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Figure 1: We propose an projective feature learning method, called MVD-ELM, for learning 3D shape features from multi-view
depth images. (a) Our network ensures that the unprojection of the feature maps in each layer together form a reconstruction
of the input 3D shapes. (b) Point clouds reconstructed from the maximally activated regions of feature maps (neurons). (c)
Visualization of cropped shape parts according to the maximally activated neurons.

Abstract
Feature learning for 3D shapes is challenging due to the lack of natural paramterization for 3D surface models.
We adopt the multi-view depth image representation and propose Multi-View Deep Extreme Learning Machine
(MVD-ELM) to achieve fast and quality projective feature learning for 3D shapes. In contrast to existing multi-
view learning approaches, our method ensures the feature maps learned for different views are mutually dependent
via shared weights and in each layer, their unprojections together form a valid 3D reconstruction of the input
3D shape through using normalized convolution kernels. These lead to a more accurate 3D feature learning as
shown by the encouraging results in several applications. Moreover, the 3D reconstruction property enables clear
visualization of the learned features, which further demonstrates the meaningfulness of our feature learning.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Modeling—
Computational Geometry and Object Modeling

1. Introduction

3D shape understanding has been a long-standing research
topic in both computer vision and computer graphics. A

† Corresponding author: kevin.kai.xu@gmail.com

common endeavor therein is to extract characterizing fea-
tures of shape geometry and/or structure. 3D shape features,
being global or local, have so far been predominantly human
designed, or hand-crafted, capturing some specific aspects of
3D shapes, such as geometry [GCO06], topology [BGSF08],
part-level structure [THW∗14], etc.
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The recent success of automatic feature learning has
aroused intensive interest in machine learning and computer
vision community. Instead of designing features according
to human prior, these approaches strive to learn features au-
tomatically from a collection of training data. This espe-
cially benefits from the fast development of deep learning
techniques [BCV12], where the learned features lead to sig-
nificant performance boost in classification and recognition
tasks [KSH12a, SWT14].

When adapting deep learning techniques to feature learn-
ing of 3D shapes, however, the first and foremost challenge
is that 3D models, typically represented as 2D manifold, do
not come with a canonical representation like 2D images. It
is unclear how to utilize the existing techniques of surface
parameterization or sampling to encode 3D geometry infor-
mation of different 3D models into matrices with uniform
dimension, which is required as input for most deep learn-
ing methods [KSH12a].

To mitigate such issue, the most natural thought is to con-
vert 3D shapes into image representation, which has been
attempted by a few recent works, demonstrating promising
results. For example, Wu et al. [WSK∗15] successfully apply
Convolutional Deep Belief Network (CDBN) over volumet-
ric representation of 3D shapes, or 3D images. However, due
to the additional dimension of input data, the CDBN training
is very time-consuming, which limits the voxelization reso-
lution to only 48× 48× 48 in their implementation. Zhu et
al. [ZWB∗14] render 3D shapes into multi-view depth im-
ages and then perform Auto-Encoder over the 2D images,
achieving very good performance in 3D shape retrieval. This
projective approach, however, may lose the 3D information
since the projected views are treated independently. There-
fore, their method has to combine hand-crafted image fea-
tures to realize 3D shape classification.

Biological studies conclude that 3D shape perception in
human visual cortex can be formed by depth cues from
multiple views [WDC∗05]. In light of this, we also adopt
multi-view depth representation. To deal with the above is-
sue and achieve a powerful feature learning, we develop a
convolutional neural network called Multi-View Deep Ex-
treme Learning Machine (MVD-ELM), which is derived
from the single-layer feedfoward network ELM [HZS06].
Our method possesses the following key features:

• First, MVD-ELM maintains multiple channels, each for a
projection view, which are interlinked with each other via
shared weights for all convolution layers.
• Second, by introducing normalized convolution, the un-

projection of feature maps from all channels can recon-
struct the input shape in each hidden layer.
• Third, due to the fast training of ELM, our method trains

faster than existing deep learning methods by two orders
of magnitude. This allows us to use much higher resolu-
tion of depth images per view (e.g., 128×128).
• Last, our method can achieve pixel-wise feature extraction

when realizing a fully convolutional [LSD15] version of
MVD-ELM. Such pixel-wise features support multi-label
prediction on a single 3D shape, which is especially useful
for 3D shape segmentation.

Experiments demonstrate that the learned features by our
method significantly outperform hand-crafted ones for 3D
shape classification. For 3D shape segmentation, our learned
features achieve comparable results with traditional meth-
ods employing feature selection from tens of different hand-
crafted features. In addition, our method is fast and easy-
to-implement, making it practical in real applications. The
source code and dataset are both available online [XXS∗15].

