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Abstract 

In this paper, we propose a fast and stable 
method for 2D shape deformation based on 
rigid square matching. Our method utilizes 
uniform quadrangular control meshes for 2D 
shapes and tries to maintain the rigidity of each 
square in the control mesh during user mani-
pulation. A rigid shape matching method is 
performed to find an optimal pure rotational 
transformation for each square in the control 
mesh. An iterative solver is proposed to com-
pute the final deformation result for the entire 
control mesh by minimizing the difference 
between the deformed vertices and their 
counterparts in the neighboring rigid square. 
The deformation result on the 2D shape is as 
rigid as possible and the details of the shape 
are preserved well. As extensions, we present a 
shape-aware splitting method to improve the 
deformation effect for coarse meshes and a 
simple sketch-based clustering method for 
skeletal deformation. Experiments with various 
2D shapes show that our method is efficient 
and easy to use, and can provide physically 
plausible result for shapes of objects in real 
world. Therefore, our shape deformation 
method is especially suitable for applications in 
cartoon character animation. 
 
Keywords: shape deformation, character 
animation, shape matching, rigid transfor-
mation, skeletal deformation 

Figure 1: Horsemanship actions obtained by 
our method. The original 2D shape 
with its control mesh is on the top 
left. Note the natural skeletal be-
havior in deforming the horse legs. 

1. Introduction 

2D shape deformation (or manipulation) aims 
at deforming objects represented in the form of 
2D images by using graphical method. It is a 
very useful tool for applications such as 
character animation [1], real-time live perfor-
mance [2] and enriching graphical interface [3], 
and therefore, has received a lot of attentions in 
recent years. In such typical applications, the 
2D shape in the image to be deformed often 
represents an object in real world, and more 
often a character or an animal. As a result, the 
deformed shape must exhibit deformation 
effects that are physically plausible. Efficiency 



is another important feature to be considered of 
the deformation method, because the method 
must provide the user interactive tools to 
manipulate the deformation result. The interac-
tion metaphor for the user should also be 
intuitive and easy to use. Many methods have 
been proposed to satisfy these requirements. 

Shape deformation methods using space-
based techniques deform the shapes by mani-
pulate the space in which they are embedded. 
Free-form deformation (FFD) methods [4, 5, 6] 
and skeleton-based techniques [7, 8, 9] are of 
this category. They are very efficient in com-
putation and easy to be implemented. However, 
they don’t provide convenient or meaningful 
interaction tools for the user. For FFD methods, 
the control is not intuitive, and for skeleton-
based techniques, the weight tuning for rigging 
is a painful process for users. 

Physically-based simulation including fi-
nite element method [10] and mass-spring sys-
tem [11] can provide precise deformation result. 
But they are often too expensive in compu-
tation or too slow to converge for interactive 
applications. Moreover, precision of the defor-
mation result is not very important in such 
applications as compared to efficiency and 
usability. Therefore, almost all the shape defor-
mation methods proposed in recent years 
utilize geometrically-based approach instead of 
physically-based simulation. 

Recently, many nonlinear mesh defor-
mation methods [12, 13, 14, 15] are proposed 
for 3D models. They try to minimize a non-
linear energy functional representing local pro-
perties of the surface. Weng et al. [1] use a 
variant of these methods for 2D shape defor-
mation. They use a hybrid mesh generated by 
using the shape boundary as the deformable 
model. Their method not only preserves the 
Laplacian coordinates like the deformation 
methods for 3D meshes do, but also preserves 
local area of the shape interior. All these terms 
add up into a non-quadratic energy function 
which is minimized by using an iterative 
Gauss-Newton method. 

1.1 Related Work 

2D shape deformation is closely related to a 
more general technique named image defor-
mation, which focuses on reasonably warping 
the entire space of the image. Image deforma-
tion has a longer history and is typically used 
for 2D morphing [16] and medical imaging 

[17]. Schaefer et al. [18] proposed an image 
deformation method which can also be used for 
2D shape deformation. They used moving least 
squares to maintain the rigidity of the entire 
image space. Though it is very efficient, the 
method doesn’t take the information of the 
shape into account. Therefore, the details of the 
shape cannot be preserved well for large scale 
deformation. We instead utilize the explicit 2D 
rotation expression in [18] to maintain the local 
rigidity of the shape. 

