
2D Shape Deformation Based on Rigid Square
Matching

A. Author

Author’s Affiliation
Author’s E-Mail
Author’s Website

B. Author
Author’s Affiliation

Author’s E-Mail
Author’s Website

C. Author
Author’s Affiliation

Author’s E-Mail
Author’s Website

Abstract

In this paper, we propose a fast and stable
method for 2D shape deformation based on
rigid square matching. Our method utilizes
uniform quadrangular control meshes for 2D
shapes and tries to maintain the rigidity of each
square in the control mesh during user mani-
pulation. A rigid shape matching method is
performed to find an optimal pure rotational
transformation for each square in the control
mesh. An iterative solver is proposed to com-
pute the final deformation result for the entire
control mesh by minimizing the difference
between the deformed vertices and their
counterparts in the neighboring rigid square.
The deformation result on the 2D shape is as
rigid as possible and the details of the shape
are preserved well. As extensions, we present a
shape-aware splitting method to improve the
deformation effect for coarse meshes and a
simple sketch-based clustering method for
skeletal deformation. Experiments with various
2D shapes show that our method is efficient
and easy to use, and can provide physically
plausible result for shapes of objects in real
world. Therefore, our shape deformation
method is especially suitable for applications in
cartoon character animation.

Keywords: shape deformation, character
animation, shape matching, rigid transfor-
mation, skeletal deformation

Figure 1: Horsemanship actions obtained by
our method. The original 2D shape
with its control mesh is on the top
left. Note the natural skeletal be-
havior in deforming the horse legs.

1. Introduction

2D shape deformation (or manipulation) aims
at deforming objects represented in the form of
2D images by using graphical method. It is a
very useful tool for applications such as
character animation [1], real-time live perfor-
mance [2] and enriching graphical interface [3],
and therefore, has received a lot of attentions in
recent years. In such typical applications, the
2D shape in the image to be deformed often
represents an object in real world, and more
often a character or an animal. As a result, the
deformed shape must exhibit deformation
effects that are physically plausible. Efficiency

is another important feature to be considered of
the deformation method, because the method
must provide the user interactive tools to
manipulate the deformation result. The interac-
tion metaphor for the user should also be
intuitive and easy to use. Many methods have
been proposed to satisfy these requirements.

Shape deformation methods using space-
based techniques deform the shapes by mani-
pulate the space in which they are embedded.
Free-form deformation (FFD) methods [4, 5, 6]
and skeleton-based techniques [7, 8, 9] are of
this category. They are very efficient in com-
putation and easy to be implemented. However,
they don’t provide convenient or meaningful
interaction tools for the user. For FFD methods,
the control is not intuitive, and for skeleton-
based techniques, the weight tuning for rigging
is a painful process for users.

Physically-based simulation including fi-
nite element method [10] and mass-spring sys-
tem [11] can provide precise deformation result.
But they are often too expensive in compu-
tation or too slow to converge for interactive
applications. Moreover, precision of the defor-
mation result is not very important in such
applications as compared to efficiency and
usability. Therefore, almost all the shape defor-
mation methods proposed in recent years
utilize geometrically-based approach instead of
physically-based simulation.

Recently, many nonlinear mesh defor-
mation methods [12, 13, 14, 15] are proposed
for 3D models. They try to minimize a non-
linear energy functional representing local pro-
perties of the surface. Weng et al. [1] use a
variant of these methods for 2D shape defor-
mation. They use a hybrid mesh generated by
using the shape boundary as the deformable
model. Their method not only preserves the
Laplacian coordinates like the deformation
methods for 3D meshes do, but also preserves
local area of the shape interior. All these terms
add up into a non-quadratic energy function
which is minimized by using an iterative
Gauss-Newton method.

1.1 Related Work

2D shape deformation is closely related to a
more general technique named image defor-
mation, which focuses on reasonably warping
the entire space of the image. Image deforma-
tion has a longer history and is typically used
for 2D morphing [16] and medical imaging

[17]. Schaefer et al. [18] proposed an image
deformation method which can also be used for
2D shape deformation. They used moving least
squares to maintain the rigidity of the entire
image space. Though it is very efficient, the
method doesn’t take the information of the
shape into account. Therefore, the details of the
shape cannot be preserved well for large scale
deformation. We instead utilize the explicit 2D
rotation expression in [18] to maintain the local
rigidity of the shape.