2. Related Work

Multi-view 3D shapes analysis. By treating a 3D shape
as a collection of 2D projections rendered from multiple
directions, multi-view projective analysis has been widely
adopted for 3D shape analysis and understanding. Cyr and
Kimia [CK01] utilize multi-view projections to identify 3D
objects and their poses. Chen et al. [CTSO03] propose
Light Field Descriptor (LFD), which is a rotation-invariant
3D shape descriptor defined with 2D contours of multi-
view projections. Projective shape descriptor is also used
for sketch-based 3D shape retrieval [ERB∗12] which com-
pares object projections with query hand-drawn sketches.
Recently, Wang et al. [WGW∗13] use a pre-labeled image
database to achieve projective shape segmentation. Our 3D
shape segmentation is also projective. The main difference
against their work is that our method uses learned feature
maps to achieve pixel label prediction, instead of directly
matching a labeled exemplar images.

Deep learning with 3D data. Researchers have success-
fully built various deep models, such as Convolutional Neu-
ral Network (CNN) [LBBH98], Deep Auto-Encoder Net-
works [HS06], Deep Belief Nets (DBN) [HOT06] and Ex-
treme Learning Machine (ELM) AutoEncoder [CZH13],
to learn data-driven features. Such features have demon-
strated superior discriminatory power for 2D images and
shapes [BCV12]. It is only very recent that a few works at-
tempt to learn 3D shape features via deep learning methods.
Wu et al. [WSK∗15] work with volumetric representation of
3D shapes and adopt 3D Deep Belief Nets (DBN) [HOT06],
obtaining good results of shape classification on Prince-
ton ModelNet [WSK∗15]. Zhu et al. [ZWB∗14] utilize
Auto-Encoder to learn 3D shape feature with multi-view
depth images, leading to accurate 3D shape retrieval. Su
et al. [SMKLM15] propose multi-view CNN for 3D shape
recognition where the multiple views features are integrated
with an extra CNN.

Multi-label learning via deep learning. Deep neuron net-
works, such as CNN, have demonstrated promising perfor-
mance in image classification [KSH12a]. Recently, there
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Figure 2: For a 3D object, a series of 2.5D depth images are
captured from the viewpoints which are uniformly sampled
on fixed dodecahedrons.

have been a few works on multi-label image segmenta-
tion [LSD15, CPK∗14, WXH∗14]. These works transform
fully connected layer in CNN into convolution layers, which
enables a classification net for pixel-wise label prediction.
Such pixel-wise labeling can be used for labeled segmenta-
tion of the input images. We are not aware of any work on ap-
plying deep learning in multi-label 3D shape segmentation.
In achieving that, we realize fully convolutional MVD-ELM
to predict pixel-wise labels for multi-view depth images.

3. ELM and ELM-based feature learning

ELM was originally proposed as a single-hidden layer
feedforward neural network (SLFNs) [HZS06]. Differ-
ent from other neural networks with back propagation
(BP) [RHW88], the hidden nodes in ELM need not to be
adjusted but can be randomly generated, as long as the acti-
vation functions of the neurons are nonlinear piecewise con-
tinuous. The weights between the hidden layer and the out-
put layer can be optimized with a closed-form solution. ELM
contains two phases, feature mapping and learning.

ELM feature mapping. Given input data x ∈ RD, the out-
put function of ELM for generalized SLFNs is:

f (x) =
K

∑
i=1

βihi(x) = h(x)β, (1)

where h(x) = [h1(x), · · · ,hK(x)] is the output vector of the
hidden layer and β = [β1, · · · ,βK ]

T ∈ RK×M the vector of
the output weights between the hidden layer (K nodes) and
the output layer (M nodes). h is called ELM feature map-
ping which maps the input data in RD to the feature space
RK . Any nonlinear piecewise continuous functions (e.g. Sig-
moid, Gaussian, etc.) can be chosen as h to generate feature
maps. In ELM, the parameters of h are randomly generated
based on a continuous probability distribution.

ELM learning. The second phase is supervised and is
task-specific. Let us denote T ∈ RN×M as the application-
dependent target matrix provided by N training data. H =
[h(x1), · · · ,h(xN)]

T ∈ RN×K contains N random feature
maps generated in the first phase. The objective function to

minimize is the weighted sum of the training error and the
norm of output weights:

ω‖Hβ−T‖2
2 +‖β‖2

2. (2)

β can be obtained in a closed-form solution:

β =

{
(HT H+ 1

ω
I)−1HT T, L≤ k,

HT (HHT + 1
ω

I)−1T, L≥ k,
(3)

where I is identity matrix with respective dimension.

