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Abstract High-level geometry processing has been a hot
topic in graphics community. The functionality analysis of
3D models is an essential issue in this area. Existing 3D
models often exhibit both large intra-class and inter-class
variations in shape geometry and topology, making the con-
sistent analysis of functionality challenging. Traditional 3D
shape analysis methods which rely on geometric shape de-
scriptors can not obtain satisfying results on these 3D mod-
els. We develop a new 3D shape descriptor based on the in-
teractions between 3D models and virtual human actions,
which is called Action-Based 3D Descriptor (AB3D). Due
to the implied semantic meanings of virtual human action-
s, we obtain encouraging results on consistent segmentation
based on AB3D. Finally, we present a method for recog-
nition and reconstruction of scanned 3D indoor scenes us-
ing our AB3D. Experiments show that AB3D is a promis-
ing shape descriptor towards functionality analysis of 3D
shapes.
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1 Introduction

The rapid development of digital geometry processing tech-
nique has been greatly boosting the growth of digital ge-
ometry. Geometry processing is currently moving towards
high-level shape analysis and understanding, aiming at dis-
covering the underlying semantic information of a 3D shape.
This gives the birth of the recent trend of high-level geome-
try processing [1].

Shape semantics reflects human knowledge about shape’s
geometry, structure, functionality, and their relationships. The
semantic analysis of 3D models involves two aspects. One
is classification, i.e., to which category a model belongs to.
The other is about recognition/detection of the exact func-
tionalities of various parts. Effective integration of the in-
put shape knowledge is important to shape analysis. Many
works have been devoted on structural analysis of 3D mod-
els, including model segmentation[2], consistent segmenta-
tion[3] , symmetry analysis[4] , etc. However, few of them
focus on analyzing functional information of parts of 3D
models, e.g. “back support” and “seat” of chair models.
Macro Attene et al. [5] developed a system called “Sha-
peAnnotator”, which needed users to create 3D shapes’ on-
tology manually. Based on their ontology, they analyze a 3D
model and obtain its geometric and semantic information.
But their method requires extensive manual effort for on-
tology creation, and could not deal with 3D shape whose
category is not contained in their ontology database.

In this paper, we try to utilize the implied semantic mean-
ings of human actions to infer semantic information from
3D models automatically. To the best of our knowledge, the
initiative work on using interactions between virtual human
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and 3D shape to analyze functionality was presented by Tol-
ga Abaci et al. [6]. However, their method limits to human
hand actions. In contrast, we integrate the interactions of w-
hole body, arm and hand actions into the same framework to
analyze wider spectrum of functionalities. To achieve such
integration, we formulate the semantic inference process as
an optimization problem and then combine these interacting
results together as a new action based shape descriptor. Ezer
Bar-Aviv et al. [7] and Helmut Grabner et al. [8] both de-
veloped methods using virtual human whole body actions to
interact with 3D shapes to get the semantic information, but
their method can only deal with one action at a time. Differ-
ent from their works, we use multiple sets of human actions
to analyze input 3D models simultaneously, and utilize pat-
tern classification method to classify these models.

Overview and contributions We propose a general frame-
work of utilizing human actions to analyze functionalities
of 3D models. We first develop a new 3D shape descrip-
tor based on interactions between 3D models and virtual
human actions, which is called Action-Based 3D Descrip-
tor (AB3D). Based on AB3D, we develop a classification
algorithm which can deal with 3D models exhibiting both
large intra-class and inter-class variations as well. Further-
more, we obtain consistent segmentation results by intro-
ducing AB3D to the geometric descriptor based segmenta-
tion workflow. Finally, we present an algorithm for recogni-
tion and reconstruction of scanned 3D indoor scenes based
on AB3D.

Our paper makes the following contributions:
(1) We develop a 3D shape descriptor based on human

actions for 3D scene analysis. Based on interacting results
computed from AB3D, we can perform labeled segmenta-
tion.

(2) We summarize three principles of interactions be-
tween virtual human actions and 3D models to guide best in-
teracting transformation searching between actions and mod-
els. These principles are simple and can be easily imple-
mented as an optimization problem.

(3) We adopt multiple levels of actions to handle ambi-
guities properly when dealing with 3D models which have
multiple interacting ways.