Müller et al. [19] proposed a meshless
deformation method based on shape matching.
Their method is fast and stable, and can
produce physically plausible deformation
results. Because of the simple modes of
deformation (only linear and quadratic) used in
shape matching, the method is only suitable for
modest deformation complexity. A practical
enhancement is proposed in [19] using over-
lapping domains for many shape matching
clusters to enrich the deformation effect, but
the result still have blending artifacts. Rivers
and James [20] proposed a fast lattice shape
matching (FastLSM) method to address these
problems. Our method also utilizes regular
lattices and shape matching technique, but
there are also many significant differences. Our
method is applied for 2D shape deformation
aiming at applications in character animation
and live performance. Their method overlaps
many cells and therefore need a special fast
algorithm to get the final result while our
method only perform shape matching for each
square independently. FastLSM uses region-
based convolution to get the final result, while
our method uses an iterative solver.

Igarashi et al. proposed the concept of as-
rigid-as-possible manipulation in [21]. In their
work, the 2D shape boundary is firstly repre-
sented by a 2D simple polygon and is then
triangulated to form a triangular mesh. During
manipulation, the user drags some vertices of
the triangular mesh as handles, and the system
computes the position of other free vertices by
minimizing the deformation distortion of every
triangle.

1.2 Our Contributions

In this paper, we propose a fast and stable
method for 2D shape editing. It is motivated by
the shape matching method for dynamic
deformation in [19] and is very simple to be
implemented. Because our shape editing me-

thod is mainly designed for applications in
character animation, we also adopt the concept
of as-rigid-as-possible manipulation in [21] to
give physically plausible results. Our contri-
butions can be summarized as follows:
(1) We propose a rigid square matching

method for 2D shape deformation. This
method is especially suitable for appli-
cations in character animation, because it
tries to maintain the local rigidity of the 2D
shape and can produce physically plausible
de-formation effects for shapes of objects
in the real world. To solve for the entire
control mesh, we propose an iterative
solver which utilizes the rigid transfor-
mations acquired by rigid square matching.
The method is unconditionally stable,
easy-implemented and efficient for inter-
active 2D shape editing.

(2) As a practical enhancement, we propose a
shape-aware splitting method for the uni-
form quadrangular lattice. It exploits the
topological information of the 2D shape to
improve the deformation effect under a
relatively coarser mesh;

(3) We implement skeletal deformations by
using a user defined clustering method.
The sketch-based metaphor is very conve-
nient to use and the method is easy to
implement.

2. Overview

In this section, we give an overview of our
method which is shown in Figure 2. Our 2D
shape deformation method takes an image as
the input. We suppose that the 2D shape to be
considered has salient differences in illumi-
nation or color from the background in the
image. We also suppose that all the images are
stored in the bitmap format for convenience of
discussion, and the method proposed in this
paper can be generalized to other image format
easily. Firstly, the background which we are
not interested in is removed manually. Dif-
ferent from some mesh-based methods [1, 21],
our method doesn’t need the shape boundary
information. Therefore, the next step isn’t the
boundary extraction operation. Instead, the 2D
shape is directly embedded into a regular
quadrangular lattice. Then, by eliminating the
lattice vertices outside the shape, we can obtain
a regular quadrangular lattice tightly bounding

the 2D shape. A uniform quadrangular mesh
(,)V S=M is generated with no difficulty

from the lattice and is then used as the
deformation control mesh, where V is the set
of vertices in the mesh and S is the set of

 square cells (because we try to preserve
their original shape during the deformation, we
always call them “squares” in this paper
despite they are not real squares any more after
being deformed). Our method performs some
pre-processing for this control mesh before-
hand to decrease the real-time computation.
Then the user can drag the mesh vertices freely
to deform the 2D shape. During the deforma-
tion process, our method tries to maintain the
local rigidity of each square to reserve the local
details of the 2D shape. After the control mesh
is deformed according to our method, the final
2D shape is rendered by using simple linear
texture mapping technique for each square.

n
m

Control mesh generation
Control
mesh

deformation

Deformed shape renderingDeformed shape

Original shape

Figure 2: Overview of our 2D shape deforma-
tion method.