Local Receptive Fields (LRF) based ELM. Huang et
al. [HBKV15] developed a feature learning framework
called ELM-LRF. ELM-LRF relays two key characteristics
of ELM. First, ELM can use different types of local recep-
tive fields as long as they are randomly generated accord-
ing to any continuous probability distribution [Hua14]. Sec-
ond, each hidden node in ELM can be a combination of sev-
eral hidden nodes (a subnetwork) [HC07]. These two fea-
tures correspond to the convolution and pooling operations
in CNN, respectively. ELM-LRF provides a deterministic
solution for feature learning tasks based on local receptive
fields. Same as ELM, ELM-LRF has only one hidden layer.

Multi-layer ELM-LRF. The ELM based feature learn-
ing model can be extended to a deep one with multi-
ple hidden layers. Similar to other deep models such as
CNN [KSH12b], the output feature maps of the previous
layer can be used as input to the next layer. The final layer
feature maps are used to train the optimized output weights.
The link between different layers can be sparse combinations
of feature maps (i.e., LRF) [LBBH98]. Pooling layers are
inserted to extract features with increasing levels of abstrac-
tion [LBBH98, KSH12b]. Various types of pooling, such as
max pooling, average pooling, etc., could be employed.

The idea of deep ELM was first proposed and realized
in [CZH13] based on ELM Auto-Encoder. Such deep net-
work extracts feature encoding in a global fashion. In con-
trast, our multi-layer ELM is built upon ELM-LRF which
can achieve both global and local (pixel-wise) feature ex-
tractions thanks to the local connection of LRF.

4. Feature learning with MVD-ELM for 3D shape
classification

Our MVD-ELM is designed to train for the task of 3D shape
classification. Therefore, the features our method learns are
expected characterize shape classes as much as possible.

4.1. Method overview

Projective feature learning for 3D shapes over 2D images is
non-trivial. One basic requirement is that the multiple views
should be interlinked so that 3D information could be re-
tained throughout the training process in a deep network. In
this section, we first describe the input representation of our
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method, and then introduce the two key components con-
tributing to achieve 3D information preservation.

Input representation. Given a set of 3D shapes, we gener-
ate for each shape a set of 2.5D depth images through pro-
jecting it along multiple view directions uniformly sampled
from a sphere centered at the shape. The input to our MVD-
ELM is multi-view projected depth images for all shapes. In
our implementation, view points are sampled at vertices of
a unit regular dodecahedron and view directions toward the
dodecahedron center as shown in Figure 2. Thus, for each
3D shape, D = 20 depth images (with resolution of d× d)
are generated with OpenGL depth buffer. Background pix-
els are set to maximum depth. We denote the depth image
at the n-th view as xn ∈ Rd×d . For each view n, we make
a foreground mask mn to rule out background pixels after
convolution and pooling operations.

To enable effective feature learning, all training shapes are
uniformly scaled into the unit box. Note that the shapes need
not to be consistently oriented especially when the training
set is large, due to the rotation-invariant nature of multi-view
learning. To facilitate unprojection in neuron visualization,
we record the projection matrices of all views.

Normalized convolution kernels. In training a convolu-
tional neural network, all training images need to be nor-
malized by subtracting their mean and then being divided
by their variance [KSH12a]. However, this does not apply
to our case since such nonlinear operation would destroy
the depth geometry in each view. Moreover, the multi-view
depth images are obtained using nonlinear viewing projec-
tion. Directly applying convolution over depth images will
break their alignment after unprojection, making 3D recon-
struction infeasible, as shown in the right part of Figure 3.

To retain the geometry information for all 2.5D feature
maps throughout the MVD-ELM network, we opt to nor-
malize the convolution kernels used in various convolution
layers. This way, the feature maps can always preserve the
3D geometry of the input depth images. In the left part of
Figure 3, we show the reconstruction of an input 3D model
via unprojection of multi-view feature maps generated with
normalized convolution kernels.

Multiple hidden layers. The single layer framework of
ELM-LRF is unsuitable for learning 3D shape features, since
3D shapes usually possess very complex structure, which
should be better characterized by a hierarchy of features with
varying levels of abstraction. To achieve both global and lo-
cal feature extraction in a multi-layer fashion, we introduce
multi-layer ELM-LRF.

In multi-layer ELM-LRF, we adopt random convolutional
for feature mapping, which is nonlinear piecewise continu-
ous [HBKV15]. Moreover, according to [HBKV15], ELM-
LRF with local randomly connected hidden nodes can be re-
garded as a specific type of ELM, satisfying the requirement

Figure 3: The point cloud unprojected from four feature
maps generated from a bed model based on different convo-
lutional kernels. (a) Reconstruction of an input bed model
by feature maps from four views when applying normalized
convolution kernels. (b) Directly performing general convo-
lution over depth images will break their alignment after un-
projection, making the 3D reconstruction infeasible.

of universal approximation and classification capabilities.
Stacking such layers of non-linear hidden nodes also sat-
isfies the requirements, making our multi-layer ELM-LRF
possess learning capability.

