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1 Outline

In this supplemental material, we provide the following additional information
and results:

– Section 2 provides an overview of the dataset of our coplanarity benchmark
(COP).

– Section 3 gives more evaluation results for our coplanarity network, including
a comparison of different masking schemes (Section 3.1), evaluation on patch
pairs proposed from real cases of scene reconstruction (Section 3.2), and
visual qualitative results of coplanarity matching (Section 3.3).

– Section 4 provides more evaluations of the reconstruction algorithm. Specif-
ically, we evaluate the robustness of the registration against the initial ratio
of incorrect pairs (Section 4.1), and we show more visual results of recon-
structions for scenes from various datasets.

– Section 5 discusses the limitations of our method.
– Finally, Section 6 provides the formulation for a variatnt of our method that

only utilizes coplanarity constraints (Section 6.1), the optimization proce-
dure used for that variant (Section 6.2), and the stability analysis used for
achieving a robust optimization in that variant (Section 6.3).

2 COP Benchmark Dataset

Figure 1 and 2 provide an overview of our coplanarity benchmark datasets, COP-
S (organized in decreasing patch size) and COP-D (in increasing patch distance),
respectively. For each subset, we show both positive and negative pairs, each with
two pairs. Note how non-trivial the negative pairs are in our dataset, for example,
the negative pairs of S3 and D1.
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Positive Negative

S1

S2

S3

Fig. 1: An overview of the patch pairs (both positive and negative) in the bench-
mark dataset COP-S. The dataset is organized according to patch size. S1:
0.25~10 m2. S2: 0.05~0.25 m2. S3: 0~0.05 m2.
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Positive Negative

D1

D2

D3

Fig. 2: An overview of the patch pairs (both positive and negative) in the bench-
mark dataset COP-D. The dataset is organized according to pair distance. D1:
0~0.3 m. D2: 0.3~1 m. D3: 1~5 m.
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3 Network Evaluations

This section provides further studies and evaluations of the performance of our
coplanarity prediction network.

3.1 Different Masking Schemes

We first investigate several alternative masking schemes for the local and global
inputs of our coplanarity network. The proposed masking scheme is summarized
as follows (see Figure 3 (right)). The local mask is binary, with the patch of
interest in white and the rest of the image in black. The global mask, in contrast,
is continuous, with the patch of interest in white and then a smooth decay to
black outside the patch boundary.

We compare in Figure 3 our masking scheme (global decay) with several
alternatives including 1) using distance-based decaying for both local and global
scale (both decay), 2) using distance-based decaying only for local scale (local
decay), 3) without decaying for either scale (no decay), and 4) without using a
mask at all (no mask). Over the entire COP-D benchmark dataset, we test the
above methods and plot the PR curves. The results demonstrate the advantage
of our specific design choice of masking scheme (using decaying for global scale
but not for local).

Local Global

Fig. 3: Comparison of different masking schemes on the entire COP-D dataset.
‘Global decay’ is our scheme.
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3.2 Performance on Patches Proposed during Reconstructions

Our second study investigates the network performance for a realistic balance
of positive and negative patch pairs. The performance of our coplanarity net-
work has so far been evaluated over the COP benchmark dataset, which contains
comparable numbers of positive and negative examples. To evaluate its perfor-
mance in a reconstruction setting, we test on patch pairs proposed during the
reconstruction of two scenes (the full sequence of ‘fr1/desk’ and ‘fr2/xyz’ from
the TUM dataset). The ground-truth coplanarity matching is detected based on
the ground-truth alignment provided with the TUM dataset.

Figure 4 shows the plot of PR curves for both intra- and inter-fragment
reconstructions. The values for intra-fragment are averaged over all fragments.
For patches from the real case of scene reconstruction, our network achieves
a precision of > 20%, when the recall rate is 80%. This accuracy is sufficient
for our robust optimization for frame registration, which can be seen from the
evaluation in Figure 6; see Section 4.1.

Recall Recall

P
re

c
is

io
n

Intra-fragment Reconstruction Inter-fragment Reconstruction

Fig. 4: Performance of our coplanarity network on patch pairs proposed from
the reconstruction of sequences ‘fr1/desk’ and ‘fr2/xyz’ from the TUM dataset.
The PR curves for both intra- (left) and inter-fragment (right) reconstruction
are shown.