The remainder of this paper is organized as
follows. Section 3 describes the core part of
our method in details, including the rigid
square matching algorithm and the iterative
solver to calculate the deformation result of the
entire mesh. In Section 4, two extensions for
our method are proposed to improve the
deformation result and enrich the deformation
style. Experimental results are shown in
Section 5, followed by conclusions in Section 6.

3. Shape Deformation Based on
Rigid Square Matching

After the control mesh generation phase, a
uniform quadrangular mesh is
generated. Then the user can drag any vertices
in this mesh to deform the 2D shape. As
depicted in Figure 2, our method firstly
deforms the control mesh according to the “as-

(,)V S=M

rigid-as-possible” principle. The rigid square
matching method is proposed to maintain the
rigidity of each square in the control mesh. We
use a simple iterative solver to compute the
deformation result for the entire control mesh.

3.1 Rigid Square Matching

The progress of the rigid square matching
algorithm is illustrated in Figure 3. It tries to
find a “rigid square” which fits the current
deformed square best. Firstly, we consider an
individual square s S∈ in the control mesh.
The original positions of its four vertices are

. After the user’s manipu-
lation, the new positions of these vertices are

. According to the shape matching
technique used in [19], the optimal rigid
transformation, including an optimal 2D
rotation and a translation vector

, are defined to minimize the difference
between transformed and

0 2 (1 4)i i∈ ≤ ≤x R

2
i ∈x R

2 2×∈R R
2∈t R

0
ix ix

24 0
1 i i ii
ω

=
+ −∑ Rx t x (1)

where (1 4)i iω ≤ ≤ are weights of individual
vertices. While Müller et al. [19] use the mass
of each point as its weight because they aim at
real-time dynamic deformation, we use the
weighting scheme to implement position cons-
traint for handles. In all the examples presented
in this paper, we find that assigning 2 for
constrained handles and 1 for other free
vertices is a good choice.

n

We can actually remove the translation
vector in Equation 1 to simplify the minimi-
zation problem. Setting the partial derivatives
with respect to t in Equation 1 to zero yields
the optimal translation vector

t

0
c= −t x Rxc (2)

where cx and c are weighted centroids of the
square before and after deformation respec-
tively:

0 x

0
0 i ii
c

ii

i ii
c

ii

ω
ω

ω
ω

=

=

∑
∑
∑
∑

x
x

x
x

 (3)

Then we can substitute Equation 2 into Equa-
tion 1 to get a simpler formula with only R as
the unknown

24 0
1

ˆ ˆi i ii
ω

=
−∑ Rx x (4)

where and . 0 0ˆ i i= −x x x

Since the rotational transformation in 3D
space is nonlinear, Müller et al. [19] firstly
relax the problem to find an optimal linear
transformation and then extract the rotational
part from it. We don’t need to do this because
of the linearity of 2D rotation, so we can
directly solve for R . As a 2D rotation matrix,

 is an orthogonal matrix, i.e. . If R
is represented in the form of a block matrix
R T =R R I

()1 2=R R R
where , then 1 2 , and

1 1 2 2

2
1 2, ∈R R R 0=R R

1T T= =R R R R . By using this property and
minimizing Equation 4, the optimal rotation
matrix can be given as

(
0

4

01

ˆ1 ˆ ˆ
ˆ

T
Ti

i iTi
i

ω
μ

⊥
⊥=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ x

R x
x

)ix (5)

where

() ()2 24 40 0
1 1

ˆ ˆ ˆ ˆT T
i i i i i ii i

μ ω ω ⊥
= =

= +∑ ∑x x x x (6)

and ⊥ is an operator on 2D vectors such that
(,) (,)x y y x⊥ = − .

Then, as the result of the rigid square
matching method, the positions of the four
vertices of the fitted rigid square are given by
using this optimal rotation and translation

0ˆ (1 4)i i c i= + ≤ ≤x Rx x (7)

1x
cx

2x

3x

4x

1x
2x

3x

4x
cx

2x

cx0
cx

0
2x

0
4x 0

3x

0
1x

4x

1x
3x

Figure 3: Progress of rigid square matching
algorithm.

