained above by taking the union of the two sets of edges,
denoted by Bcomb = Boverseg U BELM, leading to a new, finer
segmentation. In the new segmentation, we remove very
small segments whose area is smaller than 1% of the total
area of the mesh and merge it into its neighbouring segment
with the maximum area. The process of boundary combina-
tion is demonstrated in Figure 2(b-d). B.omp is then used to
guide a smooth segmentation in graph cuts.

Figure 3: The effect of the weighting factor Wy, over seg-
mentation boundary. (a): Initial labeling result by ELM. (b):
Segmentation optimized by graph cuts with the weighting
factor. (c): Segmentation by graph cuts without the weight-
ing factor. Clearly, (b) preserves the boundaries in (a) better.

4.4.2. Graph-cut optimization

With the labeling predicted by the ELM classifier, as well as
the boundary constraints obtained above, we perform graph
cuts to obtain the final smooth segmentation. Given a mesh,
we represent it with a graph G = {V,E}, where the nodes
V correspond to triangles of the mesh and an arc (u,v) € E
exists if the faces u and v are adjacent. Let n be the number
of all possible labels for the current shape category. For each
face u, ELM produces n neuron outputs with corresponding
probabilities. The ELM label of u, [, takes the one with the
highest probability. The segmentation optimization is then
reduced to finding the labeling / that minimizes the energy:

E(l) = Z ED(M,I[{)‘F)\. Z ES(M,V,IMJV), (5)

uev (u,v)EE

where [, and /, are the labels assigned to u and v, respec-
tively. Moreover, Ep and Eg are the data and smoothness en-
ergy term, respectively. A is used to tune the importance of
the smoothness term; we use A = 50 in all our experiments.

The data term Ep(u,l,) is used to ensure that a triangle
u € V can be assigned with the label corresponding to the
maximum probability, and is given by:

Ep(u,lu) = —log(p(lulu)) (6)

where p(lu|u) is the probability that node u is assigned to
label I, by ELM classifier.

Similarly to [SSS*10], the smoothness term is defined as:

0, if lu=1
uvluy(1 —1log(Buy/T)), otherwise

@)
where /¢,y is the length of the incident edge of face u and
v, and By, is the dihedral angle between the two faces. Wy
is a weighting factor incorporating the boundary constraints
based on the boundaries of both over-segmentation and ELM
segmentation.

ES(M7V7 luylv) = {

We impose the boundary constraints through favoring the
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Figure 4: The plots show the influence of different choices of Nueurons 0ver segmentation accuracy (left) and training time (right)
for four datasets from PSB [CGF09]. Both segmentation accuracy and training time take the average for each dataset. It can
be seen that when Nyeurons is set to 500, we obtain a good trade-off between training time and segmentation accuracy.

cuts across the boundaries in B.omp:

o] 10,
uy — 17

where ey, is the incident edge of face u and v. The ef-
fect of imposing boundary constraints with @, is shown
in Figure 3. We use the multi-label oi-expansion algorithm
[BVZ01] to minimize the energy E(I).

if ey € Beomb
otherwise

®

5. Implementation and results

To evaluate the segmentation and labeling performance of
our method, we test it over datasets across twenty-three
shape categories, among which nineteen are from the Prince-
ton Segmentation Benchmark (PSB) [CGF09] and the rest
four from COSEG [WAvK™12]. For COSEG datasets, we
evaluate our method against the ground-truth segmentations
provided therein. For PSB datasets, we choose the ground-
truth as in [KHS10].

5.1. Segmentation results at face level

There are two important parameters in our method, i.e. the
number of hidden neurons used in ELM, Nyeurons, and the
segment count of over-segmentation, Noverseg. The choice of
Nneurons has significant effect over the speed of ELM train-
ing and the accuracy of ELM testing. In Figure 4, we show
how different choices of Nyeurons Would affect the training
time and the final segmentation results. All the face-level re-
sults presented in this paper were produced with the fixed
parameter setting: Nyeurons = 500 and Noyerseg = 50. In ELM
classifier training, we choose the mostly used sigmoid func-
tion as the activation function for each input feature. Other
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choices, such as Radial Basis Function (RBF), are also pos-
sible. Figure 5 shows a gallery of segmentation results for
twenty categories of datasets from both PSB and COSEG.