3.3 More Visual Results of Coplanarity Matching

Figure 5 shows some visual results of coplanarity matching. Given a query patch
in one frame, we show all patches in another frame, which are color-coded with
the dissimilarity predicted by our coplanarity network (blue is small and red is
large). The results show that our network produces correct coplanarity embed-
ding, even for patches observed across many views.
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(a) (b)

(d)(c)

(f)(e)

Fig. 5: Visualization of coplanarity matching for six query patches. For each ex-
ample, the query patch is selected in the left image. In the right image, all patches
are color-coded with the dissimilarity predicted by our coplanarity network (blue
is small and red is large).

4 Reconstruction Evaluations

4.1 Robustness to Initial Coplanarity Accuracy

To evaluate the robustness of our optimization for coplanarity-based alignment,
we inspect how tolerant the optimization is to the initial accuracy of the copla-
narity prediction. In Figure 6, we plot the reconstruction error of our method
on two sequences (full) from TUM dataset, with varying ratio of incorrect input
pairs. In our method, given a pair of patches, if their feature distance in the
embedding space is smaller than 2.5, it is used as a hypothetical coplanar pair
being input to the optimization. The varying incorrect ratios are thus obtained
via gradually introducing more incorrect predictions by adjusting the feature
distance threshold.

Reconstruction error is measured by the absolute trajectory error (ATE), i.e.,
the root-mean-square error (RMSE) of camera positions along a trajectory. The
results demonstrate that our method is quite robust against the initial precision
of coplanarity matching, for both intra- and inter-fragment reconstructions. In
particular, the experiments show that our method is robust for a precision 20%
(incorrect ratio of 80%), while keeping the recall rate no lower than 80%.

4.2 More Visual Results of Reconstruction

Figure 7 shows more visual results of reconstruction on 17 sequences, including 9
from the ScanNet dataset [1] and 8 new ones scanned by ourselves. The sequences
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Ratio of initial incorrect pairs Ratio of initial incorrect pairs

A
T

E
 R

M
S

E
 (

c
m

)
Intra-fragment Reconstruction Inter-fragment Reconstruction

Fig. 6: Evaluation of the robustness of our coplanarity-based alignment on se-
quences ‘fr1/desk’ and ‘fr2/xyz’ from the TUM dataset. The plots shows the
ATE RMSE (in cm) over different precisions. The results for both intra- (left)
and inter-fragment (right) reconstruction are shown.

scanned by ourselves have very sparse loop closure due the missing parts. Our
method works well for all these examples. Figure 8 shows the reconstruction of 4
sequences from the Sun3D dataset [2]. Since the registration of Sun3D sequences
is typically shown without fusion in previous works (e.g., [2, 3]), we only show
the point clouds.

5 Limitations and Failure Cases

Our work has several limitations, which suggest topics for future research.
First, coplanarity correspondences alone are not always enough to constrain

camera poses uniquely in some environments – e.g., the pose of a camera view-
ing only a single flat wall will be under-constrained. Therefore, coplanarity is
not a replacement for traditional features, such as key-points, lines, etc.; rather,
we argue that coplanarity constraints provide additional signal and constraints
which are critical in many scanning scenarios, thus helping to improve the re-
construction results. This becomes particularly obvious in scans with a sparse
temporal sampling of frames.

Second, for the cases where short-range coplanar patches dominate long-
range ones (e.g., a bending wall), our method could reconstruct an overly flat
surface due to the coplanarity regularization by false positive coplanar patch
pairs between adjacent frames. For example, in Figure 9, we show a tea room
scanned by ourselves. The top wall is not flat, but the false positive coplanar
pairs detected between adjacent frames could over-regularize the registration,
making it mistakenly flattened. This in turn causes the loop cannot be closed at
the wall in the bottom.
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Fig. 7: Reconstruction results on 17 sequences, including 9 from ScanNet [1] (first
three rows) and 8 scanned by ourselves (last three rows).

Third, our optimization is currently a computational bottleneck – it takes
approximately 20 minutes to perform the robust optimization in typical scans
shown in the paper. Besides exploiting the highly parallelizable intra-fragment
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Fig. 8: Reconstruction results of four sequences from the Sun3D dataset [2].