3.2 Iterative Solver for Control Mesh
Deformation

By using the rigid square matching method
proposed in Section 3.1, we can find a fitted
rigid square for each deformed square. How-
ever, for the entire mesh, these rigid squares
are not necessary to conform to their neigh-
bors due to the arbitrary manipulation of the
user. Thus, we propose an iterative solver to
compute the new positions of the vertices in
the entire control mesh by minimizing the
difference between the resulting vertices in the
deformed control mesh and their counterparts
in the neighboring fitted rigid squares. For i th
(1)i n≤ ≤ vertex in the control mesh, its 0

c cˆ i i= −x x x

current position is ix and we suppose the set of
its neighboring squares to be ()N i S⊆ . Then,
the error function for th vertex is defined by i

20

()

()s i s
s N i

ω
∈

− +∑ x R x ti i (8)

where sR and st are the optimal rotation
matrix and translation vector computed for the
neighboring square s , respectively. Then the
global error function over the entire control
mesh is given by

20

()

(i i s i s
i s N i

ω
∈

− +∑ ∑ x R x t) (9)

We need to minimize this error function to find
the new positions for each vertex in the
deformed control mesh. However, sR and st
are dependent in the positions of other vertices
in the control mesh, so Equation 9 is non-
quadratic and consequently, it cannot be solved
directly. Therefore, we propose a simple
iterative solver to linearize it. sR and st are
supposed to be invariant for each iteration and
they can be viewed as constant in Equation 9.
Then this quadratic function has a unique
minimizer, which yields the iterative solver for
the final positions of all the vertices in the
control mesh

0

()

1 (
()i s

s N iN i ∈

← ∑x R)i s+x t (10)

For each iteration step, the fitted rigid
squares for all the deformed squares are
computed independently and then the
corresponding rotations and translations are
used to update the positions of all the vertices
by using Equation 10. The iterative solver
repeats until the total error function of the
entire mesh expressed by Equation 9 varies
less than a given threshold in several succes-
sive iterations. The experimental results show
that the total error function becomes stable in
tens of iterations after user manipulation
(Figure 4). Since all the computation per-
formed in each iteration is independent for
each square or vertex and only deal with 2D
matrix and vectors, the time complexity for one
iteration is . As a result, our deformation
method can be very efficient even for control
meshes with very fine resolution.

()O m

Moreover, we make a little modification
for the iterative solver in practice to further
improve its interactive performance. When the
user drags the handles, we perform the iteration
for a fixed number of times (we use 30 times in

all the examples) to guarantee the real-time
response, because the intermediate results
during user interaction need not to be precise.
When the user releases the handles and finishes
the interaction, our solver proceeds to find the
precise result at convergence.

Figure 4: Error/iteration curve. The peak of
the curve occurs when the user
drags and releases the handle.

4. Extensions

4.1 Shape-aware Mesh Splitting

In order to simplify the control mesh genera-
tion, we use uniform quadrangular control
meshes for shape deformation instead of
adaptive meshes. As depicted in Figure 5, for
some particular shapes with two geodesically
remote parts located near in space, coarse
meshes will introduce incorrect connections
between the two parts. This problem is
especially obvious for shapes like animals and
humans which have obvious elongated parts
such as limbs. One directly approach to solve
this problem is to use a finer lattice for the
shape to produce a finer control mesh, but this
will increase the computation cost of the defor-
mation algorithm. Instead, we propose a shape-
aware mesh splitting method to alleviate this
problem for relatively coarser mesh.

The main idea of the shape-aware mesh
splitting method is to split parts of the mesh by
duplicating vertices in order to break the
incorrect connection in the control mesh. To
achieve this, we further exploit the information
of the shape, defining the “boundary vertices”
to be the mesh vertices located outside the
shape. Ideally, all the boundary vertices of a
shape will form one or more closed loops, i.e.
each boundary vertex has exactly two neigh-
boring boundary vertices. But for incorrect
connections in the control mesh, one boundary
vertex (which is called the “invalid boundary
vertex”) may have more than two neighboring
boundary vertices as depicted in Figure 5. For

such cases, the invalid boundary vertex is
duplicated and assigned to the neighboring
squares according to the 2D shape information
by using a series of rules which is depicted in
Table 1. In this table, the shaded part in each
square represents the inner region of the shape.
The red points are invalid boundary vertices to
be considered and the blue points are dupli-
cated boundary vertices which become valid.
The duplicated vertices are offset a little for
clarity. It should be noticed that new invalid
boundary vertices may be introduced when one
invalid boundary vertex is resolved according
to the rules. Actually, the rules are applied to
the control mesh repeatedly until there’s no
invalid boundary vertex. As a result, the
incorrect connections of the control mesh are
split and more natural deformation effect can
be produced even for a relatively coarser mesh
(Figure 7).