(4) We use virtual human actions to reconstruct 3D mod-
els in scanned 3D indoor scenes.

2 Related Work

High-level geometry analysis. Traditional 3D shape analy-
sis methods usually use geometric and topological [9] 3D
shape descriptors, these methods analyze 3D models based
on information from every triangle’s normal direction, dihe-
dral angle, average geodesic distance [10] and etc. Though

these methods are useful in many traditional tasks, but they
lack high-level semantic information. High-level geometry
analysis [1] [11] [12] use human knowledge to assist 3D
shape segmentation, matching, retrieval and etc. Macro At-
tene et al. [5] developed a system called “ShapeAnnotator”,
which needed users to create 3D shape ontology manual-
ly. Based on their ontology, they analyzed a 3D shape, and
got its geometric and semantic information. Kalogerakis et
al. [13] present a supervised learning based technique that
employs information from shapes in a training set to seg-
ment a given shape, demonstrating significant improvement
over single-shape segmentation algorithms. Wang et al. [14]
proposed the concept of symmetry hierarchy on man-made
3D models. Xu et al. [15] introduced set evolution as a mean-
s to inspire creative 3D modeling. They all used different
methods to combine human knowledge into their shape anal-
ysis procedures. But using human action itself as a knowl-
edge resource has been rarely attempted in this area.

Affordance The concept of affordance has become a focus
of attention within the machine vision and robotics commu-
nity lately [16]. Affordance means one can detect the func-
tionality of object through interaction between user and ob-
ject itself [8]. Recently, methods have been proposed to de-
tect objects based on human interactions. The human activi-
ty is annotated by extracting human motion from video data
and used to indirectly identify objects [17]. Helmut Grabner
et al. [8] presented an affordance detector which used w-
hole human action to analyze the functionality of the scene.
They utilized a probabilistic method to detect where is most
suitable place for sitting with higher probability in the w-
hole scene. But they failed to provide a general framework
of using human actions to deeply analyze 3D models, e.g.
segment 3D models into parts and label them according to
their interactions with virtual human actions.

Consistent segmentation There have been various works on
consistently segmenting a set of 3D shapes from the same
class into semantic parts. Golovinskiy and Funkhouser [3]
considered the consistent segmentation as a graph cluster-
ing problem. To deal with non-homogeneous part scales,
Xu et al. [18] classified the shapes based on their styles
and then establish part correspondences in each style group.
Hu et al. [19] used subspace clustering to automatically co-
segment a set of shapes from a common family into con-
sistent parts. Oana Sidi et al. [20] introduced an unsuper-
vised method to produce consistent segmentation for a set of
3D meshes through descriptor-space spectral analysis. Their
work exploited the potential of spectral method in consis-
tent segmentation. Martin Reuteret al. [21] proposed an ap-
proach which use topological features of Laplace-Beltrami
eigenfunctions to accomplish consistent shape segmentation
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and registration. Under the assumption that a set of 3D mod-
els with the same functionality have the same interacting
ways with human, we can use virtual human actions to con-
sistently segment a set of 3D shapes.

Scanned Scene Understanding 3D indoor point cloud re-
construction is particularly challenging due to object inter-
ferences, occlusions and overlapping which yield incom-
plete yet very complex scene arrangements. Silberman and
Fergus [22] presented an algorithm for indoor scene seg-
mentation which uses graph-cut to propagate classification
labels of features to the full scene. Koppula et al. [23] ad-
dressed semantic labeling of 3D indoor scenes by fusing col-
or, depth and contextual information together. Nan et al. [24]
presented a search-classify approach which interleaves seg-
mentation and classification in an iterative manner. Given
the speciality of interactions with human in indoor scene, it
is plausible to use a set of virtual human actions to recognize
and reconstruct 3D models.

3 The computation of AB3D

In this paper, all 3D models/objects are represented as tri-
angle meshes, possibly with multiple components. “Virtual
human action” means the 3D mesh of a specific human ac-
tion, such as a hand with some gesture or a full body with a
standard pose.

The procedure to compute AB3D of a 3D object is divid-
ed into three stages. First, we collect three levels of standard
virtual human actions from database. Second, we compute
best interacting transformations between virtual human ac-
tions and the object. Finally, we combine these best interact-
ing transformations to form a vector, which is the AB3D of
the object. The whole procedure can be formalized as fol-
lows.