Müller et al. [19] proposed a meshless 
deformation method based on shape matching. 
Their method is fast and stable, and can 
produce physically plausible deformation 
results. Because of the simple modes of 
deformation (only linear and quadratic) used in 
shape matching, the method is only suitable for 
modest deformation complexity. A practical 
enhancement is proposed in [19] using over-
lapping domains for many shape matching 
clusters to enrich the deformation effect, but 
the result still have blending artifacts. Rivers 
and James [20] proposed a fast lattice shape 
matching (FastLSM) method to address these 
problems. Our method also utilizes regular 
lattices and shape matching technique, but 
there are also many significant differences. Our 
method is applied for 2D shape deformation 
aiming at applications in character animation 
and live performance. Their method overlaps 
many cells and therefore need a special fast 
algorithm to get the final result while our 
method only perform shape matching for each 
square independently. FastLSM uses region-
based convolution to get the final result, while 
our method uses an iterative solver. 

Igarashi et al. proposed the concept of as-
rigid-as-possible manipulation in [21]. In their 
work, the 2D shape boundary is firstly repre-
sented by a 2D simple polygon and is then 
triangulated to form a triangular mesh. During 
manipulation, the user drags some vertices of 
the triangular mesh as handles, and the system 
computes the position of other free vertices by 
minimizing the deformation distortion of every 
triangle.  

1.2 Our Contributions 

In this paper, we propose a fast and stable 
method for 2D shape editing. It is motivated by 
the shape matching method for dynamic 
deformation in [19] and is very simple to be 
implemented. Because our shape editing me-



thod is mainly designed for applications in 
character animation, we also adopt the concept 
of as-rigid-as-possible manipulation in [21] to 
give physically plausible results. Our contri-
butions can be summarized as follows: 
(1) We propose a rigid square matching 

method for 2D shape deformation. This 
method is especially suitable for appli-
cations in character animation, because it 
tries to maintain the local rigidity of the 2D 
shape and can produce physically plausible 
de-formation effects for shapes of objects 
in the real world. To solve for the entire 
control mesh, we propose an iterative 
solver which utilizes the rigid transfor-
mations acquired by rigid square matching. 
The method is unconditionally stable, 
easy-implemented and efficient for inter-
active 2D shape editing. 

(2) As a practical enhancement, we propose a 
shape-aware splitting method for the uni-
form quadrangular lattice. It exploits the 
topological information of the 2D shape to 
improve the deformation effect under a 
relatively coarser mesh; 

(3) We implement skeletal deformations by 
using a user defined clustering method. 
The sketch-based metaphor is very conve-
nient to use and the method is easy to 
implement. 

2. Overview 

In this section, we give an overview of our 
method which is shown in Figure 2. Our 2D 
shape deformation method takes an image as 
the input. We suppose that the 2D shape to be 
considered has salient differences in illumi-
nation or color from the background in the 
image. We also suppose that all the images are 
stored in the bitmap format for convenience of 
discussion, and the method proposed in this 
paper can be generalized to other image format 
easily. Firstly, the background which we are 
not interested in is removed manually. Dif-
ferent from some mesh-based methods [1, 21], 
our method doesn’t need the shape boundary 
information. Therefore, the next step isn’t the 
boundary extraction operation. Instead, the 2D 
shape is directly embedded into a regular 
quadrangular lattice. Then, by eliminating the 
lattice vertices outside the shape, we can obtain 
a regular quadrangular lattice tightly bounding 

the 2D shape. A uniform quadrangular mesh 
( , )V S=M  is generated with no difficulty 

from the lattice and is then used as the 
deformation control mesh, where V  is the set 
of  vertices in the mesh and S  is the set of 

 square cells (because we try to preserve 
their original shape during the deformation, we 
always call them “squares” in this paper 
despite they are not real squares any more after 
being deformed). Our method performs some 
pre-processing for this control mesh before-
hand to decrease the real-time computation. 
Then the user can drag the mesh vertices freely 
to deform the 2D shape. During the deforma-
tion process, our method tries to maintain the 
local rigidity of each square to reserve the local 
details of the 2D shape. After the control mesh 
is deformed according to our method, the final 
2D shape is rendered by using simple linear 
texture mapping technique for each square. 

n
m

Control mesh generation
Control 
mesh 

deformation

Deformed shape renderingDeformed shape

Original shape

Figure 2: Overview of our 2D shape deforma-
tion method. 

