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Abstract

The recent development of fast depth map fusion technique enables the realtime, detailed scene reconstruction using
commodity depth camera, making the indoor scene understanding more possible than ever. To address the specific
challenges in object analysis at subscene level, this work proposes a data-driven approach to modeling contextual in-
formation covering both intra-object part relations and inter-object object layouts. Our method combines the detection
of individual objects and object groups within the same framework, enabling contextual analysis without knowing the
objects in the scene a priori. The key idea is that while contextual information could benefit the detection of either
individual objects or object groups, both can contribute to object extraction when objects are unknown.

Our method starts with a robust segmentation and partitions a subscene into segments, each of which represents either
an independent object or a part of some object. A set of classifiers are trained for both individual objects and object
groups, using a database of 3D scene models. We employ the multiple kernel learning (MKL) to learn per-category
optimized classifiers for objects and object groups. Finally, we perform a graph matching to extract objects using the
classifiers, thus grouping the segments into either an object or an object group. The output is an object-level labeled
segmentation of the input subscene. Experiments demonstrate that the unified contextual analysis framework achieves
robust object detection and recognition over cluttered subscenes.
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1 1. Introduction

“Corresponding author: kaixu@nudt.edu.cn 2 With the rapid development of 3D sensing techniques,

s the digitalization of large-scale indoor scenes has be-
4 come unprecedentedly accessible to a wide range of

(a) s applications. Among the most exciting and promising
Z B ronitor s applications, robot-operated exploration and interaction

- 7 over unknown indoor environment would benefit signif-

W keyboard s icantly from the availability of high-quality and realtime

mouse s acquired 3D geometry information [1]. Such 3D in-

10 formation can not only improve robot navigation and
11 exploration, but more importantly, facilitate efficient
- 12 robot-scene interaction with fine-grained understanding
Bl slobe 13 of scene objects. The latter may support highly complex
14 robot tasks such as room cleaning.
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15 Motivated by the high demand, extensive research has

. ) 1 been devoted to the understanding of scanned indoor
Figure 1: Scene understanding by our method. (a): The | scenes. Most existing works on scene understanding

input point cloud of a table—tgp scene. (b): The labeling |, gocus on large-scale objects, such as furniture, as well
result (legends show semantic labels in color). 19 as their spatial layout [2, 3, 4, 5, 6], since the analysis
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20 is usually limited by the quality and resolution of input
21 scans. Recent advances in volumetric scan fusion tech-
22 nique (such as KinectFusion [7]) has made it possible
23 to reconstruct quality and detailed scenes from scans
24 captured by commodity depth camera (e.g. Microsoft
25 Kinect and Asus Xtion). The dense point clouds pro-
26 cessed by KinectFusion can well capture small scale ob-
27 jects such as household objects, which enables detailed
2s understanding at a subscene level, e.g. many objects
29 placed a tabletop; see Figure 1.

30 Object analysis at subscene level is arguably much more
a1 challenging than that at whole scene level. Firstly, un-
a2 like furnitures which are usually sparsely distributed in
a3 an indoor scene, household objects are often highly clut-
as tered due to the limited space of supporting surfaces [8].
35 For example, a tabletop scene is typically cluttered with
3 many on-table objects. Secondly, repetition of objects,
a7 which is ubiquitous among furnitures and has been ex-
s tensively exploited in previous works [3, 5], may not be
39 as commonly seen among household objects. For ex-
40 ample, the objects placed on a table are mostly unique
41 within the subscene. Thirdly, from the acquisition point
42 of view, smaller objects are often more sensitive to scan-
43 ning imperfection. These challenges make the existing
4 methods, dealing with large-scale furniture layout, un-
45 suitable for the object analysis of small-scale subscenes.

s To address these challenges, it seems a natural option
47 is to fully utilize the inter-object relations, or contextual
s information. However, a key prerequisite for contextual
s scene analysis is that all objects are segmented and la-
s0 beled with semantic tags [9], which is apparently infea-
st sible for an unsegmented scene. Essentially, context is
s2 defined with objects. Without knowing objects, how can
s3 we utilize contextual information to help the identifica-
s« tion of objects? In this work, we try to tackle this prob-
ss lem through integrating the discovery of both individ-
s6 ual objects and object groups into a unified framework.
57 While the former involves grouping parts into an object,
ss which detects individual objects, the latter amounts to
so finding structure groups [10] composed of multiple ob-
e0 jects, which can actually enhance or reinforce the de-
et tection and recognition of objects within the structure
e2 group. The key idea is that contextual information could
63 benefit the detection of either individual objects or ob-
e+ ject groups, when objects are unknown. However, both
es can contribute to object extraction.

