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Abstract

We introduce an automatic 3D shape morphing
method without the need of manually placed anchor cor-
respondence points. Given a source and a target shape,
our approach extracts their skeletons and computes the
meaningful anchor points based on their skeleton node
correspondences. Based on the anchors, dense corre-
spondences between the interior of source and target
shape can be established using earth movers distance
(EMD) optimization. Skeleton node correspondence, es-
timated with a voting-based method, leads to part cor-
respondence which can be used to confine the dense cor-
respondence within matched part pairs, thus providing
smooth and plausible morphing results based on dis-
tance field interpolation (DFI). We demonstrate our al-
gorithm works well with experimental results, including
shapes with large geometry variation and structure dif-
ference.

1. Introduction

Shape morphing (shape interpolation) [1, 11, 15, 27, 31,
32, 33] is a widely studied problem in both fields of com-
puter vision and computer graphics. Smooth transition be-
tween 2D objects or even 3D shapes is very useful in many
applications, such as special effects in film industry. For
the same object in two different poses, shape morphing can
give us the sequence of motions that move from one pose to
the other. Interpolation between two different shapes with
similar pose, can provide us with more shape appearance

variations. In general, these two cases happen simultane-
ously during shape blending.

In computer graphics, shape morphing approaches can
be classified according to the representation of input ob-
jects. Surface mesh morphing methods [1, 33] can smoothly
deform one mesh into another. While volumetric (e.g. dis-
tance field method) methods [11, 32] represent object as a
grid and each node on the grid stores distance to the surface.
By interpolating the distance values between source and tar-
get, it can generate grids with in-between distance values.
At the cost of expensive computation, the distance field in-
terpolation (DFI) method can handle morphing objects with
different topologies, which is not achievable by explicit sur-
face methods. Implicit surface methods [14, 20, 22, 26] de-
fined by continuous functions are also well suited for mor-
phing shapes of arbitrary topologies, but the components
need to be bijectively paired.

The core issue of shape morphing is to establish mean-
ingful correspondences between given objects. Surface
morphing approaches usually need one-to-one correspon-
dence between source and target meshes. DFI methods do
not require dense correspondences at the beginning, how-
ever, it usually needs user to specify anchor points (usually
more than a dozen on each object manually [11, 32]. In or-
der to generate satisfactory in-betweens, these anchor points
should be carefully placed in semantically meaningful posi-
tions of both source and target objects. It is a tedious work
for human, and often hard to decide where to place anchors
to achieve expected transition sequence.

In this paper, we propose an automatic DFI morphing
method in part wise with the assistance of shape skeleton.
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Figure 1: Morphing two different structural shapes automatically. Top row: morphing results of [32]. Bottom row: morphing
sequence based on our algorithm. Note both results use the same anchors obtained by our method and there is no anchor on
gecko’s two lower legs.

The correspondences of source and target skeleton feature
nodes (i.e. junction and terminal nodes) are first established
using a method similar to [5]. Based on the match of skele-
ton feature nodes, skeleton branch correspondences can also
be derived. By parameterizing matched skeleton branches,
more corresponding node pairs can be added as anchors.
Briefly, skeleton is exploited in two aspects. First, it helps
automatically determine where to place anchor points ac-
cording to corresponding nodes on source and target skele-
tons. Second, during skeleton construction [38], shapes can
be segmented into meaningful parts which are associated
with skeleton branches. This association facilitates build-
ing dense correspondences in part wise via earth mover’s
distance (EMD) optimization [19]. In this way, our algo-
rithm can produce satisfactory morphing sequences without
tedious user interaction.

The key observation of this paper is that skeleton of ob-
ject, encoding both geometric and structural information,
could supply us with meaningful positions for anchor points
by parameterizing skeleton branches. Besides, part-based
dense correspondences, instead of the overall correspon-
dences between objects [32], avoid artifacts caused by cor-
respondence drifts from EMD optimization. In this paper,
we focus on generating smooth and plausible transitional
shapes between source and target objects. It distinguishes
ours from recent morphing work [2] also using skeleton,
where they focus on synthesizing new creative in-betweens
via blending part by part instead of overall transition.