3.1 Three levels of virtual human actions

Part of our standard human actions were collected from Pose
Pro [25] and others were downloaded from Google 3Dware-
house [26]. These actions of virtual human are classified
into three sets: whole body actions set Γ which contains
chair sitting, sofa sitting, bed sleeping, table eating and
bike driving; arm actions set Σ which contains carrying, lift-
ing, pushing, pulling and slicing; hand actions set ∆ which
contains hand goblet, hand screw, hand cup, hand plat and
hand fist. The three levels of actions are shown as Figure 1.
Each set corresponds to one level of virtual human actions.
We combine these three levels of virtual human actions as
the total set of virtual human actions, i.e., Ω = Γ

⋃
Σ
⋃

∆ .
Let Am be one action of Ω .

Fig. 1 The three levels of virtual human actions.

3.2 Interaction between single action and 3D object

Let Π be the set of 3D objects to be analyzed, and On be one
object of Π . We denote the combined Axis-Aligned Bound-
ing Box (AABB) as Bm,n which contains both On’s AABB
and Am’s AABB . We hierarchically subdivide Bm,n into s-
mall cubes. The total number of these cubes is l. Let C j be
one of these cubes, and its center vertex be Vj.

Let Tm,n be the search space of transformations between
Am and On, and tm,n be one transformation of Tm,n. We also
voxelize On and compute its 3D distance field Dm,n [27].
The closest distance of C j to On can be efficiently obtained
by

dC j ,On = Dm,n(tm,nVj) (1)

After applying tm,n to Am, the distance between Am and
On can be calculated as:

dm,n =
l

Σ
j=1

dC j ,On (2)

where dm,n is the summation of distances between On
and cubes C j inside Am.

3.3 Contact area and number of intersecting points

The contact area between Am and On is also very impor-
tant to our method. To compute the contact area, we first
determine whether each triangle of On and AABB of Am is
intersected or not. Sm,n is the summation of all the areas of
triangles which are intersected. We also use RAPID [28] to
compute the number of intersecting points Nm,n between Am
and On.
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3.4 Best interacting transformation between single action
and 3D object

Based on the observations from interaction between human
and objects in everyday life, we propose three heuristic guid-
ing principles of best interacting transformation. (i) The dis-
tance between virtual human and object should be as small
as possible. (ii) The contact area should be as large as pos-
sible. (iii) Intersections between virtual human action and
object should be avoided. Based on these principles, we for-
mulate the process of finding best interacting transformation
between Am and On as an optimization problem,

t∗m,n = argmin
Tm,n

(dm,n−β ∗Sm,n +α ∗Nm,n) (3)

where α and β are weights to balance between intersect-
ing points and contact area. The three terms in the right side
of equation (3) correspond to the three observations respec-
tively. We solve equation (3) using traversal method in trans-
formation search space Tm,n. The details will be discussed in
section 4.2.

3.5 AB3D of 3D object

The final step is to determine which level of actions should
be chosen for On. As our observation, the level of virtual
human actions highly depends on the volume of its AABB.
Let its volume be Vn. We first compute average volume of
human actions of each level, then compare Vn to them. If Vn
is significantly bigger than some levels’average volumes, we
will omit these levels’actions. By computing the best trans-
formations between On and a number of m virtual human
actions, we can obtain AB3D of On which is defined as a
vector:

AB3D(Ob jectn) = (t∗1,n, t
∗
n,n . . . t

∗
m,n) (4)

4 3D shape classification based on AB3D

In this section, we will develop our 3D shape classification
algorithm based on AB3D. Section 4.1 describes details of
preprocessing of 3D objects. Section 4.2 proposes algorith-
m 1, which computes the best interacting transformation be-
tween single virtual human action and 3D object. Section 4.3
presents algorithm 2, which computes AB3D of 3D objec-
t. Section 4.4 shows how to use Support Vector Machine
(SVM) to classify input 3D models. The overview of our
AB3D classification algorithm is depicted as Figure 2.