e 10 enable such unified framework, we take a data-driven
7 approach equipped with several key procedures. First,
68 We propose a robust segmentation method to partition a
es indoor scene into segments which each represents either

70 an independent object or a part of some object. We then
71 train a set of classifiers for both individual objects and
72 object groups, based on a database of 3D scene models.
73 To improve the classification accuracy, we employ mul-
74 tiple kernel learning (MKL) [11] to learn per-category
75 optimized SVM classifiers for various objects and ob-
76 ject groups. Finally, we perform a graph matching to
77 extract objects using the classifiers, thus grouping the
78 segments into either an object or an object group. The
79 input of our algorithm is an indoor scene point cloud,
s and the output is an object-level labeled segmentation
&1 of the input scene. Experiments demonstrate the ro-
g2 bust performance for both segment extraction and object
83 recognition on several subscenes.

8¢ Our approach possesses two key features compared with
85 previous methods. First, we perform a segmentation
g6 process before recognition, which leads to robust han-
¢7 dling of cluttered scenes. Second, instead of solving the
g8 recognition of individual objects and object groups as
89 two separate problems, we encode features of both indi-
90 vidual objects and object layout into a unified classifier
91 via contextual modeling.

o2 2. Related Work

93 Scene understanding is a long-standing research topic
9« which has received extensive research from both com-
95 puter vision and computer graphics community. We
96 mainly review those works which take 3D point clouds
o7 as input.

98 Point cloud segmentation. Mesh segmentation is a fun-
99 damental shape analysis problem in computer graphics,
100 for which both heuristic methods [12] and data-driven
101 approach [13] have been extensively studied over the
102 years. On the other hand, the segmentation of 3D point
103 clouds remains to be a challenging problem.

104 There are three kinds of methods for point cloud seg-
10s mentation [14]. The first type is based on primitive
106 fitting [3, 15, 5]. It is hard for these methods to deal
107 with objects with complex shape. The second kind
108 of techniques is the region growing method. Nan et
100 al. [2] propose a controlled region growing process
110 which searches for meaningful objects in the scene by
111 accumulating surface patches with high classification
112 likelihood. Berner et al. [16] detect symmetric regions
113 using region growing. Another line of methods formu-
114 lates the point cloud segmentation as a Markov Ran-
115 dom Field (MRF) or Conditional Random Field (CRF)
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Figure 2: An overview of our algorithm. We first over-segment the scene and extract the supporting plane on the patch
graph, then segment the scene into segments and represent the whole scene using a segment graph (a). To obtain the
contextual information, we train a set of classifiers for both single objects and object groups using multiple kernel
learning (b). The classifiers are used to group the segments into objects or object groups (c).

116 problem [4, 17, 14]. A representative random field seg-
117 mentation method is the min-cut algorithm [17]. The
11s method extracts foreground from background through
119 building a KNN graph over which min-cut is performed.
120 The shortcoming of min-cut algorithm is that the se-
121 lection of seed points relies on human interaction. We
122 extend the min-cut algorithm by first generating a set
123 of object hypotheses via multiple binary min-cuts and
124 then selecting the most probable ones based on a voting
125 scheme, thus avoiding the seed selection.

126 Object recognition. Recently, the development of com-
127 modity RGB-D cameras has opened many new oppor-
128 tunities for 3D object recognition and scene recogni-
129 tion [18, 19]. With the ever-growing amount of 3D mod-
130 els becoming available, data-driven approach starts to
131 play an important role in 3D object recognition and has
132 gained great success [20].

133 Nan et al. [2] propose a search-classify approach to
134 scene understanding by interleaving segmentation and
135 classification in an iterative process. Li et al. [6] propose
136 scene reconstruction by retrieving objects from a 3D
137 model database. Song et al. [21] render database mod-
138 els from hundreds of viewpoints and train an exemplar-
138 SVM classifier for each of them to achieve object recog-
140 nition. Their method overcomes several difficulties in
141 object recognition, such as the variations of texture, il-
142 lumination, etc. Chen et al. [22] utilize contextual infor-
143 mation for indoor scene understanding. Small objects
14« and incomplete scans can be recognized with the help of
115 contextual relationships learned from database objects.
146 Our method lends itself to cluttered indoor scene anal-
147 ysis through integrating segmentation and recognition

1 into a single framework, which leads to a better per-
120 formance when dealing with close-by objects than the
150 contour-based method of [22].