Figure 5: An example of incorrect connections.

The zoomed depiction of the part
enclosed by the black rectangle is
shown on the right. All the colored
points represent the boundary ver-
tices. Red and blue points represent
incorrect connections to be split.
Initially, red points are recognized as
invalid boundary vertices by our
mesh splitting method.

Number of
neighboring

squares
Duplication and assigning rules

2

3

 4

Table 1: Mesh splitting rules.

4.2 Skeletal Deformation Using Sketch-based
Clustering

Skeletal deformation is very important for
applications in character animation, because
almost all cartoon characters are articulated
animals. Therefore, we propose a skeletal
deformation approach to our basic 2D shape
deformation method. This approach is imple-
mented by using clustering technique and
provides a simple sketching metaphor to the
user. We view each individual square in the
control mesh as a deformation cluster and
generate larger clusters which are composed of
squares according to the user interaction to
represent the skeletal structure of the shape.
The entire progress of this approach is shown
in Figure 6. The user draws lines on the shape
to designate the skeletons. Then, the squares
which intersect the same line are assembled
into one cluster. When the user deforms the
skeletal shape, each newly generated cluster is
treated as a square in the above-mentioned
rigid square matching algorithm and replaces
the squares which make up it. Because our 2D
shape deformation method tries to maintain the
rigidity of every cluster, the skeletal deforma-
tion effect can be presented by using this
simple sketch-based clustering approach.

Figure 6: Skeletal deformation using sketch-
based clustering.

5. Experimental Results

We have implemented the described 2D shape
deformation method on a workstation with a
2.33GHz Intel® CoreTM2 Duo CPU and 2GB
memory. Table 2 shows the statistics for the
examples used in this paper and timings for our
shape deformation method. In Table 2, “Lattice
grid” means the resolution of the space lattice
in which the shapes are embedded to generate
the control meshes; “Solution time 1” means
time need for our method to perform 30
iterations when the user drags the handles as
described in Section 3.2; and “Solution time 2”
means time need to exactly perform the itera-
tive solver until it satisfies the stop condition to

get the final result when the user releases the
handles. “Solution time 1” is approximately
linear in the scale of the control mesh,
indicating that our 2D shape deformation
method is very efficient for interactive shape
editing. “Solution time 2” is affected not only
by the scale of the mesh, but also the scale of
the deformation and the topology of the mesh,
so the numbers listed in the last row of Table 1
are average time under various conditions for
each shape. In all the experiments presented in
this paper, the iterative solver converges within
0.6 second. This cost is acceptable because it
only occurs when the user stops interacting
with the 2D shape.

Figure 7 compares the deformation results
with and without shape-aware mesh splitting
for the same shape under the same resolution
of control mesh. It is shown that the shape-
aware mesh splitting method can eliminate the
incorrect connections in the control mesh. By
using the split control mesh, our 2D
deformation method can provide more natural
effect. In Figure 8, we present the effect of
skeletal deformation by using our sketch-base
clustering approach. It is also compared with
the deformation result without skeletons. Our
skeletal deformation approach provides an
easy-to-use metaphor for users and produces
physically plausible effect especially for
articulated cartoon characters. Figure 9 shows
that our method can provide more realistic
result than the as-rigid-as-possible shape
manipulation method in [21] does. To illustrate
the versatility of our 2D shape deformation
method, more examples are given in Figures 1
and 10. The timings in Table 2 and examples in
the figures show that our method can provide
as good deformation result as the nonlinear
optimization method in [1] at less computation
cost. Figures 11 and 12 show that our method
can also be applied to image deformation to
provide similar results as [18] with no extra
modification except treating the entire image as
a shape.