4.1 Preprocessing of 3D models

AB3D requires 3D models have approximately correct sizes
as in our daily life. This is critical to our algorithm because

Fig. 2 Block-diagram overview of our method.

all our features are deducted from interactions between vir-
tual human action and 3D models. If one model of our database
has the wrong size, we will get incorrect AB3D. Fortunate-
ly, most of the models used in this paper are collected from
Google 3Dwarehouse [26] , most of which have the correc-
t relative sizes. The meshes with poor quality or improper
sizes will be discarded. Finally, we use principal component
analysis (PCA) to adjust the main three eigenvectors aligned
to the axis of the coordinate. The method of Fu et al. [29] is
used to make sure that models are correctly oriented in co-
ordinate system.

4.2 Computation of best interacting transformation
between single action and 3D object

For a single action Am and one 3D object On , we use Al-
gorithm 1 to compute the best transformation t∗m,n between
them. The resolution of voxelization is determined by which
actions set Am belongs to. If Am is one of the whole body
set, the resolution is 3.33 cm3; otherwise, the resolution is
1 cm3. The rigid transformation space is also regularly sam-
pled on the same resolution. The rotation transformation is
sampled at severy 30 degrees step only in x-y plane, because
we have adjusted the 3D models using PCA and Fu et al. ’s
method [29]. All our AB3D computation is performed in the
transformation space which combine the rigid and rotation
transformation together.

Here we describe the details to solve equation (3). At
first, we utilize RAPID [28] to do collision detection be-
tween Am and On. When these two models are in the bound-
aries of collision, we store these boundary transformation.
Finally, we do traversal search for every boundary transfor-
mation. We substitute these boundary transformations into
equation (3). t∗m,n is the transformation which minimize right
side of equation (3). When Am belongs to whole body action
set, weights α and β are set to be 0.8 and 0.2; otherwise, α

and β are set to be 0.5 and 0.5.
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Algorithm 1 Compute best transformation between single
virtual human action and 3D object
Input:

Single virtual human action, Am; 3D object, On.
Output:

Best transformation between Am and On : t∗m,n
1: Compute the combined AABB Bm,n, spatially subdivide Bm,n
2: Voxelize On and compute 3D distance field Dm,n in Bm,n
3: for each tm,n in Tm,n do
4: for each C j in Bm,n do
5: Use RAPID to compute Nm,n and determine the boundaries

of collision detection
6: end for
7: end for
8: for each tm,n in the boundary transformations do
9: Use equation (2) to compute dm,n

10: Use equation (3) to compute t∗m,n
11: end for
12: return t∗m,n

4.3 Computation of AB3D

The computation of AB3D of one 3D object On is detailed
in Algorithm 2.There are many complicated situations when
interacting with 3D objects. As a result, using multiple ac-
tions is a natural choice for us. Take a middle size vase with
a handle for example. If we just use hand actions to interac-
t with it, we may get wrong classification because the way
of interaction between this vase and some cups with han-
dles are similar. If we use multi-level actions which contains
both arm actions and hand actions to interact with it, we can
combine these best interacting transformations together as
input vector for classification method. As a result of richer
information, we can get more accurate functional analysis
results.

Algorithm 2 AB3D of 3D object
Input:

Three levels standard virtual human actions Ω ; 3D object, On.
Output:

AB3D(On)
1: for each virtual human action Am in Ω do
2: if Vn is bigger than 3 times of mean volume of actions level Am

belongs to then
3: Set t∗m,n = NULL
4: else
5: Use Algorithm 1 to compute t∗m,n
6: end if
7: end for
8: Use equation (4) to compute AB3D(On)
9: return AB3D(On)

4.4 Classification algorithm using SVM based on AB3D

In this subsection, we will focus on how to use AB3D as
feature vectors to classify objects. We use Support Vector
Machine (SVM) [30] which is one of the most popular al-
gorithm for classification.

We use AB3D(Ob jectn) as input feature for SVM. 50%
of the dataset is used as training model set, and others are
used as test model set. As shown in Figure 2, in training pro-
cess, we use one-vs-all strategy [31] to train a single SVM
classifier for every category, so we have n SVM classifiers
for n categories of models. In the testing process, we com-
pute every object’s AB3D as input, and compute the proba-
bilities of labeling tags from their corresponding SVM clas-
sifiers. Finally, we vote based on these probabilities to de-
termine the final labeling results of test 3D objects.