The remainder of this paper is organized as 
follows. Section 3 describes the core part of 
our method in details, including the rigid 
square matching algorithm and the iterative 
solver to calculate the deformation result of the 
entire mesh. In Section 4, two extensions for 
our method are proposed to improve the 
deformation result and enrich the deformation 
style. Experimental results are shown in 
Section 5, followed by conclusions in Section 6. 

3. Shape Deformation Based on 
Rigid Square Matching 

After the control mesh generation phase, a 
uniform quadrangular mesh  is 
generated. Then the user can drag any vertices 
in this mesh to deform the 2D shape. As 
depicted in Figure 2, our method firstly 
deforms the control mesh according to the “as-

( , )V S=M



rigid-as-possible” principle. The rigid square 
matching method is proposed to maintain the 
rigidity of each square in the control mesh. We 
use a simple iterative solver to compute the 
deformation result for the entire control mesh.  

3.1 Rigid Square Matching 

The progress of the rigid square matching 
algorithm is illustrated in Figure 3. It tries to 
find a “rigid square” which fits the current 
deformed square best. Firstly, we consider an 
individual square s S∈  in the control mesh. 
The original positions of its four vertices are 

. After the user’s manipu-
lation, the new positions of these vertices are 

. According to the shape matching 
technique used in [19], the optimal rigid 
transformation, including an optimal 2D 
rotation  and a translation vector 

, are defined to minimize the difference 
between transformed  and  
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where (1 4)i iω ≤ ≤  are weights of individual 
vertices. While Müller et al. [19] use the mass 
of each point as its weight because they aim at   
real-time dynamic deformation, we use the 
weighting scheme to implement position cons-
traint for handles. In all the examples presented 
in this paper, we find that assigning 2  for 
constrained handles and 1 for other free 
vertices is a good choice. 

n

We can actually remove the translation 
vector  in Equation 1 to simplify the minimi-
zation problem. Setting the partial derivatives 
with respect to t  in Equation 1 to zero yields 
the optimal translation vector 
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Then we can substitute Equation 2 into Equa-
tion 1 to get a simpler formula with only R  as 
the unknown 

24 0
1
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where  and . 0 0ˆ i i= −x x x

Since the rotational transformation in 3D 
space is nonlinear, Müller et al. [19] firstly 
relax the problem to find an optimal linear 
transformation and then extract the rotational 
part from it. We don’t need to do this because 
of the linearity of 2D rotation, so we can 
directly solve for R . As a 2D rotation matrix, 

 is an orthogonal matrix, i.e. . If R  
is represented in the form of a block matrix 
R T =R R I
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and ⊥  is an operator on 2D vectors such that 
( , ) ( , )x y y x⊥ = − . 

Then, as the result of the rigid square 
matching method, the positions of the four 
vertices of the fitted rigid square are given by 
using this optimal rotation and translation 

0ˆ (1 4)i i c i= + ≤ ≤x Rx x                (7) 
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Figure 3: Progress of rigid square matching 
algorithm. 

3.2 Iterative Solver for Control Mesh 
Deformation 

By using the rigid square matching method 
proposed in Section 3.1, we can find a fitted 
rigid square for each deformed square. How-
ever, for the entire mesh, these rigid squares 
are not necessary to conform to their neigh-
bors due to the arbitrary manipulation of the 
user. Thus, we propose an iterative solver to 
compute the new positions of the vertices in 
the entire control mesh by minimizing the 
difference between the resulting vertices in the 
deformed control mesh and their counterparts 
in the neighboring fitted rigid squares. For i th 
(1 )i n≤ ≤  vertex in the control mesh, its 0

c cˆ i i= −x x x



current position is ix  and we suppose the set of 
its neighboring squares to be ( )N i S⊆ . Then, 
the error function for th vertex is defined by i

20

( )

( )s i s
s N i

ω
∈

− +∑ x R x ti i            (8) 

where sR  and st  are the optimal rotation 
matrix and translation vector computed for the 
neighboring square s , respectively. Then the 
global error function over the entire control 
mesh is given by 