Table 1 (left) reports detailed results for the corresponding
datasets in Figure 5, using four different configurations of
training data size: 1) All shapes from the dataset except one
(ELM-LeaveOne), 2) 75% shapes out of the dataset (ELM-
75%), 3) Half of the dataset (ELM-50%) and, 4) 25% of the
dataset (ELM-25%). The results shown in the corresponding
columns are those by ELM labeling. We also demonstrate
the results of segmentation optimization based on the label-
ing results by ELM-LeaveOne, denoted by ELM-Opt. The
accuracy of labeled segmentation is measured by the area-
weighted recognition rate proposed in [KHS10]. The Rand
Index is computed using the method in [CGF09]. Both of
them are measured against the ground-truth labeling.

5.2. Segmentation results at super-face level

Based on ELM labeling, our method can also perform mesh
segmentation and labeling at super-face level. To gener-
ate training data with super-face-level labels, we first over-
segment each input mesh into 100 super-faces [HKGI11].
Then the ground-truth labels for the super-faces are gener-
ated based on the ground-truth labeling at face level. Specif-
ically, given a super-face, we take the label which covers the
maximal area within the super-face as its ground-truth label.

To train classifier at super-face level, we need to define
feature for super-faces. Similar to Hu et al. [HFL12], we de-
fine the feature vector of a super-face as the histogram of
the feature measure over all faces on that super-face. The
number of bins for each histograms is set to 30 in all our ex-
periments. The other parameters used by ELM are the same
as those in Section 5.1.
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Table, Bust, FourLeg, Mech, and Candelabra. The

ults by our ELM-Opt algorithm for twenty datasets: Airplane, Ant, Armadillo, Beari
Bird, Chair, Fish, Hand, Human, Octopus, Plier, Teddy, Cup, Glasses, Vase,
from PSB [CGF09] and the last from COSEG [WAvK™ 12].

Figure 5: A gallery of segmentation res

first nineteen are
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ELM Segmentation: Recognition Rate Segmentation: RandIndex
25% 50% 75% | LeaveOne Opt Training | SB19 | ELM-Opt

Ant 95.09 | 95.25 | 95.72 95.79 95.98 1.7 1.9 4.2
Airplane 90.51 | 92.38 | 93.20 94.29 94.49 7.4 7.9 8.9
Armadillo 83.57 | 84.02 | 84.79 84.21 87.86 6.3 8.0 9.4

Bird 93.56 | 95.53 | 95.57 95.58 95.68 44 10.4 16.6

Bearing 48.17 | 67.39 | 79.63 83.12 90.84 6.8 9.7 15.4
Chair 95.52 | 96.92 | 97.08 97.28 97.41 52 5.4 7.1

Fish 81.52 | 85.81 | 87.68 87.72 95.68 11.8 12.9 13.2
Human 80.87 | 84.43 | 86.27 87.47 88.61 11.2 11.9 9.8

Hand 69.50 | 73.10 | 75.33 82.60 83.47 9.1 10.4 11.4
Octopus 97.46 | 97.60 | 97.70 98.37 98.73 1.8 1.8 1.8
Plier 95.23 | 95.78 | 95.80 95.84 95.96 5.1 5.4 5.4
Table 96.22 | 97.33 | 98.31 98.37 99.31 59 6.2 59
Teddy 97.60 | 97.72 | 97.73 97.74 97.74 3.1 3.1 3.6
Glasses 95.95 | 96.68 | 96.70 96.72 96.79 8.4 13.6 8.8
Cup 95.87 | 96.43 | 97.27 98.23 98.32 9.8 9.9 10.3

Vase 71.19 | 79.00 | 80.63 88.81 89.52 10.5 16.0 15.6

Bust 48.41 | 52.23 | 58.62 60.12 61.36 18.8 21.4 22.1
FourLeg 77.40 | 80.78 | 80.89 84.23 91.44 159 13.2 9.1

Mech 80.81 | 81.89 | 82.50 84.95 87.49 8.5 10.0 159
Vase (COSEG) 92.12 | 93.34 | 93.66 93.67 93.87 0 - 6.8
Candelabra (COSEG) | 83.39 | 89.78 | 96.49 96.60 96.79 0 - 35
Chair (COSEG) 96.66 | 96.95 | 97.35 97.40 97.70 0 - 42
Lamp (COSEG) 95.72 | 96.48 | 98.00 98.09 98.22 0 - 2.1