2. Related work

Shape morphing is closely related to shape correspon-
dence problem. Extensive literature exists on both shape
morphing and shape correspondence topics. In this sec-

tion, we briefly review related shape morphing methods and
shape matching on skeleton.

Shape Morphing. Since shape morphing is a useful
tool in many applications, researches on both 2D and 3D
morphing start quite early [7, 11, 21, 22]. Morphing meth-
ods can be classified into several kinds, e.g. surface mesh
method, implicit surface method and DFI etc., according
to how objects are represented. However, such methods
rely heavily on the quality of correspondences to produce
plausible morphing sequences. Surface mesh morphing ap-
proach [1, 33] needs dense correspondences for each vertex
on source and target objects, while DFI [11, 32] needs cor-
respondences of voxels on grids. Without bothering with
voxels, implicit surface methods [20, 27] defined by scalar
functions, can also morph objects with different topologies.
In order to save effort on vertex correspondence in surface
based morphing, Blanz and Vetter [9] proposed a morphable
model with full correspondence to synthesize new faces
from given examples. Similar work [3] has also been done
for human poses. But such model is not applicable to DFI
method, as it is implicit. In practice, given only sparse cor-
respondences, some strategies can be used to generate fuzzy
dense correspondence to make DFI work [11, 32].

Many works have been done to find a reasonable trajec-
tory for morphing. The well known one is done by Alexa
et al. [1], in which they proposed a new way to decom-
pose the deformation gradient matrix into a rigid part and
a stretching part. By interpolating each part separately to
get a new deformation matrix, the blending path is visu-
ally reasonable. This method, however, was designed for
surface or volumetric mesh, and is not straightforward for
DFI. Weng [32] introduced such method into DFI by es-
sentially constructing a volume mesh from grid, and their



results are promising. Besides, Xu et al. [33] introduced a
method to obtain shape blending sequences by solving Pois-
son equation. But the deformation matrix decomposition is
similar to [1]. There are also some works [12, 16, 17, 28]
embedded physical model constraint into the morphing pro-
cess, in order to produce physically plausible transforma-
tion sequences. Another recent work [15] proposed a data-
driven method to yield reasonable morphing results. More
recently, Von-Tycowicz et al. [31] exploited a set of shapes
to generate real-time non-linear shape interpolation. Obvi-
ously, such methods depend on a dataset, in which all mod-
els are fully corresponding to each other. On the contrary,
this also limits the method for arbitrary shapes.

Skeleton matching. Shape blending results greatly de-
pend on the quality of correspondence. Establishing mean-
ingful shape correspondence is a difficult problem, espe-
cially semantically similar objects may vary significantly
in both geometry and topology. Shape matching is exten-
sively studied and comprehensive review of this topic is be-
yond the scope of this paper. Please refer to survey papers
like [30] for more details. In this paper, we focus on the
correspondence of shape skeleton.

Curve skeleton contains both geometry and structure in-
formation about the shape. But how to efficiently extract
skeleton from arbitrary shape is nontrivial. Several meth-
ods [4, 29] have been proposed to automatically extract high
quality shape skeleton. Even recently, Zhou et al. [38] pro-
posed a method to decompose shape into approximate gen-
eralized cylinders and one of its applications is to construct
skeleton. In this paper, we employ this method to construct
skeleton as it also gives us part information. Skeleton is
also very useful in many aspects. Zheng et al. [37] made
use of consensus skeleton to register point cloud with noise
and occlusion. Jiang et al. [18] exploited skeleton to detect
intrinsic symmetry of point clouds.

Establishing skeleton correspondences is a challenging
task. Bai and Latecki [6] proposed a geodesic distance
based skeleton matching algorithm, in which they only con-
sidered the match of skeleton endpoints. To avoid exten-
sive computation, Au et al. [5] introduced a voting strat-
egy which used several geometric metrics to search skeleton
node correspondences. However, few works have been done
to exploit skeleton for morphing. Blanding et al. [8] simply
regarded the medial axis as the intermediate shapes. Lian
and Xiao [23] made use of skeleton, strokes and key points
to interpolate the same Chinese character in different fonts.
Alhashim et al. [2] also exploited skeleton correspondence
to generate creative shapes. We prefer using skeleton corre-
spondence not only because it is computationally more ef-
ficient than vertex correspondence [36], but skeleton nodes
often locate in the meaningful positions of a shape.