5 Results

5.1 Dataset

We construct an 3D model dataset because existing model
database failed to collect 3D models which have inter-class
variations in appearance and can be easily interacted with as
well. These 3D models are popular nowadays. We searched
key words “modern chair”, “modern sofa”, “modern bed”,
“modern tabel” on Google 3DWarehouse [26], and then we
searched “chair”, “sofa”, “bed”, “table” . These “modern”
models were found in the first several results pages.

We downloaded hundreds of “modern” 3D models from
these four categories, discarded all the tags attached in these
models, and labeled them as their corresponding categories,
i.e., “bed”, “chair”, “sofa”, and “table”. The number of trian-
gles of these models varies from hundreds to millions. Fig-
ure 3 shows part of our 3D models dataset.

Fig. 3 Part of our 3D model dataset. Note that this dataset has both
great large intra-class and inter-class variations in appearance.



6 Zhige Xie et al.

Part of our standard human actions were collected from
Pose Pro [25] and others were download from Google 3D-
warehouse [26]. We used Quadirc Edge Collapse Decima-
tion filter in MeshLab [32] to simplify these models to around
2000 triangles. The three levels of virtual human actions set
are shown as Figure 1.

5.2 Effectiveness of interacting transformation search

To validate the effectiveness of AB3D, we choose a bottle
model and a goblet model from princeton shape benchmark
(PSB) [33], and use them to interact with the human hand
action set. Note that we adjust the sizes of these two PSB
models according to their sizes in our daily life. Figure 4
visualizes the result of our algorithm. From these results,
we can conclude that AB3D generated by our algorithm are
close to the way of interactions between human and objects
in everyday life. Specifically, the result between fingers and
goblets shows that our algorithm can be used to get precise
interacting transformations.

Fig. 4 The best transformations between four hand actions and two
3D models from PSB computed by Algorithm 1. Every entry below
the transformation result contains hand action name (before the slash)
and model name (after the slash).

5.3 Performance Evaluation

To validate the retrieval performance of our classification al-
gorithm, we choose 335 models of four categories described
in subsection 5.1. We chose four virtual human actions from
whole body action set, which are chair sitting, sofa sitting,
bed sleeping and table eating. We split the whole 3D model-
s dataset into two parts: 50% of the dataset is used as training
data and the rest is used as test data.

We compare our method against two classical shape de-
scriptors: rotation invariant spherical harmonic (SPH) [34]

and LightField Descriptor (LFD) [35] with AB3D on our
dataset. The reason why we choose LFD is that LFD-like
method is still one of the most powerful shape descriptors
in 3D model classification and retrieval contest [36] [37]. In
the experiment, we first use SPH and LFD to compute the
3D objects’ descriptors, and then we use k-nearest neigh-
bor(kNN) [38] to classify these models. Finally we also ap-
ply our AB3D based SVM classification algorithm to clas-
sify these 3D models. We use libSVM [39] toolbox written
in MATLAB, and adopt the one-vs-all strategy [31] to train
four SVM classifiers. These four SVM classifiers are used
to classify these test models.

Figure 5 shows plots of precision-recall curves for of
SPH, LFD and our method. Tables 1 shows the performance
of one-vs-all SVM classifiers according to each class. On
this dataset, the average classification precision of our algo-
rithm is around 78%, while SPH is around 20% and LFD is
around 30%. We can safely come to a conclusion that, for
3D models which have inter-class variations in appearance
and can be easily interacted with, our algorithm can exceed
these two geometric descriptor based algorithms.

SVM Category Test Number Correct Number Correct Ratio
1 Bed 170 161 94.7059%
2 Chair 170 154 90.5882%
3 Sofa 170 143 84.1176%
4 Table 170 160 94.1176%

Table 1 Performance of four one-vs-all SVM classifiers on our affor-
dance dataset. 170 test 3D models are input to every SVM classifier,
and the Correct Ratios are the classification accuracy rates of these 4
SVM classifiers respectively.

5.4 Analysis of our algorithm

Our experimental platform is a personal computer with a
Pentium(R) Dual-Core 2.6GHz CPU, and 2 GB RAM. We
implement algorithm of computing AB3D in C++, and one-
vs-all SVM training and testing procedures in MATLAB.
Table 2 is time-consumption of computing AB3D for some
typical models. Because the total size of AB3D features is
less than 10 KB, the one-vs-all SVM training and testing
operations can be accomplished less than 10 seconds.