Table 1: The left part of the table reports the segmentation accuracy (recognition rate) of our ELM method on various datasets,
using four configurations of training data size: ELM-25%, ELM50%, ELM-75%, ELM-LeaveOne. The results by ELM-Opt (op-
timized from ELM-LeaveOne) is also given. The right part shows the Rand Index scores [CGF09] of the training segmentations,
and the resulting segmentations obtained by SB19 [KHS10] and ELM-Opt. The Rand Index in the first nineteen datasets are
measured against all human segmentations in the Princeton benchmark [CGF09], while those in the last four datasets against
the ground-truth provided in COSEG. Therefore, the Rand Index of training segmentations in the last four sets are zero. The
Rand Index scores of SB19 for the last four sets are missing since the method was not tested over those datasets.

Segmentation Accuracy

Labeling Accuracy

nnnnnnnnnnnnnnnnn

nnnnnnnnn

rrrrrrrrrrrr

Teddy  Glasses

T
Elours
[Kalogerakis etal. 2010 | |

nnnnnnnnn

Ellours
[_Jvan Kaick et al. 2011

Figure 6: Comparisons of segmentation accuracy between our ELM segmentation and two start-of-the-art methods. Left:
comparison between ELM-Opt and SB19 [KHS10], where both methods use “leave-one-out” training data configuration for
each dataset. Right: comparison between ELM-75% (boundary optimized by graph cuts) and the method by van Kaick et
al. [vKTS* 11], both of which use 75% of the dataset as training data.

© 2014 The Author(s)

Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd.



Z. Xie, K. Xu, L. Liu & Y. Xiong /3D Shape Segmentation and Labeling via Extreme Learning Machine

ELM-LeaveOne ELM-75%
Train (sec) | Acc. (%) | Train (sec) | Acc. (%)
Fish 1.89 93.05 1.71 92.92
Airplane 1.62 90.35 1.52 88.30
Teddy 1.91 96.80 1.73 96.64
Ant 1.84 96.10 1.64 95.34
Octopus 1.71 97.53 1.56 96.98

Table 2: Training time (in second) and segmentation accu-
racy (recognition rate) of our super-face-level segmentation
algorithm over two configurations of training data size. The
five datasets are from PSB.

Table 2 reports the training time and segmentation accu-
racy of super-face-level segmentation by our method, for two
configurations of training sets, respectively. As expected,
when working with super-faces, the total size of features
input to ELM training is greatly reduced (less than 1% of
that at face level). Consequently, the training time is fur-
ther improved, while the segmentation accuracy is not sacri-
ficed much. Note that the accuracy of labeled segmentation
is measured against the original, face-level ground-truth.

5.3. Comparison with state-of-the-arts

In this section, we first compare our method with two
supervised approaches. For PSB datasets, Kalogerakis et
al. [KHS10] demonstrated the segmentation results of their
method, with the training size configuration of “leave-one-
out”, similar to the ELM-LeaveOne for our method. Such
configuration yields the most accurate results for both meth-
ods. In the comparison, we show results by ELM-Opt, which
are optimized from those by ELM-LeaveOne. van Kaick et
al. [VKTS*11] used the COSEG datasets and their method
was evaluated with the training data size of 75% of the entire
dataset. Hence, when comparing with [VKTS*11], we show
the graph-cut optimization results based on ELM-75%.

Table 1 (right) compares the Rand Index scores ob-
tained by ELM-Opt and the method of Kalogerakis et al.
(SB19) [KHS10], over various datasets. While our method
obtains comparable segmentation accuracy with theirs, our
training time is typically less than one minute (Table 3),
in contrast to several hours in their method. For some in-
put shapes, our method produces visually more meaningful
boundaries as compared to other methods; see Figure 7. Fig-
ure 6 compares the segmentation accuracy between ELM-
Opt and [KHS10] (left side), as well as between ELM-75%
(boundary optimized) and [VKTS*11] (right side). From the
figure, our method is comparable to [KHS10] while consis-
tently outperforming [VKTS*11].