151 Another line of analysis method is unsupervised learn-
12 ing based on the presence of repetitions or symmetries
1s3 in indoor scenes [3, 5, 23]. A limitation of such ap-
154 proaches is that such repetitive patterns are less com-
155 mon in subscenes dominated by household objects, e.g.,
156 a tabletop scene.

157 Plane extraction. Plane extraction from point cloud is
1ss another important topic in scene understanding. For ex-
1so ample, planes can be used to improve the reconstruc-
160 tion of arbitrary objects containing both planar and non-
11 planar regions [24].

12 Perhaps the most widely used approach for plane extrac-
163 tion is RANSAC based plane fitting [15]. This method
164 scales well with respect to the size of the input point
15 cloud and the number of planes. Mattausch et al. [5]
166 Utilize planar patches as a compact representation of the
17 point cloud of an indoor scene, which facilitates effi-
1es cient repetition detection in a large-scale scene point
1o cloud. Zhang et al. [24] perform plane extraction to
170 delineate non-planar objects. Plane extraction has also
171 been performed in the analysis of RGB-D data [25, 26].
172 These works trim the plane boundary and convert the
173 input data into a compact polygonal representation. Re-
174 cently, Monszpart et al. [27] propose to reconstruct the
175 raw scan of man-made scenes into an arrangement of
176 planes with both local fitting and global regularization.

3



177 3. Overview

17¢ The input of our algorithm is a 3D point cloud of indoor
178 scene acquired and fused by KinectFusion. Our goal is
180 to detect objects in the scene and recognize their seman-
181 tic categories automatically. Our method proceeds in
182 two stages. First, we segment the point cloud into seg-
183 ments representing potential objects. Second, to achieve
184 Object extraction and recognition, we propose a joint es-
185 timation of individual objects and object groups, as well
186 as their semantic categories.

187 Segment detection. In the first stage, we segment the
1 input scene (Figure 2 (a)). Specifically, we first over-
180 segment the entire scene and build a patch graph. We
100 then extract the supporting plane with a method inte-
191 grating RANSAC primitive fitting into graph-cut. Af-
192 ter plane extraction, the remaining points are grouped
193 into isolated groups. Within each group, we generate
194 segments via a robust segmentation algorithm, which
195 takes both geometry and appearance information into
196 account. Based on the segmentation, we represent the
197 entire scene as a segment graph with two types of edges
198 representing direct spatial adjacency (solid lines in Fig-
199 ure 2) and spatial proximity (dashed lines) between two
200 Segments, respectively.

201 Object extraction and recognition. In the second phase,
202 We extract objects via recognizing both individual ob-
203 jects and object groups within a unified framework,
204 based on the above segment graph representation.

205 In an off-line stage, we train per-category optimized
206 SVM classifiers with multiple kernel learning for both
207 objects and object groups. The classifiers are trained
208 using 3D database models. Each 3D model is first con-
200 verted into 3D point cloud using virtual scanning and
210 segmented using the method mentioned above. We then
211 extract features from the corresponding segment graph
212 and train classifiers based on the graph.

213 In the online stage, we extract objects or object groups
214 from the segment graph of the input scene, through
215 searching for the subgraph matching corresponding to
216 the occurrence of database objects and object groups.
217 Once a matched subgraph is found, we use the cor-
218 responding SVM classifier to estimate the probability
219 of the match. Finally, we solve a labeling optimiza-
220 tion which minimizes the overall matching cost for all
221 matching probabilities.

222 4. Segment detection

223 Our goal is to partition the input scene into segments
224 which each represents either an independent object or
225 a part of an object. In order to segment objects from
226 cluttered scenes, we propose an unsupervised segment
227 detection approach to detect segments in 3D scene.

228 Specifically, we first over-segment the input point cloud
220 into a set of patches (Sec. 4.1) and detect the supporting
230 plane (Sec. 4.2). We then group the remaining patches
231 to extract potential objects or parts (Sec. 4.3) and rep-
232 resent them as a segment graph (Sec. 4.4). See Algo-
233 rithm 1 for an overview of our method.

234 4.1. Patch graph generation

235 We first over-segment the entire scene S into sev-
23 eral patches, using the method in [28]. We build a
27 patch graph based on the patches, denoted with G, =
238 (Vp, &p), where V), and &, represent the patches and
239 the near-by relations within the patches, respectively.
240 Specifically, the near-by relations are determined by
241 comparing the nearest distance between two patches
222 with a threshold.

Essentially, our segment detection algorithm is a graph-
cut based approach. The most vital component for
graph-cut method is the definition of smooth term. In
this section, the smooth terms for all graph-cut opti-
mization are identical, which we first define here:
E (xy, x,) =we - E; + Wp Ep +w, - Ey, (D
243 Where x,, x, are two adjacent patches. E., E,, E, are
244 the differences between two adjacent patches in terms of
245 color, planarity and normal. w,,w,,w, are the weights.