Multiple view channels. To adapt to multi-view learning,
we devise multiple view channels in our network, each
learned with a multi-layer ELM-LRF. To ensure the feature
maps learned for multiple views are mutually interlinked,
we adopt shared weights (convolution kernels) among dif-
ferent views during feature mapping. There are two ben-
efits using shared weights among different view channels.
First, the depth images in different views can be consistently
mapped to a shared feature space, making the unprojections
of feature maps at any layer form a valid 3D reconstruction
of the input shape. Second, with shared wights, the output
weights of multiple view channels can be optimized in a uni-
fied closed-form solution, which greatly reduces the training
time and makes our method scalable to number of views.

4.2. Formulation of MVD-ELM

We introduce the formulation of our MVD-ELM in this sub-
section. Figure 4 shows the architecture of MVD-ELM. The
input data is N = M×D depth images (M shapes and D
views per shape) represented with a matrix of (d× d×N),
i.e., an array of N depth images of d×d resolution. We now
elaborate on the critical components of MVD-ELM includ-
ing feature mapping, pooling, learning and testing.

Multi-view feature mapping. Suppose the MVD-ELM
contains L layers of convolution and pooling. Let us take
the l-th layer for example. It takes the feature map (input
depth image for the first layer) of the (l − 1)-th layer as
input, and generates Kl feature maps (with resolution of
dl × dl) through convolution between input image and the
randomly generated normalized convolutional kernels at this
layer. Thus we obtain N×Kl different dl×dl feature maps in
the l-th layer. The random convolutional kernels are gener-
ated similar to [HZS06], each of which is normalized so that
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Figure 4: The architecture of MVD-ELM learning (left part) and visualization (right part). Left: The projected multi-view depth
images for a given input 3D shape is input to their respective view channels. In each view channel, the depth image goes through
a cascading layers of convolution and pooling. Each convolution layer produces Kl feature maps with the random generated
convolution kernels. When reaching to the last layer, the output feature maps are used to compute the optimized output weights.
Right: The visualization network runs in the opposite direction of the training network, with inverse convolution and unpooling
operations, until it reaches the input layer where we obtain the maximally activated regions in the depth images. These regions
are then unprojected onto the input shapes and used to crop the shapes into characteristic parts.

their weights sum to 1, and are shared among all view chan-
nels in the same layer. The normalized random convolution
kernels for a given layer l is denoted as

Wl = [wl,k]
Kl
k=1 ⊂ Rcl×cl×Kl , l = 1, · · · ,L (4)

which contains Kl normalized convolutional kernels wl,k of
size cl × cl . Specifically, the k-th normalized, random con-
volutional kernel is generated as following:

wl,k(i, j) = rand(0,1), i, j = 1, · · · ,cl

wl,k(i, j) = wl,k(i, j)/∑i, j(wl,k(i, j)),
(5)

where rand(0,1) generates a random number in [0,1].

Convolution operation is performed over the feature map
of the previous layer (Figure 4(left)). If the current layer is
the input one, the operation is applied directly on the input
depth image. The convolution kernels of layer l are shared
across all views. Specifically, the k-th feature map at layer l
for any given view n can be computed as:

Fl,k,n = (Fl−1,k,n ∗wl,k)⊗ml,n, n = 1, · · · ,D (6)

where ∗ is convolution operation and⊗ is element-wise mul-
tiplication which applies the foreground mask ml,n to re-

move the background. For the input layer, F1,k,n = xn,k =
1, · · · ,K1. We next down-sample the feature maps using
pooling operation to generate input for the next layer.

Multi-view pooling. We choose average pooling since it in-
troduces relatively small distortion to the depth geometry
than other methods such as max pooling. For the l-th layer,
we take the pooling size as sl which leads to pooling maps of
size dl/sl × dl/sl . The k-th pooling map is obtained by ap-
plying average pooling operation over the k-th feature map,
for view n and layer l:

Pl,k,n(p,q) =
1
s2

l
∑

p∗sl
i=(p−1)∗sl+1 ∑

p∗sl
j=(p−1)∗sl+1 Fl,k,n(i, j).

p,q = 1, · · · ,sl
(7)

Pl,k,n is then used as the input feature map of the next layer:
Fl+1,k,n = Pl,k,n. Note that the foreground mask should also
be pooled, in the same way as feature map pooling, to gen-
erate the mask for the next layer.
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Output weights learning. The output feature maps in the
last layer are then used in the MVD-ELM learning phase to
train the output weights. The last layer is in full connection
with the output layer, as shown in Figure 4(left). We simply
concatenate the feature maps of all M training shapes into M
row vectors together, obtaining the fully connected layer ma-
trix H ⊂ RM×Z , where Z = (D ·KL · (dL/sL)

2). KL, dL, and
sL are the number of feature maps per view, feature map size,
and pooling size, respectively, all for the last layer. Then the
output weights β can be computed as:

β =

{
(HT H+ 1

ω
I)−1HT T, M ≥ Z

HT (HHT + 1
ω

I)−1T, M ≤ Z
(8)

where ω is the weight defined in Equation (2).