For face-level segmentation and labeling, our method im-
proves the training time over the above two works signifi-
cantly. Since we could not obtain the source code of the two
works, we provide an approximate timing comparison, based
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Figure 7: From left to right, we show segmentation results
on a human model, obtained by ELM-LeaveOne , ELM-Opt,
as well as the methods from [BLVDI1], [KHS10], [GF09]
and [SSCOO0S]. Our method obtains visually more meaning-
ful segmentation at the boundary between head and neck.

on the timing report in the original papers, only to show a
general idea of the extend of the improvement. For example,
in [KHS10], the training process took about 8 hours for a
dataset with 6 meshes with about 25~30K faces. Our method
takes only about 15 seconds on the same dataset. Taking the
difference of CPU speed into accout, our method improves
the training time by about two orders of magnitude. Note
that for almost all methods, testing time is usually negligible
as compared to training time. In our case, the ELM label-
ing and the graph-cut optimization together take less than 3
seconds on average; see Table 3 for full timing report.

5.4. Results on larger datasets

Nowadays, the scale of shape collections keeps growing,
leading to more and more large datasets on the Internet.
So far, the existing methods for mesh segmentation and la-
beling can not scale well for the large datasets, due to the
high training cost. Wang et al. [WAvK™12] introduced ac-
tive learning for interactive labeling large model sets. Due
to the fast training of ELM-based segmentation method, it
is natural to use it to segment and label large datasets. We
test our method on the three large scale datasets provided in
COSEG [WAvK*12]. The three datasets, Tele-aliens, Vases
and Chairs, contain 200, 400 and 300 models, respectively.
All the three sets come with ground-truth labeling which can
be used for training and evaluation. We apply our method
(ELM-75%) on these datasets, with the default parameter
setting. The segmentation accuracy, measured by recogni-
tion rate, for the three datasets are 83.23%, 87.09% and
85.86%, respectively. The training time for the three sets are
260.6s, 241.7s and 105.9s, respectively.

5.5. Performance

All the experiments were performed on a machine with In-
tel(R) Quad-Core 3.2 GHz CPU and 16GB RAM. The ELM
training and testing processes, as well as graph-cut optimiza-
tion, are implemented in Matlab. The total running time of
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LeaveOne | 75% Testing | Graph-cut
Airplane 43.56 34.62 1.41 0.42
Bird 36.57 29.55 1.15 0.43
Fish 40.40 31.99 1.28 0.52
Human 63.25 50.61 2.04 1.11
Octopus 59.20 45.98 1.75 1.02
Glasses 30.34 23.59 0.92 0.31

Table 3: Time consumption (in second) of the various stages,
i.e., training, testing and graph-cut optimization, on six
datasets from PSB. The training time is given for two con-
figurations of training data size.

our face-level algorithm on a set of 20 shapes is typically
less than one minute. The proportion of time consumption is
around 96% for ELM training, 3% for ELM testing, and 1%
for graph-cut optimization (Table 3). The average running
time of our super-face-level algorithm is around 2 seconds;
see Table 2.

6. Application

In many applications, training data often come one by
one or chunk by chunk. In these cases, on-line learn-
ing is more preferable than batch learning since the for-
mer does not need retraining when a new datum is re-
ceived [HWLI11]. Online Sequential Extreme Learning Ma-
chine (OS-ELM) [LHSS06] is a simple and efficient on-
line learning algorithm developed based on ELM. OS-ELM
can absorb training data not only in a one-by-one manner,
but also in a chunk-by-chunk fashion, with fixed or varying
length, and update the classifier with only the newly incom-
ing training data.

Online sequential learning at face level. The process of
OS-ELM is described as follows. First, an initial ELM clas-
sifier is trained using an initial set of training data. When
new training data come in, the classifier is updated using the
new input data. The process is repeated until all input data
have been received. The key feature of OS-ELM is that the
classifier updating can be done incrementally, based only on
the new training data.

Based on OS-ELM, we present an online sequential learn-
ing framework for 3D shape segmentation. The main change
we make to the original OS-ELM is that we put an ELM test-
ing procedure after every training update step, so that the en-
tire algorithm can terminate and output segmentation results
at any time. This modification is especially useful for our
application scenario, where the user may provide the system
with a few new labeled shapes each time and would like to
see the newly updated labeling results immediately.