E. and E, are computed based on the chi-square dis-
tance of the color and planarity histogram between u
and v, we normalize them to (0, 1). It is worth mention-
ing that the planarity histogram are computed as fol-
low: first compute the least-square plane for a patch,
then built a histogram for distances of all points in the
patch to the plane. The formulation for E, is different
for convex and concave situations. Specifically, the for-
mulation is:

En(xua xv) =1- 77(1 — COS Hu,v)9 (2)

26 Where 6,,, is the angle between the average normals of
247 patch P, and P,. For n, we take 0.01 (a small value) if
248 the two adjacent patches form a convex dihedral angle

4



Algorithm 1 :Segment Detection.

Input: scene S

Output: segment graph G
G, « OverSegment(S);
S « PlaneExtract(S,Gp);
‘H « SegHypGen(S,Gp);
T « SegHypSelect(H);
G, < SegGraGen(T);
return Gg;

/lextract plane

//generate seg. hypo.
/Iselect seg. hypo.
/Igenerate seg. graph

AN T

29 and 1 otherwise, to encourage cuts around a concave
250 region [29].

251 Our smooth term takes both geometry (planarity and
252 normal) and appearance (color) factors into considera-
253 tion, thus makes the patches belong to different objects
254 can be detected easily.

255 4.2. Supporting plane extraction

256 Supporting plane is usually the largest object in most
257 subscenes of an indoor scene, such as tables, beds,
258 shelves, etc. The extraction of supporting plane is es-
259 pecially useful since it makes the detection of objects
260 on top of the supporting plane easier. Therefore, the
261 first step of our segment generation is supporting plane
262 extraction. For this task, perhaps the most straightfor-
263 ward approach is RANSAC based primitive fitting [15].
264 Since the objects placed on the supporting plane may be
265 very small or thin, setting a hard threshold for point-to-
266 plane distance may cause a lot of false positives. We
267 therefore improve this method by adding a graph-cut
268 Optimization, to robustly segment on-top objects from
269 the supporting plane.

We try to assign each patch a binary label, denoted by
X = [x1,...,x,] with x; € {0, 1}. x; = 1 if patch P; lies
in the plane, and x; = 0 otherwise. We formulate the
labeling problem as graph cuts over the patch graph:

EX)= ) Ex)+ Y E(uwx), ()

ueV, (u,v)eE;

where the data term is defined as:

, ifx, =1

Ea(x) = { (1- 2 (1= 75)-cos s, ifx, =0
270 where ¢ is a constant value, d the distance between the
271 center of u to the plane, and p the planarity of the patch.
272 Ay and pyqy 1S the maximum distance and planarity,
273 respectively.  We compute p as the average distance

Figure 3: Plane extraction from the point cloud of a
tabletop scene by using our method (a) and RANSAC
based primitive fitting (b), respectively. While our
method can segment out the supporting plane accu-
rately, RANSAC missed some points due to the thin ob-
Jjects.

274 of all the points in patch P, to its corresponding least-
275 square fitting plane. 6,; is the angle between the average
276 normal of P, and the normal of the plane.

277 Figure 3 (a) demonstrates the segmentation results of
278 our method. As a comparison, the RANSAC based
279 primitive fitting can also get the majority of points cor-
280 rectly, but it fails when dealing with small and thin ob-
281 jects, as is shown in Figure 3 (b).

282 4.3. Segment generation

283 Segment hypothesis generation. After plane removal,
284 Object extraction only amounts to segmenting the iso-
285 lated groups of patches on top of the supporting plane
286 into individual objects. To solve the problem, we pro-
287 pose to first generate a set of segment hypotheses and
288 then select the most prominent ones based on a voting
289 algorithm.

200 We first update the patch graph G, by removing the
201 nodes belonging to the extracted plane. Based on the
202 updated patch graph, we generate segment hypothe-
203 ses by performing several times of binary graph cut,
204 Where the foreground corresponds to potential objects
295 OF prominent parts.