Testing. During the testing process, the multi-view depth
images of a test 3D shape go through the whole network so
that the features maps H of the testing data can be obtained.
The output labels are those with the maximum probabilities
according to Hβ

T .

5. Neuron visualization

Understanding the performance of MVD-ELM requires in-
terpreting the neuron activation in multiple layers. Since the
convolutional kernels used in our networks are randomly
generated, to better visualize the feature learned by our
MVD-ELM, we weight the Ko output feature maps using the
optimized output weights β (Equation (8)), leading to Ko ac-
tivation maps. These activations are then mapped back from
the output layer to the input 3D mesh through inverse op-
erations of convolution and pooling, similar to [ZF13]. Fig-
ure 4(right) shows the visualization networks in accordance
to the MVD-ELM training network.

Formally, given a 3D mesh, let us denote Ho as the matrix
of its output feature maps and β, the learned features can be
visualized through the following operations:

invConv(unpooling(· · · invConv(unpooling(βHo)))) (9)

where invConv indicates inverse convolution and unpooling
inverse average pooling operation. Given an input 2D image
x and a convolution kernel w, the convolution operation is
y = x∗w. The inverse convolution is then defined as x′ = y∗
f lip(w), where f lip means left-right flipping over the input
convolution kernel along its second dimension. unpooling is
achieved by placing the average value back into each pixel
within the pool region. In Figure 5, we show the activations
mapped on the input meshes with color coding.

To visualize the learned discriminative patches of the 3D
models, we crop the input 3D models based on the activation
maps. Among all the weighted output feature maps βHo, we
select the top m with the highest neuron activations (pixel
values of feature maps). To visualize the neuron activation of
a selected feature map, we keep only the neighboring pixels
around the maximum activation pixel and zero out all other

Figure 5: Color-coded visualization of neuron activations
on the input mesh.

pixels, resulting in a masked activation map. Such masked
activation map is then passed to the visualization network to
reconstruct the activation of the lower layers via performing
unpooling and inverseConv operations, until the input layer
is reached. Finally, we unproject the regions of the activa-
tion maps into 3D space based on the corresponding projec-
tion matrix and used the unprojected area to crop the most
strongly activated region on the input 3D model.

As shown in Figure 6, the learned MVD-ELM features are
visualized as point clouds in 3D, as well as cropped parts of
input 3D models corresponding to maximally activated re-
gions. Since our MVD-ELM networks are trained discrimi-
natively with shape classification task, these features essen-
tially imply which regions of the input models are discrimi-
native in characterizing shape classes.

6. Fully Convolutional MVD-ELM for 3D shape
segmentation

Labeled segmentation is important for 3D shape understand-
ing [CGF09]. Significant progresses has been made recently
with the help of machine learning techniques [KHS10],
through casting it as a multi-class face labeling problem.
However, existing learning-based methods have so far been
based on hand-crafted 3D features. Inspired by the work
of [LSD15], we extend our networks into a fully convolu-
tional version (referred to as FC-MVD-ELM) to achieve face
labeling. Our method is the first that utilizes learned features
from deep neural networks for 3D mesh segmentation.

Approach. In [LSD15], the last two fully connected layers
in CNN are modified to convolutional layers, leading to a
fully convolutional classification net outputting pixel-wise
label prediction. Similarly, we devise a fully convolutional
MVD-ELM for the task of depth image segmentation. This
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Figure 6: Visualization of neurons of the first three layers of
MVD-ELM, for three categories from ModelNet10, i.e., bed,
toilet and sofa. For each category in various layers, we show
two visualization results in two rows. The upper row shows
point clouds generated from neurons activations in MVD-
ELM, while the lower row visualizes cropped parts of input
models corresponding to those maximally activated regions.

network is composed of two convolution layers but without
any pooling layer. After predicting pixel-wise labels for the
depth images of all views, we can obtain the mesh segmen-
tation based on the mapping between 3D shape and the pro-
jected depth images. This shares similar spirit with the pro-
jective 3D shape segmentation proposed in [WGW∗13]. The
depth image segmentation process, similar to 2D image seg-
mentation, proceeds in three steps described below.