The system of online sequential learning for 3D shape
segmentation can be realized with a client-server model
(Figure 8). In the server machine, a database of 3D shapes
are stored, with which an initial ELM classifier is trained. At
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Figure 8: A client-server model implementation of online
sequential learning for 3D mesh segmentation.

the client end, the user may introduce one or a bunch of new
shapes, providing rough labels for them and uploading the
labeled shapes to the server. When receiving the new data,
the server will wake up and update the ELM classifier with
the new data using OS-ELM algorithm. The updated ELM
classifier is then sent to clients. With this updated ELM clas-
sifier, the user can obtain a more accurate labeling for the
new shapes she has just introduced, since the classifier train-
ing benefits from both the labeled database on the server and
the user’s labeling.

In our experiments, we use the same datasets and param-
eter setting as in Section 5.1. Since the OS-ELM update
process is fast, taking usually less than 20 seconds for the
datasets we have tested, the response time is acceptable.
Figure 9 plots the change of segmentation accuracy over
sequentially provided training data. The ChairLargeScale
dataset is one of the large sets in COSEG containing 100
chairs. For all the datasets, the accuracy becomes stable af-
ter 25% of the training data are provided.

Realtime online learning at super-face level. When
working with super-faces, the OS-ELM can achieve real-

Accuracy rate (%)

= Ant
= Candel
Guitar
=== Chair
Human

—— ChairLargeScale

o 10

ERING
Percentages of sequential training data (%)

Figure 9: The change of segmentation accuracy over se-
quentially provided training data with online sequential
learning at face level. The curves are smoothed with cubic
interpolation for readability purpose.
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Initial accuracy (%) | Update accuracy (%) | Final accuracy (%) | Update time (sec)
Fish 61.50 1.66 93.05 0.14
Airplane 48.33 221 90.35 0.13
Teddy 54.17 2.24 96.80 0.11
Ant 67.75 1.49 96.10 0.15
Octopus 49.75 2.51 97.53 0.17

Table 4: Training time and segmentation accuracy of online sequential learning at super-face level on five datasets from
PSB. Initial accuracy is the testing accuracy of the initial OS-ELM classifier trained with two shapes for each dataset. Final
accuracy is the testing accuracy of the final OS-ELM classifier trained with all shapes for each dataset. Update accuracy is the
incremental improvement of accuracy in each update. Update time is the averaged time consumption per update.

time online learning. The method of feature extraction for
super-faces is the same as in Section 5.2. To achieve an even
faster classifier updating, we implement the Least-Square
Incremental Extreme Learning Machine (LS-IELM) algo-
rithm [GHL14]. All other experimental configuration and
parameter setting are the same as face-level. The running
time and segmentation accuracy is reported in Table 4. With
such a fast updating (about 0.14s per update on average), our
method achieves realtime online sequential learning for 3D
shape segmentation.

7. Conclusion, limitations and future works

We have described a new method of labeled segmentation
of 3D shapes based on Extreme Learning Machine. As pre-
vious works, we employ a set of feature descriptors to train
a classifier, with which we predict the face labels used for
mesh segmentation. However, instead of relying on the time-
consuming boost methods, we train a neuron network classi-
fier using ELM, achieve highly efficient training process. To
obtain smooth segmentation boundaries, we employ graph
cuts to optimize the segmentation boundaries under the con-
straints of the super-face boundaries of over-segmentation
and the active contours of ELM segmentation. Experimen-
tal results show that our method achieves comparable re-
sults against the state-of-the-art methods while improving
the training time significantly, making our method scale well
for large datasets, and moreover, available for online sequen-
tial learning for mesh segmentation.

Our current method has two main limitations. Firstly,
the quality of our final segmentation results highly depends
on that of over-segmentation. Secondly, our ELM training
takes only the labeling information in the training data into
account, leading to a face classifier, but does not exploit
the boundary information imparted in the data, aiming at a
boundary edge classifier as in [BLVD11].

In the future, we plan to fully utilize the boundary infor-
mation from the training data for boundary classifier train-
ing, to further improve the segmentation boundaries. We
would also like to extend our ELM training and testing pro-
cedures to other 3D shape analysis applications. Our work
could represent a first step towards the realtime 3D shape

segmentation. Moreover, we believe that the general idea
of realtime online sequential learning enabled by the ELM
learning framework would find more applications towards
high-level understanding of 3D shapes.
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