Different from other graph cut method, we do not se-
lect foreground seed heuristically. Instead, we use every
patch as seed and perform binary graph cuts for multiple



Foreground Segment

Figure 4: [llustration of our segment detection method.
The scene is composed of two bottles stuck together on a
round table (a). We use every patch as seed to generate
many foreground hypotheses and then select the most
prominent ones (b).

times, generating many candidate foregrounds. In each
binary cut, we select one patch as foreground seed but
do not prescribe any seed for background. This is per-
formed by introducing a background penalty for each
non-seed patch [30]. Specifically, we select one patch,
denoted by P, labeling it as foreground x; = 1, and
minimize over binary patch labels X = [x1,...,x,], x; €
{0, 1} (n is the number of patches) the following para-
metric energy function:

E'X) = ) Ejx)+ Y Eyx,x),

ueV, (u,v)e&y

“)

where the data term is defined as:

00, ifx,=0andu=s
0 ifx,=1landu=-s
A _ s u
Eqx) =30 ifx,=0Oandu# s
Jus ifx,=1landu # s
k(d(Py, P,) = A), it d(Ps, Py) > A

0, otherwise.

7|

206 f, is the background penalty which penalizes a non-
207 seed patch which is distant from the foreground seed.
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Figure 5: Segment detection from the point cloud of a
highly cluttered scene (a) by using our method (b). The
input data has a lot of close-by objects and the back
view is not scanned, which makes the segmentation quite
challenging. Our method can segment out most objects
accurately.

d(Py, P,) is the distance between the centers of patch P;
and P,. We use k = 2.0 for a steep penalty to quickly
reject those patches whose distance to Pj is larger than
A to be labeled as foreground. The parameter A controls
the range, centered around the foreground seed, within
which one seeks for foreground patches. Instead of us-
ing a hard threshold on this range, we slide A from O to
{4 (the diagonal length of the bounding box of the entire
scene) and find the first point where the total cut cost
drops significantly (up to 50%) and take the resulting
cuts as the segmentation result. The smooth term is the
same as the one used for plane extraction in Eq. (1).

Once we select every patch as seed and perform graph
cut for each of them, we can obtain a set of foreground
segments. To filter out the redundancy, we cluster
the foreground segments using non-parametric mean-
shift [31]. The similarity between two segments, de-
noted as S and T, is measured by the Jaccard index, i.e.,
s(S,T) = 1S NnT|/|S UT|. Forexample, as is shown
in Figure 4 (b), selecting the seed patches in the same
row will led to identical foregrounds, thus these fore-
grounds will cluster together after the mean-shift pro-
cessing, as the Jaccard index is high. For each cluster,
we choose the cluster center as the segment hypothesis
for that cluster. As a result, we obtain a pool of k hypo-
thetic segments, H = {H;}* .

Segment hypothesis selection. The set of hypotheses
may overlap with each other, making the labeling of
patches ambiguous. To select good hypotheses with-
out relying on heuristics or supervision, we propose a
multi-class Markov random field (MRF) segmentation
with object label selection, which minimizes the follow-



ing energy function:

EL)= ) Edl;P)+ Y Edul), ()

ueV, (u,v)e&,

324 over the labeling for all patches: L = [/, ..
a5 {1,...,k}.

"li’l]’li €

The data term E4(l,; P,) is defined as the likelihood that
the patch P, belongs to a particular segment hypothesis.
For instance, for patch P, and hypothesis H;, we define
the data term as the frequency of P, being covered by
the hypotheses in H;:

E,(H;; P,) = =In(t(P,,C)/ £, 1(Pu,C)),  (6)

s where #(P,,C;) = {P, C Hj|H; € C;}| is the presence
a27 times of patch P, in cluster C;. The smooth term is also
328 the same as the one in Eq. (1)).

320 The data term selects a label for each patch based on a
330 consensus voting by all foreground clusters: The larger
331 a foreground cluster is, the more probable that its cor-
a2 responding segment hypothesis represents an indepen-
333 dent object, since the object is proposed by many binary
a3+ segmentations. Figure 4 depicts our segment detection
a3s algorithm and Figure 5 demonstrates the segmentation
ass results over a highly cluttered scene.

a7 4.4. Segment graph generation

ass To deal with the recognition for both object and object
338 group, we represent the entire scene as a segment graph
a0 Gy = (Vs, &), where V, represents the segments we
a4 detected in the input scene and & encodes the relation-
a2 ship between two segments. We use two kinds of edges
a43 to describe relations in G, . If the shortest distance be-
344 tween two segments is less than a small threshold z,, we
345 Use a connection edge to link them, that means the two
a6 segments contact with each other and probably belongs
a7 to the same object. If the shortest distance between two
as segments is large than the small threshold but less than
a9 a larger threshold #;,, we use a proximity edge to con-
as0 nect them, which means they are in the same supporting
351 plane and has the potential to constitute a object group.
as2 The two kinds of edges represent the contextual infor-
3s3 mation for intra-object part relations and inter-object
as+ object layouts, respectively. ¢ is selected as slightly
355 larger than the largest bounding box diagonal length of
ss6 all object groups in the database. Figure 2 shows an
357 illustration the segment graph of the given input scene.