20
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ω
∈

− +∑ ∑ x R x t )          (9) 

We need to minimize this error function to find 
the new positions for each vertex in the 
deformed control mesh. However, sR  and st  
are dependent in the positions of other vertices 
in the control mesh, so Equation 9 is non-
quadratic and consequently, it cannot be solved 
directly. Therefore, we propose a simple 
iterative solver to linearize it. sR  and st  are 
supposed to be invariant for each iteration and 
they can be viewed as constant in Equation 9. 
Then this quadratic function has a unique 
minimizer, which yields the iterative solver for 
the final positions of all the vertices in the 
control mesh 
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For each iteration step, the fitted rigid 
squares for all the deformed squares are 
computed independently and then the 
corresponding rotations and translations are 
used to update the positions of all the vertices 
by using Equation 10. The iterative solver 
repeats until the total error function of the 
entire mesh expressed by Equation 9 varies 
less than a given threshold in several succes-
sive iterations. The experimental results show 
that the total error function becomes stable in 
tens of iterations after user manipulation 
(Figure 4). Since all the computation per-
formed in each iteration is independent for 
each square or vertex and only deal with 2D 
matrix and vectors, the time complexity for one 
iteration is . As a result, our deformation 
method can be very efficient even for control 
meshes with very fine resolution. 

( )O m

Moreover, we make a little modification 
for the iterative solver in practice to further 
improve its interactive performance. When the 
user drags the handles, we perform the iteration 
for a fixed number of times (we use 30 times in 

all the examples) to guarantee the real-time 
response, because the intermediate results 
during user interaction need not to be precise. 
When the user releases the handles and finishes 
the interaction, our solver proceeds to find the 
precise result at convergence. 

Figure 4: Error/iteration curve. The peak of 
the curve occurs when the user 
drags and releases the handle. 

4. Extensions 

4.1 Shape-aware Mesh Splitting 

In order to simplify the control mesh genera-
tion, we use uniform quadrangular control 
meshes for shape deformation instead of 
adaptive meshes. As depicted in Figure 5, for 
some particular shapes with two geodesically 
remote parts located near in space, coarse 
meshes will introduce incorrect connections 
between the two parts. This problem is 
especially obvious for shapes like animals and 
humans which have obvious elongated parts 
such as limbs. One directly approach to solve 
this problem is to use a finer lattice for the 
shape to produce a finer control mesh, but this 
will increase the computation cost of the defor-
mation algorithm. Instead, we propose a shape-
aware mesh splitting method to alleviate this 
problem for relatively coarser mesh. 

The main idea of the shape-aware mesh 
splitting method is to split parts of the mesh by 
duplicating vertices in order to break the 
incorrect connection in the control mesh. To 
achieve this, we further exploit the information 
of the shape, defining the “boundary vertices” 
to be the mesh vertices located outside the 
shape. Ideally, all the boundary vertices of a 
shape will form one or more closed loops, i.e. 
each boundary vertex has exactly two neigh-
boring boundary vertices. But for incorrect 
connections in the control mesh, one boundary 
vertex (which is called the “invalid boundary 
vertex”) may have more than two neighboring 
boundary vertices as depicted in Figure 5. For 



such cases, the invalid boundary vertex is 
duplicated and assigned to the neighboring 
squares according to the 2D shape information 
by using a series of rules which is depicted in 
Table 1. In this table, the shaded part in each 
square represents the inner region of the shape. 
The red points are invalid boundary vertices to 
be considered and the blue points are dupli-
cated boundary vertices which become valid. 
The duplicated vertices are offset a little for 
clarity. It should be noticed that new invalid 
boundary vertices may be introduced when one 
invalid boundary vertex is resolved according 
to the rules. Actually, the rules are applied to 
the control mesh repeatedly until there’s no 
invalid boundary vertex. As a result, the 
incorrect connections of the control mesh are 
split and more natural deformation effect can 
be produced even for a relatively coarser mesh 
(Figure 7). 

 
Figure 5: An example of incorrect connections. 