Multi-label training. Since the mappings between pixels in
depth images and triangles of 3D mesh have been recorded
during the depth image generation process, the semantic tags
on the triangles can be transferred onto the corresponding
pixels, thus generating labeled, training depth images. Let S
be the number of training shapes, T the total number of tags,
and F the number of feature maps. We mask each feature
map with each tag as foreground, ruling out the rest region
covered by other tags, leading to T×F masked depth images
as training data. The masked depth images are then fed into
MVD-ELM with the corresponding masking tag as target
label. This learns the output weights which transform the
last-layer feature maps of a given pixel into the probabilities
of labels for it. For a given pixel, the corresponding pixels
in the last-layer feature maps form its learned features. Now
we use these features to achieve segmentation.

Multi-label testing. Given a test 3D shape, we first extract
its multi-view testing depth images. For each pixel of a test-
ing image, we utilize the pixels of the output feature maps
(having the same resolution as input depth images since
there is no pooling layer) of all masked training depth im-
ages as learned feature of the pixel, leading to a S×T ×F
dimensional feature vector. Such features are treated as the
output layer feature maps of the test depth image, and the
final labeling probability can be computed by multiplying

Figure 7: 3D mesh segmentation using FC-MVD-ELM.
(a)After generating multi-view depth images with labels
from training meshes, FC-MVD-ELM is trained using them
as input. (b) FC-MVD-ELM will predict labels on multi-view
depth images of testing mesh. These labels are unprojected
back into original mesh, forming initial segmentation result.
(c) At last stage, graph cuts optimization is utilized to obtain
final smooth segmentation results.

it with the learned output weights, as in Equation 8. This
results in T probabilities for each pixel of the test depth im-
age. The final pixel-wise label simply takes the tag with the
maximum probability. This step is illustrated in Figure 7 (b).

Label back-projection and final segmentation. After the
multi-view depth images have been labeled, we unproject
these labels back onto the corresponding triangles of the
test 3D shape and then compute the final segmentation us-
ing graph-cut. Specifically, the average of the probabili-
ties predicted by multiple views serves as the data term of
the graph-cut formulation. To produce smooth segmenta-
tion boundaries, we employ the geometric smoothness term
of [XXLX14]. The final segmentation integrates the segmen-
tations estimated from multiple views; see Figure 7 (c).

7. Experiments and evaluations

The 3D shape features learned by the proposed MVD-ELM
can be used in a wide range of applications. In this sec-
tion we evaluate the performance of our MVD-ELM feature
learning and explore its applications. We have implemented
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MVD-ELM using MATLAB 2014b running on a computer
with Intel(R) Core i5 3.2 GHz CPU and 32GB RAM. Other
procedures, such as multi-view projection and unprojection,
are implemented with C++ and OpenGL.

7.1. 3D shape classification

Parameter setting. We adopt a four-layer MVD-ELM net-
work (L = 4) in our implementation. The number of views is
set to D= 20 and the regularization weight ω= 0.01. Table 1
summerizes the parameters used in our implementation.

Param. Layer 1 Layer 2 Layer 3 Layer 4
FM 64×64 32×32 16×16 8×8
Kl 2 2 2 2
cl 4 4 4 4
sl 2 2 2 2

Table 1: Feature map size (FM), number of convolution ker-
nel (Kl), normalized convolution kernel size (cl) and pooling
size (sl) of various layers used by our implementation. The
resolution of input images is 128×128.

Dataset. To verify the representation capability of the shape
features learned by MVD-ELM, we run our algorithm on a
large collection of 3D shapes with relatively large intra-class
variation, Princeton ModelNet, a recently available online
shape dataset [WSK∗15] containing 127,915 CAD models
in 662 categories. We run our algorithm on its two subsets:
ModelNet10 and ModelNet40 (Table 2). Models in Model-
Net10 are all adjusted manually with consistent orientation
while those in ModelNet40 are not oriented.

Dataset Oriented #Models #Training #Testing
ModelNet10 Yes 4807 3899 908
ModelNet40 No 10695 8567 2128

Table 2: Statistics of the two subsets of Princeton ModelNet.

Hand-crafted Learned features
SPH LFD CDBN MVD-ELM

ModelNet10
79.97% 79.87% 86.5% 88.99%

– – 2 days 674 sec.

ModelNet40
68.23% 75.47% 77.32% 81.39%

– – > 2 days 306.4 sec.

Table 3: Comparing with SVM classifier trained over hand-
crafted features and with CDBN with volumetric represen-
tation. Note that the CDBN is trained on GPU. The Mod-
elNet40 experiment was executed on a workstation with
128GB RAM (single-thread).
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Figure 8: Performance of MVD-ELM on ModelNet10 with
varying view counts. The dramatic increase of training time
around 18~20 views is due to the limitation of main memory.