a8 5. Object Recognition

as9 J.1. Training

a0 When recognizing a scene containing multiple objects,
st human perception is predominantly affected by three
as2 levels of prior knowledge [32]: the shape information
ass of individual parts, the part composition of individual
as¢ objects, and the contextual relationship among object
aes groups. In our object recognition procedure, we en-
ass code all these knowledge in an unified model and recog-
37 nize objects and object groups simultaneously. Specif-
ass ically, we train per-category optimized SVM classifiers
ase for all kinds of objects and object groups, and then uti-
a0 lize these classifiers to test the category of the input seg-
s ments. Here, an object group is refer to a group of ob-
a2 jects whose co-occurrence is frequently seen in an in-
ars door scene category [33]. For example, the monitor-
a7+ keyboard-mouse combo is frequently seen in office.

ars Data Preparation. To learn the model from the
a7e database of 3D scene models, the first step is to convert
a7 the database models (training data) into point cloud rep-
a7s resentation, which is compatible against the input (test
a7e data), and extract features from the point clouds.

ss0 First, we download a set of 3D CAD models of house-
ss1 hold objects, denoted by {I';}, from the internet. Each I';
ss2 contains the models belonging to the same shape cate-
ass gory. Second, we collect indoor scene models from the
as+ dataset of [9] and [10]. In order to obtain object groups
ass which are not only frequently occurring but also seman-
ase tically significant, we extract local substructures {®D;}
ss7 from the dataset as the focal points defined in [33]. Each
ass @; contains the substructures belonging to the same se-
ase mantic group.

a0 We then perform virtual scanning for all models/groups
301 in {I';} and {®;}, similar to [2]. Such virtual scan could
a2 mimic the real situation of object clutter or incomplete
a3 scan, making the training data more suitable for learn-
3+ ing a generalizable recognition model. After the virtual
a5 scanning, we compute segment graphs using the method
ass described in Sec. 4 for object groups in {®;}. For in-
se7 dividual objects in {I';}, we perform the same process
ass except for table extraction. The label of each virtually
ase scanned point is determined by aligning the point cloud
400 with the original 3D CAD models and transferring the
401 labels based on closest point search.

Classifier Learning. We compute two kinds of features
for our SVM classifier: node features and edge features.



Algorithm 2 :Training.

Input: object set {I';} and object group set {D;}
Qutput: classifiers C
1: forallT; do
2:  forally;inI; do
3: v, < VirtualScan(y);
4:  end for
5 g; < ConstructSegGraph(I';);
6 ¢ — MKL(g);
/ltrain SVM for each single object category
end for
8: for all ®; do
9:  forall ¢;in ®; do
10: ¢; « VirtualScan(¢;);
11:  end for
12:  g; < ConstructSegGraph(®;);
13 ¢ « MKL(g));
/train SVM for each object group category
14: end for

15: return C = {c]}7,

~

¢}

.
e

For each node, we voxelize its bounding box and ex-
tract features of shape, normal and volume as described
in [21]. In addition, we estimate the oriented bounding
box (OBB) for each object and measure its anisotropy:

S — 82 2(s2 — 83) 353

- —
1B

m...,
! \
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(a) (b) (c)

Figure 6: The generation of object and object group.
The input is a segmented object or object group (a). We
compute the OBB for each part (b) and connect them
into a graph (c). The solid and the dashed lines in (c)
are connection and proximity edge, respectively.

415 Multiple Kernel Learning. Kernel method has been
416 successfully applied into many learning areas, while the
417 results of these methods are heavily dependent on the
418 selection of kernels. Instead of choosing a single ker-
419 nel, it is better to have a set of kernels and use the com-
420 bination of them [11]. Since our features are computed
421 for both individual objects and their relations, it is espe-
422 cially desirable to combine several kernels and to allow
423 the classifiers to choose their optimized kernels, in order

ci

(7
where s1,5,,53 are the three scales of the OBB with s; >
so > s3 > 0. For each edge, we compute the layout
similarity [33] as its feature:

Y (phg) = dri(obb (p) , 0bb (q))
’ dl(p) +dl(q)

®)

€))

402 The two features measure the distance and direction be-
403 tween two objects, respectively.

p(p.q) = angle (Vdir P.q), Vupright) ,

404+ We compute features and learn pre-category optimized
405 SVM classifiers for each category of individual objects
406 in {I';} and object groups in {®;}. Positive examples are
407 the models from the two datasets, while negative ones
408 are generated by using the method in [21] for individ-
409 ual objects and the method in [22] for object groups.
10 In addition, we associate a triplet (n,, n, n,) with each
an classifier, where n,,n. and n, represent the number of
412 segments, edges and proximity edges, respectively. This
413 triplet is used to perform a coarse matching based on the
414 triplet, before testing with the classifier.