The complexity of Algorithm 1 is O(n logn). This algo-
rithm first uses RAPID [28] to compute boundaries of col-
lision detection between action and object. The number of
boundary transformations is constant, which varies from 8
to 32. And the number of rotation transformations accord-
ing to every rigid transformation is 12. As a result, the time-
consumption of our algorithm is constant times of RAPID
algorithm’s. Given the fact that RAPID has the complexity
of O(n logn), Algorithm 1 also has the same complexity.
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Fig. 5 Comparisons of our AB3D-based method, SPH[34] and LFD [35] on our affordance dataset. The curves are “Precision” vs. “Recall”
curves of each method. Green curves represent performance of our algorithm, blue curves represent performance of SPH, and red curves represent
performance of LFD. The results of SPH and LFD are generated by PSB utility [33]. For the convenience of comparison, result curves have been
interpolated.

3D Model Running time Number of triangles
newchair288 486.594 s 195550
newsofa18 40.562 s 28740
newbed210 7.844 s 3423
newchair52 0.172 s 36

Table 2 Running time of computing AB3D for four typical 3D models.

6 Applications

In this section, we show two interesting applications based
on AB3D. Since AB3D can reflect the implied meanings of
interactions between 3D models and virtual human actions,
it can be utilized by different applications in geometry pro-
cessing area.

6.1 Consistent segmentation

Unlike methods like [3], we use AB3D to consistently seg-
ment a set of 3D models. We believe that interactions be-
tween human and objects convey consistent semantic infor-
mation of these objects.

Our consistent segmentation approach is proposed as fol-
lows. (1) We use method described in paper [18] to over-

segment a set of 3D models. We compute AABBs of these
over-segmented parts, denoting the centers of these AABBs
as P1, P2,. . . , Pn. (2) We manually choose virtual human ac-
tion for these models. For example, we choose chair sitting
action for a set of chairs. Then we compute their AB3D. (3)
We denote the number we want to segment this set of 3D
models as n. We segment the action into n interacting part-
s, denoting the center of their AABBs as C1, C2,. . . , Cn. (4)
We transform virtual human action into the scene based on
AB3D. According to distances from every over-segmented
part’s center to C1, C2,. . . , Cn, we tag each part as i when the
distance between this part’s center and Ci (i ∈ (1,n)) is the
minimal.

Figure 6 shows the consistent segmentation results to a
set of chairs. Figure 6(a) depicts the over-segmented results
on these chairs. Figure 6(b) shows the AB3D computed by
Algorithm 1. Then we segment the virtual human model into
three interacting parts: “torso”, “upper-leg ” and “lower-leg
”. The center of three parts is C1, C2, C3. Figure 6(c) shows
the final segmentation results. Note that these tags have se-
mantic meanings due to their relations to virtual human part-
s. In the process of interaction between human and chairs,
we can naturally relate “torso” to chair’s back-supporting
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function parts, “upper-leg” to supporting function parts, and
“lower-leg” to legs parts (though legs parts are not direct-
ly interacted, but man’s lower legs are closer to chair legs
when he is sitting). As a result, tag1 is “back support”, tag2
is “support”, and tag3 is “leg”.

Fig. 6 The three stages of our method for consistent segmentation
based AB3D. In stage (a), we first over-segment input 3D models. Then
in stage (b), we transform chair sitting action to these four chairs ac-
cording to their AB3Ds respectively. In stage (c), we finish consistent
segmentation through our proposed approach.

6.2 Recognition and reconstruction of scanned 3D indoor
scenes

Nan et al. [24] presented a search-classify approach which
interleaved segmentation and classification in an iterative
manner. Using a robust classifier they traversed the scene
and gradually propagated classification information. Then
they reinforced classification by a template fitting step which
yields a scene reconstruction.

AB3D can deal with the issue of recognition and recon-
struction of scanned 3D indoor scenes. Firstly, AB3D can
classify 3D models which could be well interacted with hu-
man, as described in previous sections. Indoor scenes are
filled with furnitures which can be easily interacted with.
Secondly, AB3D is robust when dealing with noisy point
cloud data. When virtual human is interacting with object-
s, the most important information is the silhouettes of the
object’s main parts.