Comparison with alternative classification methods. For
ModelNet10, our MVD-ELM takes 674 seconds for train-
ing, obtaining 88.99% classification accuracy. We compare
our method against the CDBN with volumetric 3D represen-
tation proposed by Wu et al. [WSK∗15]. Their method takes
about two days to train the networks and achieves 83.54%
classification accuracy. We also compare our learned fea-
tures against two hand-crafted shape descriptors, i.e., Light
Field Descriptor (LFD) [CTSO03] and Spherical Harmonics
(SPH) [KFR03]. For LFD and SPH, we use linear SVM with
one-vs-all strategy to train classifiers and evaluate the clas-
sification accuracy on the testing set. From Table 3, MVD-
ELM achieves better accuracy than both descriptors.

To better demonstrate the performance of our learned
features, we train MVD-ELM with lower resolution (48×
48) of depth images, which is comparable to the voxeliza-
tion resolution of CDBN [WSK∗15]. Meanwhile, we train
CNN [LBBH98] on the same training data. Furthermore, we
also train linear SVM classifiers using the data-driven fea-
tures learned by our MVD-ELM, i.e., random feature maps
weighted by learned output weights. Table 4 shows the clas-
sification accuracy and training time of different methods.
The results verify that our features present good representa-
tion capability, even with relatively low resolution 2D pro-
jections. Moreover, our method outperforms alternative ap-
proaches, including both deep and shallow models.

Dataset MVD-ELM CDBN CNN SVM

ModelNet10
87.89% 86.5% 82.2% 84.2%
58 sec. 2 days 38 min. 163 sec.

Table 4: Classification results of different methods at com-
parable input resolutions. SVM is trained on the learned
features by our MVD-ELM. CDBN is trained on GPU. The
training time of SVM does not include the time spent on fea-
ture learning of our method.

Comparison with single layer ELM-LRF. Stacking mul-
tiple layers of ELM-LRF enables our method to learn a hi-
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erarchy of features with varying levels of abstraction, which
is expected to be more powerful in characterizing complex
shapes than single layer ELM-LRF. To verify this, we com-
pare multi-layer ELM-LRF with single layer one on the
MNIST dataset [LBBH98], which contains 60K training and
10K testing handwriting images. We use 40 convolution ker-
nels for both methods. For multi-layer ELM-LRF, we choose
a two-layer ELM-LRF version. As shown in Table 5, two-
layer ELM-LRF achieves better classification performance
than the single layer one.

Dataset single-layer ELM-LRF multi-layer ELM-LRF

MNIST
98.26% 98.89%

385.42 sec. 414.59 sec.

Table 5: Comparison between multi-layer and single-layer
ELM-LRF over the MNIST dataset.

We also compare single-layer, two-layer and four-layer
versions of MVD-ELM over ModelNet10. For all these ver-
sions of MVD-ELM, the number of normalized convolution
kernels takes 8 while the size of feature maps in the out-
put layer is set to 8× 8. As demonstrated in Table 6, multi-
layer MVD-ELM achieves better classification performance
on ModelNet10. Because of multiple layer feature mapping,
multi-layer ELM-LRF usually takes more time to train.

Dataset single layer two-layer four-layer

ModelNet10
87.22% 87.89% 88.99%
181 sec. 283 sec. 674 sec.

Table 6: Comparison of single-layer, two-layer and four-
layer versions of MVD-ELM on the ModelNet10 dataset.

Number of projection views. For multi-view learning
method, the output accuracy is expected to improve as the
number of views increases. To demonstrate the effect of view
count, we run our MVD-ELM on ModelNet10 with different
numbers of projection views D. As shown in Figure 8, the
classification accuracy of MVD-ELM grows as D increases.

Rotation invariance of MVD-ELM. To test the rotation in-
variance of MVD-ELM, we run it over ModelNet40 where
the models are not oriented. Similar to [WSK∗15], we ro-
tate each model per 30 degrees to generate more model in-
stances in arbitrary poses. The training set and testing set
are arranged to avoid overlapping models, even for same
model with different poses. This experiment is executed
on a workstation with 128GB RAM (single-thread). As
shown in Table 3 (bottom row), our method takes 306.4 sec-
onds for training and obtains 81.39% classification accuracy,
while CDBN [WSK∗15] achieves 77.32%, LFD [CTSO03]
75.47% and SPH [KFR03] 63.59%.

Ours Training Ours(75%) SB19
Ant 93.2% 197.6 sec. 91.7 % 91.5 %
Bird 86.1% 284.2 sec. 83.8 % 92.5%
Fish 88.4% 209.1 sec. 87.1% 96.7%

Octopus 92.3% 199.5 sec. 90.6% 98.4%
Teddy 91.0% 212.8 sec. 89.9% 98.1 %

Glasses 90.4% 169.1 sec. 89.3% 97.4%

Table 7: Segmentation results and time consumption of pro-
posed FC-MVD-ELM on some typical categories of 3D
meshes from PSB [CGF09]. Our segmentation results is
comparable to those by [KHS10] which utilizes tens of types
of hand-crafted features. Our method is purely based on our
learned features and is also much faster in training time.