Fig. 9: The coplanarity constraint could cause over-regularization: A curvy wall
(top) is mistakenly flattened causing the loop cannot be closed at the bottom
wall for which long-range coplanarity is not available.

registrations, a more efficient optimization is a worthy direction for future inves-
tigation.
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6 Coplanarity-only Robust Registration

At lines 526-529 of the main paper and in Table 1b, we provide an ablation study
in which our method is compared to a variant (called “Coplanarity only”) that
uses only predicted matches of coplanar patches to constrain camera poses –
i.e., without keypoint matches. In order to produce that one comparative result,
we implemented an augmented version of our algorithm that includes a new
method for selecting coplanar patch pairs in order to increase the chances of fully
constraining the camera pose DoFs with the seletected patch pairs. The following
subsections describe that version of the algorithm. Although it is not part of our
method usually, we describe it in full here for the sake of reproducibility of the
“Coplanarity only” comparison provided in the paper.

6.1 Formulation

Objective Function: The objective of coplanarity-only registration contains three
terms, including the coplanarity data term (Equation (3) of the main paper), the
coplanarity regularization term (Equation (4) of the main paper), and a newly
introduced frame regularization term for regularizing the optimization based on
the assumption that the transformation between adjacent frames is small:

E(T, s) = Edata-cop(T, s) + Ereg-cop(s) + Ereg-frm(T ) (1)

The frame regularization term Ereg-frm makes sure the system is always solv-
able, by weakly constraining the transformations of adjacent frames to be as
close as possible:

Ereg-frm(T ) = λ
∑
i∈F

∑
v∈Vi

||Tiv −Ti+1v||2, (2)

where Vi is a sparse set of points sampled from frame i. λ is set to 0.001 by
default.

When using coplanarity constraints only (without key-points), our coplanarity-
based alignment may become under-determined or unstable along some DoF,
when there are too few coplanar patch pairs that can be used to pin down that
DoF. In this case, we must be more willing to keep pairs constraining that DoF,
to keep the system stable. To this end, we devise an anisotropic control variable,
µ, for patch pair pruning: If some DoF is detected to be unstable and enforcing
pk and qk to be coplanar can constrain it, we set µ(πk) to be large. The align-
ment stability is estimated by analyzing the eigenvalues of the 6-DoF alignment
error covariance matrix (gradient of the point-to-plane distances w.r.t. the six
DoFs in R and t) as in [4](See details in Section 6.3). Since the stability changes
during the optimization, µ should be updated dynamically, and we describe an
optimization scheme with dynamically updated µ below.
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Algorithm 1: Coplanarity-based Registration

Input : RGB-D frames F and co-planar patch pairs Π = ∪(i,j)∈PΠij ;
γt = 0.5m.

Output: Frame poses T = {(Ri, ti)}.
1 Ri ← I, ti ← 0 ; // Initialize transformations

2 µd
i ← 0.1m ; // Initialize control variables

3 repeat
4 while not converged do
5 Fix s, solve Equation (1) for T ;
6 Fix T , solve Equation (1) for s ;

7 {γd
i } ← EstimateStability (Π, s) ;

8 foreach i ∈ F do // for each frame

9 foreach d ∈ {X, Y, Z} do // for each DoF

10 if γd
i > γt then

11 µd
i = µd

i ∗ 0.5 ;

12 γmax ← maxi,d{γd
i } ;

13 until γmax < γt or max. # of iterations reached ;
14 return T ;

6.2 Optimization

The optimization process is given in Algorithm 1. The core part is solving Equa-
tion (1) via alternating optimization of transformations and selection variables
(the inner loop in Line 4~6). The iterative process converges when the relative
value change of each unknown is less than 1 × 10−6, which usually takes less
than 20 iterations.

A key step of the optimization is stability analysis and stability-based anisotropic
pair pruning (Line 7~12). Since our coplanarity-based alignment is inherently
orientation-based, it suffices to inspect the stability of the three translational
DoFs. Given a frame i, we estimate its translational stability values, denoted by
γdi (d is one of the labels of X, Y, and Z-axis), based on the alignment of all
frame pairs involving i (see Section 6.3 for details). One can check the stability
of frame i along DoF d by examining whether the stability value γdi is greater
than a threshold γt.