Figure 2: Framework of DFI based morphing method.

3. DFI morphing

Given a source and a target surface meshes, their occu-
pied space is first uniformly voxelized as volume objects V0

and V1 respectively. For ith voxel v0i ∈ V0(v1i ∈ V1), it has
a unique coordinate in source (target) domain and D0(vi)
(D1(vi)) is its distance to surface boundary, where positive
value means outside, and negative means inside. Suppose
there exists a third uniformly voxelized space domain Vt at
time t (t ∈ [0, 1]), DFI method constructs the intermedi-
ate shape by assigning distance values to voxels in Vt. DFI
method is usually composed of warping and interpolation
steps to construct better intermediate shapes [11].

The warping step can be divided into forward warping
and backward warping. Given a bunch of voxel correspon-
dences, a forward warping function can be computed to
transform source domain V0 or target domain V1 to the in-
termediate voxel domain Vt. The backward warping func-
tion, on the contrary, deforms intermediate voxel domain
to source domain or target domain. Specifically, the for-
ward warping function from source domain to target domain
(or from target to source) is first computed according to the
given voxel correspondences between V0 and V1. Applying
the forward warping function to all source (target) domain,
each voxel in source (target) will have a corresponding po-
sitions in target (source):

F 0
1 (V0) ≈ V1, F 1

0 (V1) ≈ V0 (1)

Note that F 0
1 is unnecessary same as the inverse of F 1

0 ,
and vice versa. With F 0

1 and F 1
0 in hand, different interpo-

lation schemes could be used to obtain the corresponding
intermediate voxels V 0

t and V 1
t separately. Starting from

here, the forward warping functions F 0
t and F 1

t can be ap-
plied to update their correspondences in intermediate voxel
domain Vt, and then its backward warping functions Bt

0 and
Bt

1 can also be obtained in a similar way. Finally applying



the backward warping functions, the correspondences of all
Vt voxels in source domain and target domain are achieved:

Bt
0(Vt) ≈ V0, Bt

1(Vt) ≈ V1 (2)

Here we use as-rigid-as-possible (ARAP) interpolation
method in [32] to calculate in-between voxel positions cor-
responding to source and target respectively. As for warp-
ing function, radial basis function (RBF) [10] with a global
affine transform is exploited, and thin plate spline is chosen
as the kernel function of RBF. Now the distance value Dt

for each voxel in Vt can be linearly interpolated from source
domain and target domain:

Dt(Vt) = (1− t)D0(B
t
0(Vt)) + tD1(B

t
1(Vt)) (3)

The whole framework of DFI morphing is shown in Fig-
ure 2. In order to visualize intermediate shapes, isosurface
of Vt is extracted using marching cubes [24] for rendering.
As we see, correspondence is the key to compute warping
functions, and also is very important for morphing. In sec-
tion 4, we will explain how anchor points are automatically
placed to compute dense correspondences and improve the
quality of correspondence in voxel level.

4. Skeleton-guided DFI morphing

Traditional DFI methods [11, 32] require user to place
anchor points manually to interpolate two shapes smoothly.
The number of corresponding anchor points is usually more
than a dozen on both source and target objects. To achieve
satisfying morphing sequence, these anchor points should
be carefully placed in meaningful positions. It is a challeng-
ing and tedious work even for people in computer graphics
field, not to mention those who know little about geometry.

In order to simplify this procedure, we introduce a mor-
phing algorithm that automatically places anchor points
with the aid of skeleton. The key observation is that shape
skeleton conveys predominant geometry and structure infor-
mation of the shape, and its nodes are often located in the
meaningful positions inside the shape. Based on skeleton
node correspondences, we can automatically determine cor-
responding anchors on source and target. Then EMD opti-
mization is done in part wise to avoid large correspondence
drifts. To obtain visually plausible in-betweens, source and
target objects are assumed to have the same orientation. We
will detail our method in following sections.