The zoomed depiction of the part 
enclosed by the black rectangle is 
shown on the right. All the colored 
points represent the boundary ver-
tices. Red and blue points represent 
incorrect connections to be split. 
Initially, red points are recognized as 
invalid boundary vertices by our 
mesh splitting method. 

 
Number of 
neighboring 

squares 
Duplication and assigning rules 

2 
 

3 
 

 4 

 
Table 1: Mesh splitting rules. 

4.2 Skeletal Deformation Using Sketch-based 
Clustering 

Skeletal deformation is very important for 
applications in character animation, because 
almost all cartoon characters are articulated 
animals. Therefore, we propose a skeletal 
deformation approach to our basic 2D shape 
deformation method. This approach is imple-
mented by using clustering technique and 
provides a simple sketching metaphor to the 
user. We view each individual square in the 
control mesh as a deformation cluster and 
generate larger clusters which are composed of 
squares according to the user interaction to 
represent the skeletal structure of the shape. 
The entire progress of this approach is shown 
in Figure 6. The user draws lines on the shape 
to designate the skeletons. Then, the squares 
which intersect the same line are assembled 
into one cluster. When the user deforms the 
skeletal shape, each newly generated cluster is 
treated as a square in the above-mentioned 
rigid square matching algorithm and replaces 
the squares which make up it. Because our 2D 
shape deformation method tries to maintain the 
rigidity of every cluster, the skeletal deforma-
tion effect can be presented by using this 
simple sketch-based clustering approach. 

Figure 6: Skeletal deformation using sketch-
based clustering. 

5. Experimental Results 

We have implemented the described 2D shape 
deformation method on a workstation with a 
2.33GHz Intel® CoreTM2 Duo CPU and 2GB 
memory. Table 2 shows the statistics for the 
examples used in this paper and timings for our 
shape deformation method. In Table 2, “Lattice 
grid” means the resolution of the space lattice 
in which the shapes are embedded to generate 
the control meshes; “Solution time 1” means 
time need for our method to perform 30 
iterations when the user drags the handles as 
described in Section 3.2; and “Solution time 2” 
means time need to exactly perform the itera-
tive solver until it satisfies the stop condition to 



get the final result when the user releases the 
handles. “Solution time 1” is approximately 
linear in the scale of the control mesh, 
indicating that our 2D shape deformation 
method is very efficient for interactive shape 
editing. “Solution time 2” is affected not only 
by the scale of the mesh, but also the scale of 
the deformation and the topology of the mesh, 
so the numbers listed in the last row of Table 1 
are average time under various conditions for 
each shape. In all the experiments presented in 
this paper, the iterative solver converges within 
0.6 second. This cost is acceptable because it 
only occurs when the user stops interacting 
with the 2D shape. 

Figure 7 compares the deformation results 
with and without shape-aware mesh splitting 
for the same shape under the same resolution 
of control mesh. It is shown that the shape-
aware mesh splitting method can eliminate the 
incorrect connections in the control mesh. By 
using the split control mesh, our 2D 
deformation method can provide more natural 
effect. In Figure 8, we present the effect of 
skeletal deformation by using our sketch-base 
clustering approach. It is also compared with 
the deformation result without skeletons. Our 
skeletal deformation approach provides an 
easy-to-use metaphor for users and produces 
physically plausible effect especially for 
articulated cartoon characters. Figure 9 shows 
that our method can provide more realistic 
result than the as-rigid-as-possible shape 
manipulation method in [21] does. To illustrate 
the versatility of our 2D shape deformation 
method, more examples are given in Figures 1 
and 10. The timings in Table 2 and examples in 
the figures show that our method can provide 
as good deformation result as the nonlinear 
optimization method in [1] at less computation 
cost. Figures 11 and 12 show that our method 
can also be applied to image deformation to 
provide similar results as [18] with no extra 
modification except treating the entire image as 
a shape. 