7.2. 3D shape segmentation

Dataset. To evaluate the performance of the proposed FC-
MVD-ELM in labeled segmentation of 3D shapes, we test it
on six categories (20 models per category) from the Prince-
ton Segmentation Benchmark (PSB) [CGF09]. The ground
truth labeled segmentations used for training and evaluation
are provided by [KHS10].

Results and timings. In fully convolutional CNN [LSD15],
the authors combined high layer label predictions with low
layer label predictions to generate high accuracy multi-label
prediction for every pixel in testing images. Since the train-
ing data for our case is small (19 depth images per view for
leave-one-out training), we do not adopt multi-layer predic-
tion integration as in [LSD15]. Therefore, we adopt a two-
layer FC-MVD-ELM without pooling layer to directly pre-
dict pixel-wise labels in full resolution of depth images. See
Figure 9 for visual results of our segmentation method.

Due to the fast training speed of ELM, our training over
19 meshes takes only several minutes. After graph-cut op-
timization on segmentation boundaries, we obtain around
90% labeling accuracy on several categories of PSB seg-
mentation benchmark, as shown in Table 7. To verify the
robustness of our method, we also report the testing accu-
racy when the training set takes 75% of the whole set, cor-
responding to the column of “Ours(75%)” in Table 7. Our
method performs comparably with [KHS10], but, more im-
portantly, with much less training time and no hand-crafted
feature, demonstrating both practical and theoretical merits.

7.3. Segmentation and recognition of single-view depth
images

Recently, deep learning methods have been used for the task
of object detection from 2.5D depth images [GGAM14],
where a large CNN pre-trained on RGB images can be
adapted to learn features for depth images. Our MVD-ELM
can also be applied for object detection on RGBD data.
To do so, we deploy a single-view MVD-ELM network
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Figure 9: Segmentation results by our FC-MVD-ELM on six categories from PSB [CGF09].

Figure 10: Results of object detection from single-view
depth images using single-view MVD-ELM. We only use the
depth information in the NYU2 dataset [SHKF12].

(D = 1) and run it over the NYU2 dataset [SHKF12] con-
taining 8965 depth images for training and 14878 for testing.
MVD-ELM takes only 30 seconds for training and achieves
17.33% recognition accuracy. In comparison, the method
in [GGAM14], which is the state-of-the-art on this task,
achieves 20.1% recognition accuracy (only using depth in-
formation) but takes 7.5 hours for training their CNN net-
work. Figure 10 shows some examples of object recognition
from single 2.5D depth images.

8. Conclusions

We adopt the multi-view depth image representation and
propose a multi-view deep neural network based on ELM-
LRF to achieve fast and quality projective feature learning
for 3D shapes. In contrast to existing 3D shape feature learn-
ing methods, our method ensures the feature learning for
different views are mutually dependent via shared weights.
Moreover, the unprojections of feature maps in each layer to-

gether form a valid 3D reconstruction. This leads to a more
accurate 3D feature learning as shown by the visualization
and applications. In addition, our training is faster than ex-
isting deep learning methods by about two orders of magni-
tude, making it much more practical in real applications.

Limitations. Our method has a few limitations. First, there
are many parameters in the algorithm need to be tuned. This
is the case for all deep learning methods. However, the fast
training of MVD-ELM makes its parameter tuning easier.
Second, since the internal geometry and structure of 3D
shapes may be not fully visible due to occlusion in view-
based projection, our feature learning may not be able to
capture all the characterizing features of a 3D shape. Last,
our method requires many views of depth images as input,
which is difficult to capture in real scenarios. However, with
fast development of 3D scanning techniques, even real-time
acquisition devices such as Microsoft Kinect, 3D data can be
obtained more easily.

Future work. Firstly, it is worth to develop more applica-
tions based on our deep feature learning model. Some possi-
ble applications include 3D object recognition in cluttered
indoor scenes, 3D scene understanding for robot naviga-
tion and 3D object analysis for robot manipulation, etc. In
robotics setting, it is also interesting to develop online fea-
ture learning where the training data may come from robot
actions. Secondly, it is interesting to develop new methods
for learning comprehensive 3D features covering full ge-
ometry and structure of input shapes through, for example,
generating a hierarchy of depth images from cameras placed
at different distances. Finally, we are interested in utilizing
our deep projective learning model to connect 2D images
with 3D shapes, thus opening more research opportunities
towards 2D-3D data fusion.
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