4.1. Skeleton construction

The first step of our algorithm is to extract skeletons
from input shapes. Here the skeleton is defined as rota-
tional symmetry axis of surface meshes or point clouds and
constructed using a recent algorithm proposed by Zhou et
al. [38]. This method first over segments mesh into a large
mount of small parts that are approximate to generalized

Figure 3: Shape decomposition and skeleton. Left column:
shape decomposition and its skeleton branches. Right col-
umn: skeleton is connected as interpolated one.

cylinder. Then the local cylinders are merged into a dozen
of long generalized cylinders. Finally, all the possible com-
binations of long cylinders are enumerated and the one with
lowest cost is chosen. Skeleton is naturally obtained during
the process, as each generalized cylinder intrinsically has a
rotational symmetry axis as a skeleton branch. The chosen
combination connects corresponding skeleton branches as
an integrated skeleton.

The advantage of such skeleton is that it associates each
skeleton branch with a shape segment. This helps us realize
establishing dense correspondences for each matched part
pairs later. Be aware that the decomposition and skeleton
construction do not need any user intervention. Figure 3
show results of shape decompositions, skeleton branches
and integrated skeletons. In the following, the hand model
and plant model are used to illustrate our algorithm.

4.2. Automatic anchor placement

Determining anchor points between source and target
shapes is essentially a shape correspondence problem. It is
widely regarded as a difficult problem. Directly establishing
vertex correspondences between source and target meshes,
e.g. via deformation-driven method [36], is very costly. A
skeleton branch matching method is proposed in [38] to find
one-to-one branch correspondences. But their method may
get in trouble, when source and target skeletons have differ-
ent number of branches. Therefore, we resort to a fast and
accurate voting-based method [5] to compute correspon-
dences of skeleton nodes, which could also handle partial
matching problem. Here we only consider terminal nodes
(degree = 1) and junction nodes (degree > 2), as terminal
nodes are the extremities of shape and junction nodes con-



vey shape topology information. The correspondences of
feature nodes between source and target skeletons are voted
using metrics [5], such as centricity, path length, topol-
ogy consistency, spatial configuration, etc. Since source
and target objects have the same orientation, they can be
roughly aligned just by translation. Therefore, we extend
the method with considering the euclidean distance metric
to alleviate symmetry-switching problem.

Figure 4: Match of feature nodes. The corresponding node
pairs are shown in the same colors. Note that the terminal
node of ring finger is left unmatched.

Figure 4 illustrates the match of feature nodes. Since
feature node correspondences are one-to-one, not all feature
nodes of a skeleton can have a corresponding node on an-
other skeleton. For instance, no feature node of plant skele-
ton is matched with the terminal node of ring finger.

1

2

3

4

5

6

Figure 5: All six different cases of connecting one branch
(solid line) into an integrated skeleton. In each case, dotted
lines in different colors indicate other skeleton branches.

As feature node correspondences are established already,
these nodes can be directly used as anchors. However, the
number of such anchors is usually too few to obtain sat-
isfactory morphing results, as they cannot supply enough
information to attain good in-betweens. According to the
way that skeletons are constructed [38], we propose a sim-
ple method to establish skeleton branch correspondences
based on feature node correspondences. For one skeleton
branch being merged into the integrated skeleton, one of
six different cases shown in Figure 5 happens. If at least
one of branch’s two endpoints is treated as terminal node
(case 1, 2, 3), terminal node matching signifies the match
of two branches containing the terminal nodes. If a branch

with two terminal nodes matches two branch, we randomly
choose one as its corresponding branch. Branches with no
feature node (case 4) or one junction node (case 5) are left
unmatched. If branch has two junction nodes (case 6), it
will match another branch with both feature nodes matched.
Such simple strategy works well in our experiments, be-
cause the matched feature nodes are guaranteed to have sim-
ilar spatial configuration. The situation like case 4 and 5
happens seldom and has little effect on morphing results.

Since we have acquired the correspondences of original
skeleton branches, each pair of corresponding branches is
parametrized into [0, 1] using cubic B-spline. Points with
same parametrized values are regarded as correspondences.
In this way, more anchor points can be simply added for
morphing. In all our experiments, we uniformly sample
points on each branch as potential anchor points. Figure 6
illustrates locations of all the corresponding anchor points.

Figure 6: Corresponding anchor points. Note that there is
no anchor point placed on the ring finger.