6. Conclusion 

In this paper, we propose a 2D shape 
deformation method based on rigid square 
matching. The method uses uniform quad-
rangular meshes as control meshes which is 
much easier to build than triangular meshes 

used in [21] and hybrid meshes used in [1]. We 
adopt the concept of as-rigid-as-possible defor-
mation and use the shape matching technique 
to maintain the local rigidity of the shape. The 
transformations acquired by shape matching 
technique are constrained explicitly to be pure 
rotations. Therefore, the details of the 2D 
shapes can be preserved well during deforma-
tion. Moreover, we directly update every 
vertices of one square by using pure rotational 
transformation without dynamic issues in [19], 
and consequently there will be no inverted 
square and our system is unconditionally stable. 
We also propose a simple iterative solver to 
compute the final deformation result of the 
entire mesh. The deformation mode for each 
square is simply the rigid motion, but the final 
results of the entire shape exhibit very complex 
deformation effects as shown in Figures 1 and 
10, because the connections between the 
squares in the control mesh provide the system 
a very high degree-of-freedom. Essentially, our 
shape deformation method is space-based, but 
by generating the control mesh according to 
the 2D shape it avoid the problems presented in 
the space warping approaches. We also 
propose a practical enhancement which further 
utilizes the information of the shape to improve 
the deformation effect for coarse control 
meshes. By using a simple clustering method, 
our method can provide skeletal deformation 
effect for articulated shapes like cartoon 
characters and animals. The skeleton desig-
nating metaphor is sketch-based and is very 
easy to use. 

Our method is very efficient and can 
provide physically plausible deformation effect 
for shapes of objects in real world. However, it 
still has some limitations. First, because we use 
pure rotational transformation for each square 
in the control mesh, the global area cannot be 
preserved by the current algorithm. Second, it 
is too rigid to deform shapes of soft and 
rubber-like objects, such as sponges and jellies. 
These two problems can be addressed by using 
more complex transformations in the square 
matching process. Moreover, since we are 
planning to generalize our method to 3D shape 
editing, a solver more efficient than the itera-
tive solver proposed in Section 3.2 is to be 
considered in the future work. 



2D shapes Bee 
(Fig. 8, 10) 

Horse 
(Fig. 1) 

Gecko 
(Fig. 6) 

Character
(Fig. 2, 10)

Flower 
(Fig. 10)

Mona Lisa 
(Fig. 11) 

Leaning Tower
(Fig. 12) 

Lattice grid 60×60 70×70 31×31 40×40 80×80 60×60 60×60 
n  1145 1965 584 718 2131 3233 3477 Control mesh 

statistics m  975 1714 434 602 1913 3102 3360 
Solution time 1 15.7ms 28.0ms 4.6ms 9.5ms 29.5ms 46.9ms 50.1ms 
Solution time 2 0.39s 0.56s 0.14s 0.19s 0.59s 0.30s 0.51s 

Table 2: Statistics and timings. 

 
Figure 7: Deformation of a gecko with (right) and without (middle) shape-aware mesh 

splitting. The original shape of the gecko with the original control mesh is shown 
on the left. Boundary vertices are marked as green points and blue points with blue 
ones indicating incorrect connections before mesh splitting. 

 
Figure 8: Deformation of a bee with (right) and without (middle) skeleton designation by 

sketch-based clustering. The original shape is shown on the left and the corres-
ponding control meshes are shown beside the shapes. Clustered squares are painted 
in red for the control mesh of the deformed shape on the right. Red points represent 
the handles manipulated by the user. 

 
Figure 9: Comparison between the method in [21] and our method. 

Acknowledgements 

 
 

References 

[1] Y. Weng, W. Xu, Y. Wu, K. Zhou, and B. 
Guo. 2D shape deformation using 
nonlinear least squares optimization. The 
Visual Computer, 22(9-11):653-660, 2006 

[2] T. Ngo, D. Cutrell, J. Dana, B. Donald, L. 
Loeb, and S. Zhu. Accessible animation 
and customizable graphics via simplicial 
configuration modeling. In Proceedings of 
ACM SIGGRAPH 2000, pages 403-410, 
2000 

[3] H. T. Bruce and P. Calder. Animating 
direct manipulation interfaces. In 
Proceedings of UIST ’95, pages 3-12, 
1995 

[4] R. MacCracken and K. Joy. Free-form 
deformations with lattices of arbitrary 



topology. In Proceedings of ACM 
SIGGRAPH 96, pages 181-188, 1996 

[5] T. Milliron, R. Jensen, R. Barzel, and A. 
Finkelstein. A framework for geometric 
warps and deformations. ACM 
Transactions on Graphics, 21(1):20-51, 
2002 