Stability-based anisotropic pair pruning is achieved by dynamically setting
the pruning parameter for a patch pair, µ(π) in the coplanarity regularization
term (Equation (4) of the main paper). To this end, we set for each frame and
each DoF an independent pruning parameter: µd

i (i ∈ F and d = X,Y,Z). They
are uniformly set to a relatively large initial value (0.1m), and are decreased in
each outer loop to gradually allow more pairs to be pruned. For some µd

i , however,
if its corresponding stability value γdi is lower than γt, it stops decreasing to avoid
unstableness. At any given time, the pruning parameter µ(π), with π = (p, q),
is set to:

µ(π) = min{µd(p)
i , µ

d(q)
j },
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Fig. 10: The percentage of correct co-planar patch pairs increases and trajectory
error (see the measure in Section 4 of the paper) decreases, as the iterative
optimization proceeding. The blue marks indicate the outer loop.

where d(p) is the DoF closest to the normal of patch p. The whole process
terminates when the stability of all DoFs becomes less than γt.

To demonstrate the capability of our optimization to prune incorrect patch
pairs, we plot in Figure 10 the ratio of correct coplanarity matches at each
iteration step for a ground-truth set. We treat a pair π as being kept if its
selection variable s(π) > 0.5 and discarded otherwise. With more and more
incorrect pairs pruned, the ratio increases while the registration error (measured
by absolute camera trajectory error (ATE); see Section 4 of the paper) decreases.

6.3 Stability Analysis

The stability analysis of coplanar alignment is inspired by the work of Gelfand
et al. [4] on geometrically stable sampling for point-to-plane ICP. Consider the
point-to-plane alignment problem found in the data term of our coplanarity-
based registration (see Equation (3) in the main paper). Let us assume we have
a collection of points vp ∈ Vp sampled from patch p, and a plane φq = (pq,nq)
defined by patch q. We want to determine the optimal rotation and translation
to be applied to the point set Vp, to bring them into coplanar alignment with
the plane φq. In our formulation, source and target patches (p and q) are also
exchanged to compute alignment error bilaterally (see Line 436 in paper). Below
we use only patch p as the source for simplicity of presentation.

We want to minimize the alignment error

E =
∑

vp∈Vp

[
(Rvp + t− pq) · nq

]2
, (3)

with respect to the rotation R and translation t.
The rotation is nonlinear, but can be linearized by assuming that incremental

rotations will be small:

R ≈

 1 −rz ry
rz 1 −rx
−ry rx 1

 , (4)

for rotations rx, ry, and rz around the X, Y, and Z axes, respectively. This is
equivalent to treating the transformation of vp ∈ Vp as a displacement by a
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vector [r × vp + t], where r = (rx, ry, rz). Substituting this into Equation (3),
we therefore aim to find a 6-vector [rT , tT ] that minimizes:

E =
∑

vp∈Vp

(vp − pq) · nq + r · (vp × nq) + t · nq. (5)

We solve for the aligning transformation by taking partial derivatives of Equa-
tion (5) with respect to the transformation parameters in r and t. This results
in a linear system Cx = b where x = [rT , tT ] and b is the residual vector. C
is a 6 × 6 “covariance matrix” of the rotational and translational components,
accumulated from the sample points:

C =

[
v1
p × nq · · · vk

p × nq

nq · · · nq

](v1
p × nq)T nq

...
...

(vk
p × nq)T nq

 .
This covariance matrix encodes the increase in the alignment error due to the
movement of the transformation parameters from their optimum:

∆E = 2
[
∆rT ∆tT

]
C

[
∆r
∆t

]
. (6)

The larger this increase, the greater the stability of the alignment, since the
error landscape will have a deep, well-defined minimum. On the other hand, if
there are incremental transformations that cause only a small increase in align-
ment error, it means the alignment is relatively unstable along that degree of
freedom. The analysis of stability can thus be conducted by finding the eigen-
values of matrix C. Any small eigenvalues indicate a low-confidence alignment.
In our paper, we analyze translational stabilities based on the eigenvalues cor-
responding to the three translations, γd (d = X, Y, Z).
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