4.3. Part-based EMD optimization

To achieve satisfactory blending results, dense corre-
spondences are required to control locations of interior vox-
els during morphing. Inspired by Weng et al. [32], we also
make use of EMD optimization to generate dense corre-
spondences in voxel level from anchor points.

Harmonic fields [34, 35] are first computed using an-
chor points obtained from section 4.2. Different from [32],
our harmonic fields are computed only on interior voxels of
source and target. It is essentially a Laplace equation with
a set of Dirichlet boundary conditions. Its discrete formula-
tion on the ith anchor point is:

hi(v)−
1

n

∑
u∈N(v)

hi(u) = 0, with

hi(pi) = 1, hi(pj) = 0, j 6= i

(4)

In equation 4, N(v) is facet adjacent voxels of v, n is
the size of N(v), pi (pj) is the nearest interior voxel of ith

(jth) anchor point. This equation can be equivalently solved
via quadratic energy minimization. Solving such equation
on each anchor point, we obtain a K-dimensional (K is the
number of anchors) vector field h0 (h1) on source (target)



interior voxels. Figure 7 shows one harmonic field result on
the hand model. It can also be observed that the harmonic
values on voxels decrease quickly, which is another reason
that more anchors are needed to distinguish themselves to
achieve better correspondences.

Figure 7: Harmonic field on voxelized model. The left
shows hand model with Dirichlet boundary setting (blue
nodes 0 and red node 1). The right shows the resulting har-
monic field.

Using the vector field to measure the similarity of source
and target voxels, EMD problem can be formulated to min-
imize the following transport cost:

argmin
f

∑
i,j

∥∥∥h0(v0i )− h1(v1j )
∥∥∥ · f(i, j)

s.t. f(i, j) ≥ 0∑
j

f(i, j) = 1/N0∑
i

f(i, j) = 1/N1

(5)

Since both source and target are uniformly voxelized, we
assume each voxel in source or target has the same mass,
which implies N0 and N1 are constant numbers in equa-
tion 5. This problem can be solved using the network sim-
plex algorithm [13] and the optimized object function f tells
us how much mass is transported from any interior voxel v0i
of source to any interior voxel v1j of target. Therefore, the
function can be used as weights to acquire a corresponding
position in target (source) domain for each interior voxel in
source (target).

In [32], both source and target objects are assumed to
contain the same mass as 1, which means N0 and N1 in
equation 5 are the numbers of source and target interior
voxels respectively. This assumption works well if seman-
tically corresponding parts in source and target have similar
proportions. However, in case corresponding object parts
have highly different proportions, the optimized function
will provide us unexpected correspondences. Consequently,
it will cause large shape distortion during morphing.

We instead introduce a part-based EMD optimization to
compute the dense correspondences. Since the correspon-
dences between source and target skeleton branches have

(b) voxelization(a) EMD (c) part-based EMD

Figure 8: Comparison of EMD optimization and part-based
EMD optimization.

been obtained in section 4.2, the voxels associated with cor-
responding skeleton segments are regarded to be matched
as well. Therefore, we employ EMD optimization 5 on
each pair of corresponding parts (now N0 and N1 are the
voxel numbers inside parts) to achieve high quality corre-
spondence. Figure 8 demonstrates exactly the case that cor-
responding parts have large different proportions. Voxelized
source and target objects are shown in the middle column.
For convenience, different parts are shown in different col-
ors. The parts in source (target) which are not matched in
target (source), e.g. ring finger of the hand, are merged into
it connecting matched part, e.g. the ring finger is merged
into the palm.

From top row of Figure 8, it can be observed that vox-
els inside the palm have their correspondences distributed in
most regions of the plant, although the palm should mainly
correspond to stem of the plant from view of structure. It
is just because the palm occupies a large amount of mass,
while its corresponding part of the plant, i.e. the stem, con-
tains only a very small amount. In such case, the result of
EMD optimization will assign voxels from other regions of
the plant as correspondences of the voxels in palm. Such
correspondences will lead to a undesired warping function
and eventually cause large shape distortion during morph-
ing. It is nontrivial to filter such correspondences out to
solve the problem completely. In the bottom row of Fig-
ure 8, it shows a similar situation from target (plant) to
source (hand). While the last column in Figure 8 shows the
voxel correspondences using our part-based EMD optimiza-
tion. The correspondences are limited inside corresponding
regions, while still have similar vector field values. Note
that some regions, e.g. hand palm, are not completely occu-
pied. It is just because of different proportions. However,
from the distribution of corresponding voxels, it can be ex-
pected that our correspondences can generate a reasonable
warping function for morphing.