= CcC, = C. =
(s1+s2+53)" 7 (s1+s+53)" " (514524 53)

24 to reduce their bias [34]. The idea is to use a combina-
425 tion of basic kernels k(X,y) = Zw; - k;(x,y) rather than
426 a specific kernel in SVM. The basic kernels could be
427 linear kernel, Gaussian kernel, polynomial kernel, etc.

4«28 Figure 7 illustrates the architecture of our MKL-based
420 classification. Given the segment graph of an individual
430 object or an object group, we first represent it in the fea-
431 ture space spanned with six kinds of features. We then
432 transform the data from feature space to kernel space us-
433 ing several predefined kernels. By computing the opti-
434 mized weights for each kernel space, we obtain the final
433 MKL classifier. The procedure for training the classi-
436 fiers is detailed in Algorithm 2.

437 5.2. Testing

4 Data Preprocessing. The segments in scenes acquired
439 by Kinect or any other commodity depth camera are
40 usually noisy and low-quality, making the recognition
441 quite difficult. Therefore, we first surface reconstruc-
442 tion [35] to form a watertight surface for each segment,
43 and then compute features as described in Sec. 5.1.

8



Algorithm 3 :Testing.

Input: classifiers C and segments T

Output: segments label X

1: for all ¢; in C do

2 if Matching(c;,T) then

3 cost; < ComputeProbability(c;,T);

4:  endif

5: end for;

6: X « ComputeLabel({costi}f:I);
/lcompute label for all segments

7: return X;

Object or Object group ‘

LXK

MKL-SVM

Figure 7: The architecture of our MKL-based classifier.
Given an object or a object group, we compute its fea-
tures and map it into several kernel spaces with several
basic kernels. The MKL-SVM classifier is learned by
computing the optimized weight for each kernel.

44 Labeling Optimization. To extract objects and object
445 groups from the segment graph, we search from the seg-
46 ment graph of the input scene for the subgraphs cor-
447 responding to the occurrences of database objects and
48 object groups. Graph matching can be formulated as
449 quadratic assignment problem, which is known to be
4s0 NP-hard, so an exhaustive search over the whole graph
451 leads to high computational cost.

452 In our method, the graph matching is performed as fol-
43 lows. For each MKL classifier, we first use the associ-
ass ated triplet (n,,n¢,n,) to filter subgraph matchings. A
455 subgraph is filtered if any one of the three terms is dif-
46 ferent from that of the classifier. For the remaining sub-
457 graphs, we use the learned MKL classifiers to test if it
453 belongs to the corresponding category and record the
4s9 probability if yes. The probability will be used as the
40 labeling cost which penalizes the mislabeling in the fol-
461 lowing optimization.

Input scene  Classifier Testing situation

“e—e
s
_‘-:,
=

Figure 8: The matching strategy of our algorithm.
Given a segment graph of the input scene on the left,
we use all the three classifiers to test the occurrence of
the corresponding subgraph. The testing samples are
shown on the right. Note that some connection edge in
the first row can be turned into a proximity one to allow
more matches.

After applying all classifiers, we detect all the potential
objects or object groups in the input scene. The graph
matching strategy is illustrated in Figure 8. Note that we
allow a connection edge to be converted into a proximity
one to produce more matchings. The rationale of this is
that some segments not belonging to the same object
could be linked by connection edges mistakenly due to
small mutual distance.

46!
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Next, we solve a labeling optimization which minimizes
the overall matching cost computed from all the match-
ing probability. The final labeling, X, for all segments
of the input scene is computed by:

X = argminxz D(X, c;) (10)
c;eC
where:
0, if recognized subgraph by
DX, c) = ¢; is labeled correctly in X
cost (X, ¢c;), otherwise.

470 where cost (X, ¢;) is the labeling cost penalizing the
471 wrong labeling of the subgraph detected by the classifier
472 ¢;. We found it suffices to solve this labeling optimiza-
473 tion using a combinatorial search over all labeling pos-
474 sibilities since the possible labeling for each segment
475 is limited after the classifier filtering and testing. The

9
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Figure 9: Segmentation comparison against the
RANSAC based primitive fitting method [15]. Left:
Comparison over nine test scenes. Right: Results of our
method and the RANSAC-based one over scene #2 with
increasing number of scans.

d

476 whole testing process for object and object group detec-
477 tion is described in Algorithm 3.