6. Conclusion

In this paper, we propose a 2D shape
deformation method based on rigid square
matching. The method uses uniform quad-
rangular meshes as control meshes which is
much easier to build than triangular meshes

used in [21] and hybrid meshes used in [1]. We
adopt the concept of as-rigid-as-possible defor-
mation and use the shape matching technique
to maintain the local rigidity of the shape. The
transformations acquired by shape matching
technique are constrained explicitly to be pure
rotations. Therefore, the details of the 2D
shapes can be preserved well during deforma-
tion. Moreover, we directly update every
vertices of one square by using pure rotational
transformation without dynamic issues in [19],
and consequently there will be no inverted
square and our system is unconditionally stable.
We also propose a simple iterative solver to
compute the final deformation result of the
entire mesh. The deformation mode for each
square is simply the rigid motion, but the final
results of the entire shape exhibit very complex
deformation effects as shown in Figures 1 and
10, because the connections between the
squares in the control mesh provide the system
a very high degree-of-freedom. Essentially, our
shape deformation method is space-based, but
by generating the control mesh according to
the 2D shape it avoid the problems presented in
the space warping approaches. We also
propose a practical enhancement which further
utilizes the information of the shape to improve
the deformation effect for coarse control
meshes. By using a simple clustering method,
our method can provide skeletal deformation
effect for articulated shapes like cartoon
characters and animals. The skeleton desig-
nating metaphor is sketch-based and is very
easy to use.

Our method is very efficient and can
provide physically plausible deformation effect
for shapes of objects in real world. However, it
still has some limitations. First, because we use
pure rotational transformation for each square
in the control mesh, the global area cannot be
preserved by the current algorithm. Second, it
is too rigid to deform shapes of soft and
rubber-like objects, such as sponges and jellies.
These two problems can be addressed by using
more complex transformations in the square
matching process. Moreover, since we are
planning to generalize our method to 3D shape
editing, a solver more efficient than the itera-
tive solver proposed in Section 3.2 is to be
considered in the future work.

2D shapes Bee
(Fig. 8, 10)

Horse
(Fig. 1)

Gecko
(Fig. 6)

Character
(Fig. 2, 10)

Flower
(Fig. 10)

Mona Lisa
(Fig. 11)

Leaning Tower
(Fig. 12)

Lattice grid 60×60 70×70 31×31 40×40 80×80 60×60 60×60
n 1145 1965 584 718 2131 3233 3477 Control mesh

statistics m 975 1714 434 602 1913 3102 3360
Solution time 1 15.7ms 28.0ms 4.6ms 9.5ms 29.5ms 46.9ms 50.1ms
Solution time 2 0.39s 0.56s 0.14s 0.19s 0.59s 0.30s 0.51s

Table 2: Statistics and timings.

Figure 7: Deformation of a gecko with (right) and without (middle) shape-aware mesh

splitting. The original shape of the gecko with the original control mesh is shown
on the left. Boundary vertices are marked as green points and blue points with blue
ones indicating incorrect connections before mesh splitting.

Figure 8: Deformation of a bee with (right) and without (middle) skeleton designation by

sketch-based clustering. The original shape is shown on the left and the corres-
ponding control meshes are shown beside the shapes. Clustered squares are painted
in red for the control mesh of the deformed shape on the right. Red points represent
the handles manipulated by the user.

Figure 9: Comparison between the method in [21] and our method.

Acknowledgements

References

[1] Y. Weng, W. Xu, Y. Wu, K. Zhou, and B.
Guo. 2D shape deformation using
nonlinear least squares optimization. The
Visual Computer, 22(9-11):653-660, 2006

[2] T. Ngo, D. Cutrell, J. Dana, B. Donald, L.
Loeb, and S. Zhu. Accessible animation
and customizable graphics via simplicial
configuration modeling. In Proceedings of
ACM SIGGRAPH 2000, pages 403-410,
2000

[3] H. T. Bruce and P. Calder. Animating
direct manipulation interfaces. In
Proceedings of UIST ’95, pages 3-12,
1995

[4] R. MacCracken and K. Joy. Free-form
deformations with lattices of arbitrary

topology. In Proceedings of ACM
SIGGRAPH 96, pages 181-188, 1996

[5] T. Milliron, R. Jensen, R. Barzel, and A.
Finkelstein. A framework for geometric
warps and deformations. ACM
Transactions on Graphics, 21(1):20-51,
2002

[6] T. Sederberg and S. Parry. Free-form
deformation of solid geometric models. In
Proceedings of ACM SIGGRAPH 86,
20(4):151-160, 1986