Figure 9: Morphing hand to plant. Top row: morphing sequence generated using traditional EMD optimization. The cor-
respondence drift problem affects much on the results due to large proportion difference. Bottom row: morphing sequence
produced based on our part-based EMD optimization algorithm.

4.4. Skeleton-guided morphing

Now the dense correspondences in voxel level are es-
tablished between source and target domains. As intro-
duced in section 3, we can apply any available interpola-
tion scheme to produce in-betweens. Since the ARAP DFI
method [32] has many desired properties, it is exploited to
generate the morphing sequences. The comparison of mor-
phing sequences generated based on traditional EMD op-
timization and our method is illustrated in Figure 9. The
results manifest that our part-based EMD optimization can
generate better correspondences for warping functions.

5. Results and discussion

We implement our automatic part aware morphing algo-
rithm using C++ on a desktop with Intel(R) Core(TM) i7-
2700K CPU and 16 GB memory. The skeleton correspon-
dence searching algorithm is implemented in Python. Volu-
metric data structure and tools in OpenVDB library [25] are
employed to voxelize surface mesh and extract isosurface
from level sets grid. The network simplex algorithm in [13]
is exploited to optimize EMD problem, which essentially
solves the minimum cost flow of a bipartite graph. Our al-
gorithm is tested on several shape pairs with large geometry
and structure variations. See the accompanying video for
morphing sequences.

Evaluation. The first advantage of our method is that
it avoids manually placing anchors on both source and tar-
get objects, which is tedious and time-consuming for users.
It usually takes more than five minutes to place correspond-
ing anchors and cannot guarantee to achieve good morphing
sequence. Our algorithm finds anchor points automatically
from matched skeleton feature nodes. But if skeletons have

different genus, our fully automatic method may get unsat-
isfactory results. To solve such problem, simple user in-
teraction is needed to set up correspondences for branches
forming cycles. It is still much easier than placing an-
chors manually without any hint. The last two examples
in Figure 14 show morphing between objects with different
genus.

Figure 10: The ratios of voxels whose harmonic vector is
close to their correspondences’. Frobenius norm is used to
measure how close they are.

The second advantage is that our method can obtain high
quality dense correspondences, even for objects have dif-
ferent proportions of corresponding parts. We compare
the quality of correspondences generated by our part-based
EMD optimization with traditional EMD optimization via
the difference of harmonic vectors. In specific, for one



Model EMD #Int. #Anc Time(mins)
grid voxel EMD FW BW

Gecko 803 4954 30 0.37 0.08 2.41Seal 603 6479
Hand 603 8393 50 0.27 0.16 6.22Plant 1253 8944
Dino. 803 8996 60 1.0 0.20 6.97Horse 603 9936
Lamp 803 9202 40 0.67 0.17 5.94Genie 603 7445
CAD 303 6435 30 0.62 0.09 2.46Teapot 403 6910
Arma. 503 8604 90 0.59 0.12 5.52Wolf 603 6423

Pot 503 9727 20 2.05 0.18 3.59Crock 503 9062
Plane 753 5757 40 0.23 0.06 2.29Female 653 6712
Vase1 303 7192 20 0.96 0.12 2.97Vase2 503 8500

Table 1: Various statistics in our experiments. EMD grid
denotes the grid resolution used for EMD optimization.
#Int. voxel is the number of interior voxels of the object.
#Anc indicates the number of anchor points. The last three
columns are time performance (in minutes) of EMD op-
timization, forward warping (FW) and backward warping
(BW). EMD optimization needs to be computed once, but
FW and BW should be computed for each frame. All results
in this paper use the same resolution grid (1503) for DFI.

voxel and its correspondence, we compute the Frobenius
norm of their harmonic vector difference and compare the
value with a threshold (0.002∗#Anchor in our experiments)
to tell if the correspondence is good or not. The ratios of
voxels that pass the test using EMD and our part-based
EMD optimization are shown in Figure 10. It can be ob-
served that our part-based EMD is generally better than
traditional EMD, especially when corresponding parts have
quite different proportions.