[6] T. Sederberg and S. Parry. Free-form 
deformation of solid geometric models. In 
Proceedings of ACM SIGGRAPH 86, 
20(4):151-160, 1986 

[7] J. P. Lewis, M. Cordner, and N. Fong. 
Pose space deformation: a unified 
approach to shape interpolation and 
skeleton-driven deformation. In 
Proceedings of ACM SIGGRAPH 2000, 
pages 165-172, 2000 

[8] H. -B. Yan, S. -M. Hu, R. R. Martin, and 
Y. -L. Yang. Shape deformation using a 
skeleton to drive simplex transformations. 
IEEE Transactions on Visualization and 
Computer Graphics, 14(3):693-706, 2008 

[9] S. Forstmann, J. Ohya, A. Krohn-
Grimberghe, and R. McDougall. 
Deformation styles for spline-based 
skeletal animation. In Proceedings of 
Eurographics/ACM SIGGRAPH 
Symposium on Computer Animation, 
pages 141-150, 2007 

[10] G. Celniker and D. Gossard. Deformable 
curve and surface finite-elements for free-
form shape design. In Proceedings of 
ACM SIGGRAPH 91, pages 257-266, 
1991 

[11] S. F. F. Gibson and B. Mirtich. A survey 
of deformable modeling in computer 
graphics. Technical report TR-97-19, 
Mitsubishi Electric Research Laboratories, 
1997 

[12] O. K. C. Au, C. L. Tai, L. Liu, and H. Fu. 
Mesh editing with curvature flow 
laplacian operator. Technical report, 
Computer Science Technical Report, 
HKUST-CS05-10, 2005 

[13] J. Huang, X. Shi, X. Liu, K. Zhou, L. Wei, 
S. Teng, H. Bao, B. Guo, and H. Y. Shum. 
Subspace gradient domain mesh 
deformation. In Proceedings of ACM 
SIGGRAPH 2006, pages 1126-1134, 2006 

[14] A. Sheffer and V. Kraevoy. Pyramid 
coordinates for morphing and deformation. 
In Proceedings of 3DPVT, pages 68-75, 
2004 

[15] M. Botsch, M. Pauly, M. Wicke, M. Gross. 
Adaptive space deformation based on 
rigid cells. In Proceedings of Eurographics 
2007, 26(3):339-347, 2007 

[16] D. Smythe. A two-pass mesh warping 
algorithm for object transformation and 
image interpolation. Tech. Rep. 1030, 
ILM Computer Graphics Department, 
Lucasfilm, San Rafael, Calif, 1990 

[17] T. Ju, J. Warren, G. Eichele, C. Thaller, W. 
Chiu, and J. Carson. A geometric database 
for gene expression data. In SGP ’03: 
Proceedings of the 2003 Eurographics/ 
ACM SIGGRAPH Symposium on 
Geometry Processing, pages 166-176, 
2003 

[18] S. Schaefer, T. McPhail, and J. Warren. 
Image deformation using moving least 
squares. In Proceedings of ACM 
SIGGRAPH 2006, 25(3):533-540, 2006 

[19] M. Müller, B. Heidelberger, M. Teschner, 
M. Gross. Meshless deformations based 
on shape matching. In Proceedings of 
ACM SIGGRAPH 2005, 24(3):471-478, 
2005 

[20] A. R. Rivers and D. L. James. FastLSM: 
Fast Lattice Shape Matching for Robust 
Real-Time Deformation. In Proceedings 
of ACM SIGGRAPH 2007, 26(3):82, 
2007 

[21] T. Igarashi, T. Moscovich, and J. F. 
Hughes. As-rigid-as-possible shape 
manipulation. In Proceedings of ACM 
SIGGRAPH 2005, 24(3):1134-1141 



 
Figure 10: More results of our shape deformation method. In each row, the original shape is shown 

one the leftmost image and others are the deformation results. 

Figure 11: Image deformation for Mona Lisa by using our method. After deformation, her face is 
thinner and she is in a sad mood. 

Figure 12: Image deformation for the Leaning Tower of Pisa by using our method. We implement 
deformation with line segment handles [18] by using the skeletal deformation method 
proposed in Section 4.2. 
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