[7] J. P. Lewis, M. Cordner, and N. Fong.
Pose space deformation: a unified
approach to shape interpolation and
skeleton-driven deformation. In
Proceedings of ACM SIGGRAPH 2000,
pages 165-172, 2000

[8] H. -B. Yan, S. -M. Hu, R. R. Martin, and
Y. -L. Yang. Shape deformation using a
skeleton to drive simplex transformations.
IEEE Transactions on Visualization and
Computer Graphics, 14(3):693-706, 2008

[9] S. Forstmann, J. Ohya, A. Krohn-
Grimberghe, and R. McDougall.
Deformation styles for spline-based
skeletal animation. In Proceedings of
Eurographics/ACM SIGGRAPH
Symposium on Computer Animation,
pages 141-150, 2007

[10] G. Celniker and D. Gossard. Deformable
curve and surface finite-elements for free-
form shape design. In Proceedings of
ACM SIGGRAPH 91, pages 257-266,
1991

[11] S. F. F. Gibson and B. Mirtich. A survey
of deformable modeling in computer
graphics. Technical report TR-97-19,
Mitsubishi Electric Research Laboratories,
1997

[12] O. K. C. Au, C. L. Tai, L. Liu, and H. Fu.
Mesh editing with curvature flow
laplacian operator. Technical report,
Computer Science Technical Report,
HKUST-CS05-10, 2005

[13] J. Huang, X. Shi, X. Liu, K. Zhou, L. Wei,
S. Teng, H. Bao, B. Guo, and H. Y. Shum.
Subspace gradient domain mesh
deformation. In Proceedings of ACM
SIGGRAPH 2006, pages 1126-1134, 2006

[14] A. Sheffer and V. Kraevoy. Pyramid
coordinates for morphing and deformation.
In Proceedings of 3DPVT, pages 68-75,
2004

[15] M. Botsch, M. Pauly, M. Wicke, M. Gross.
Adaptive space deformation based on
rigid cells. In Proceedings of Eurographics
2007, 26(3):339-347, 2007

[16] D. Smythe. A two-pass mesh warping
algorithm for object transformation and
image interpolation. Tech. Rep. 1030,
ILM Computer Graphics Department,
Lucasfilm, San Rafael, Calif, 1990

[17] T. Ju, J. Warren, G. Eichele, C. Thaller, W.
Chiu, and J. Carson. A geometric database
for gene expression data. In SGP ’03:
Proceedings of the 2003 Eurographics/
ACM SIGGRAPH Symposium on
Geometry Processing, pages 166-176,
2003

[18] S. Schaefer, T. McPhail, and J. Warren.
Image deformation using moving least
squares. In Proceedings of ACM
SIGGRAPH 2006, 25(3):533-540, 2006

[19] M. Müller, B. Heidelberger, M. Teschner,
M. Gross. Meshless deformations based
on shape matching. In Proceedings of
ACM SIGGRAPH 2005, 24(3):471-478,
2005

[20] A. R. Rivers and D. L. James. FastLSM:
Fast Lattice Shape Matching for Robust
Real-Time Deformation. In Proceedings
of ACM SIGGRAPH 2007, 26(3):82,
2007

[21] T. Igarashi, T. Moscovich, and J. F.
Hughes. As-rigid-as-possible shape
manipulation. In Proceedings of ACM
SIGGRAPH 2005, 24(3):1134-1141

Figure 10: More results of our shape deformation method. In each row, the original shape is shown

one the leftmost image and others are the deformation results.

Figure 11: Image deformation for Mona Lisa by using our method. After deformation, her face is
thinner and she is in a sad mood.

Figure 12: Image deformation for the Leaning Tower of Pisa by using our method. We implement
deformation with line segment handles [18] by using the skeletal deformation method
proposed in Section 4.2.

	Abstract
	1. Introduction
	1.1 Related Work
	1.2 Our Contributions
	2. Overview
	3. Shape Deformation Based on Rigid Square Matching
	3.1 Rigid Square Matching
	3.2 Iterative Solver for Control Mesh Deformation

	4. Extensions
	4.1 Shape-aware Mesh Splitting
	4.2 Skeletal Deformation Using Sketch-based Clustering

	5. Experimental Results
	6. Conclusion
	Acknowledgements
	References