The cost of part-based EMD optimization is that EMD
optimization should be done for each pair of parts. How-
ever, according to our experiments, EMD optimization
takes relatively few time and just needs to be computed
once. Table 1 shows several statistics of our experiments.

Comparison. We first compare our morphing result with
a recent DFI framework [32]. Our algorithm finds anchor
points automatically from skeletons, while their method re-
quires users to manually place anchor points. Besides, our
part-based EMD optimization can produce better morph-
ing results, even if corresponding parts have highly dif-

ferent proportions. Figure 9 shows such case. The palm
takes a large proportion of the hand, while the stem takes
only a small proportion of the plant. Since anchor points
on these two parts are corresponded to each other, EMD
optimization may output dense correspondences with large
drifts. This will produce undesired morphing results. Fig-
ure 1 shows morphing a gecko into a seal, whose structures
are different. Figure 11 shows the morphing of two simi-
lar structure objects. However, geometric variation is very
large and proportions of semantically corresponding parts
are different. To make the comparisons objective, the same
anchor points generated from our algorithm are provided for
both algorithms.

We also made another comparison with morphing
method proposed by Zhou et al. [38]. They realize shape
blending by interpolating the profiles (i.e. generalized cylin-
ders) which are associated with skeleton. In their method,
they can only morph each pair of corresponding profile in-
dividually, the neighbouring consistency is not considered.
Therefore, their morphing results may be not smooth in
some regions (see rectangle regions in Figure 12). Figure 12
illustrates the comparison between their morphing results
and ours. We test more data on our algorithm, and more re-
sults with large geometric variation and topology difference
are shown in Figure 14.

Limitation. Although our method can automatically
generate smooth and plausible morphing results even if the
proportions of corresponding parts are quite different, it in-
deed needs meaningful anchor points to produce satisfying
results. It means that our algorithm relies on the match of
shape skeletons. If most feature nodes of skeletons are mis-
matched, the morphing sequence could be unpredictable.

Our strategy about automatically adding more anchor
points works well on simplex skeleton (i.e. no cycles in
skeleton). More anchors are only added on matched skele-
ton branches. But when it comes to complex skeleton with
many cycles, there may exist several paths between two fea-
ture nodes making path correspondence ambiguous. Our
algorithm fail to match these branches. However, with few
user interaction (choose branch pairs), our framework can
still produce good morphing results (last two examples in
Figure 14). But if the numbers of skeleton branches are
quite different, only selecting branch correspondences is not
enough to produce satisfactory in-betweens due to the lack
of anchors (Figure 13).

6. Conclusion

We have presented an automatic DFI morphing approach
that smoothly blend source shape into target shape without
the need of manually placing anchor points. The skeletons
are first extracted from shapes, and then feature node cor-
respondences are built. Based on these correspondences,
more anchor points are added via parametrization. Thus,



Figure 11: Comparison with Weng et al. [32]. Top row: morphing sequence from [32]. Bottom row: our morphing results.

Figure 12: Comparison with Zhou et al. [38]. Top row: results from [38]. Bottom row: our results.

dense correspondences in voxel level can be established
based on these meaningful anchors via EMD optimization.
To alleviate large correspondence drifts, a part-based EMD
optimization is proposed to generate more reasonable cor-
respondences, which plays a key role in producing satisfac-
tory morph sequences. Even if in some case, anchor points
generated from our algorithm cannot produce perfect re-
sults, it can also provide users with feelings where to add
more anchors to get better in-betweens.

Our method represents a step towards making 3D shape
morphing process automatically and also with high quality.
However, there are still much room for improvement. Al-
though our method focuses on watertight models, it could
easily extended to models with isolated parts. Besides, the
key for satisfactory morphing is to establish reasonable cor-
respondences. Therefore, in future work, we would like to

find a new way to efficiently build more accurate dense cor-
respondences.
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