Generally speaking, the point cloud data collected from
3D scanned device preserves main silhouette while having

missing data in details. After down sampling, the silhouettes
of the point cloud always correctly reflect the shape’s main
parts, which can provide the information in the process of
interacting with virtual human action. As a result, AB3D
could obtain good results when dealing with point cloud da-
ta in most situations. All we have to change to algorithm-
s described in section 4 is replacing the collision detection
algorithm between meshes by collision detection algorithm
between mesh and point cloud.

In this subsection, we present an algorithm using AB3D
to recognize 3D shape in 3D point cloud scene. As shown in
Figure 7, the workflow is: (a) We correct the height of the w-
hole scene, and delete the walls and floor from the scene. (b)
We use kNN (k-Nearest Neighbor) to cluster the point cloud.
We choose the most complicated point cloud group (a table
with four chairs) to run our algorithm, and the other groups
will be done with the same procedure. (c) We over-segment
the point cloud scene, generating a dozens of point cloud
patches. (d) Then, we compute these patches’ center points,
and connect them into a graph. The above 4 steps are similar
to [24]. These steps only consider x and y coordinates, be-
cause the information in z coordinate has great ambiguities.
As a result, kNN will make mistakes when classifying these
pathes. Nan et al. [24] use their search-classify method to
deal with these ambiguities.

In contrast, we use method based AB3D as follows to
solve these ambiguities. (e) We use ZPclustering [40] to clus-
ter the patches’ center points again. After ZPclustering, we
can calculate clusters’ center points, which will be use as
coordinate origins in AB3D computation. (f) In this step,
we only choose two virtual human actions (i.e., chair sitting
and table eating) when computing AB3D, because these t-
wo actions are enough to differentiate chairs and tables. The
search space is AABB of the corresponding point cloud clus-
ters. After computing AB3D, we can find the most suitable
sitting positions. These positions are shown as four virtual
human chair sitting actions as in Figure 7(f). (g) We use 3D
mesh of chair sitting action to construct a bounding box. We
use these four bounding boxes as decision boundaries to ac-
complish these patches’ final clustering. (h) After final clus-
tering, we get more accurate cluster result. We tag clusters
whose centers are near chair sitting action as “chair” and
others as “table”. As far as this step, we finish the recogni-
tion of the point cloud scene. (i) To accelerate reconstructing
speed and improve stability of our method at the same time,
we down sample the whole point cloud scene. (j) At this final
step, we compare every point cloud cluster to the template
models, and choose the most similar 3D models.

7 Conclusion, limitations, and future work

In this paper, we develop a new 3D descriptor, AB3D, which
is computed from interactions between virtual human ac-
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(a) (b)

(c) (d)

() (f)

(g) (h)

(i) (j)

Fig. 7 The process of recognition and reconstruction of scanned 3D
indoor scenes based on AB3D.

tions and 3D models. AB3D can utilize the abundant in-
formation implied in human actions, which is useful in 3D
models functional analysis. We first formalize the workflow
to compute AB3D, then we provide algorithms to compute
AB3D for a 3D model. We conduct experiments to validate
the effectiveness of our method. At last, we show two useful
applications based on AB3D: consistent segmentation and
reconstruction of scanned 3D indoor scenes.

Limitations AB3D can not deal with 3D models which is
not easily interacted with virtual human actions. For these
models, we should combine our framework to other tradi-
tional geometric descriptors to obtain correct analysis re-

sults. In subsection 6.1 and 6.2, in the action selecting step
we must manually choose appropriate virtual human action-
s. When dealing with 3D models having a large number of
triangles, our algorithm can not achieve real time so far. All
these issues will limit AB3D’s application.

Future work In the future, we will use GPU to accelerate
speed of AB3D computation. We also want to extend our
method to obtain a fully automatic algorithm for reconstruc-
tion of indoor point cloud scene. And we agree that rather
than only use action-based 3D descriptor, combining with
geometric descriptors when analyzing 3D shapes could be a
potentially fruitful direction for further research. We regard
our work as only an initial step in the direction of actions
based 3D shape analysis. We believe that AB3D is a promis-
ing shape descriptor towards functionality analysis.
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