478 6. Results and Evaluation

479 We test our method on both real-world and virtually
450 scanned scenes. A gallery of results is shown in Fig-
431 ure 18. We first describe the experimental setting of our
452 method and then evaluate our method in two aspects,
483 1.e., the segment detection and the object recognition.

484 Experimental Setting. Our method is implemented us-
4g5 ing C++ and run on a desktop PC with an Intel I5-3750
46 CPU (quad core, 3.4GHz) and Nvidia GeForce GTX
457 460 graphics card. We scan a few indoor scenes using a
s Microsoft Kinect. We also use the Washington scene
480 dataset [36] acquired by an ASUS Xtion PRO LIVE
490 RGB-D sensor. The parameter settings are provided be-
491 low. Patch size (diameter): 8cm for NYU-Depth V2
se2 dataset and 4cm for others; we, w,, and w, in 1: 0.2,
493 0.3, and 0.5, respectively; ¢ for table extraction: 0.95
494 for all datasets; #; and #; for segment graph construc-
495 tion: 3cm and 50cm, respectively; Poisson iso-point
496 sampling density: 2cm; basic kernels for MKL (we use
497 SimpleMKL [37]): five Gaussian kernels and two poly-
498 nomial kernels.

a90 Segment Detection. We test our segment detection al-
so0 gorithm on nine tabletop scenes downloaded from the
so1 Internet (Figure 10) and virtually scanned. We compare
so2 our method with the RANSAC-based primitive fitting
so3 method in [15]. The Rand Index [38] is used as the
so4 evaluation criterion. We perform six tests on each scene

Figure 10: The test scenes used in segmentation evalu-
ation.

RGB Image

w

Depth Image

-
» NS

Segmentation Result

>
F

Figure 11: The segmentation results our algorithm over
the scenes from the NYU-Depth V2 dataset. Our method
can segment most objects correctly in the highly clut-
tered scenes.

sos with different number of scan and quality and take the
sos average Rand Index. In the virtual scanning, the virtual
so7 scanners are positioned around the scene being scanned
sos and oriented to the center of the scene. The plot in Fig-
so0 ure 9 (left) show that the Rand Index of our method is
s10 higher than that of the RANSAC-based method over the
s11 nine test scenes. We also evaluate how scan quality
siz2 would affect the segmentation results with the varying
s13 number of scans for scene #2; see Figure 9 (right).

s14 We also test our segmentation approach on NYU-Depth
s15 V2 dataset. A significant feature of the depth images is
st that the point cloud is of low resolution, making our seg-
st7 mentation infeasible. In order to tackle this kind of in-
s18 put, we made some changes over our algorithm. Given
ste an RGB-D image and its camera parameters, we first

10



Primitive Support Our
fitting[16] relation[9] method
Rand Index 61.8% 78.7% 76.4%

Figure 12: A comparison of the segmentation accuracy
(Rand Index) of the methods in [15] and [8] and ours
on the NYU-Depth V2 dataset.

=—Our Method
08 \ =Sliding Shapes
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0
0 0.2 0.4 0.6 0.8 1
recall

Figure 13: Precision-recall curves for object recogni-
tion. Comparison is made between our method and the
other three methods by testing on the database in [36].

s20 project the 2D points into 3D space to reconstruct a 3D
s21 scene. We skip the table extraction process and detect
s22 the segments for the near-camera points (distance less
s23 than 2m) using our method, and cluster the rest distant
s24 points using Euclidean cluster extraction [39].

s2s We test our method on a selected subset of the NYU-
s26 Depth V2 dataset as in [22], which contains 45 living
s27 rooms and offices. Some results of our algorithm are
s2s shown in Figure 11. We compare our method with the
s29 support relation based method in [8] and the RANSAC-
s30 based one in [15]. The segmentation Rand Index mea-
sa1 sures for the three methods are shown in Figure 12. The
ss2 support relation based method slightly outperforms our
sss method, due to the incorporation of the high-level prior.

ss Object Recognition. Our recognition database contains
s35 900 objects in 18 categories and 10 kinds of object
ss6 groups. We test our object recognition method on two
se7 scanned scene datasets. The first one is several real-
sss world scenes such as office, meeting room, and lab-
sse oratory, scanned by ourselves and the second dataset
ss0 from [36]. The scenes contain a variety of object cat-
s+1 egories with noisy and low quality scans.

se2 Figure 18 demonstrates the results on six indoor scenes.
s« The semantic labels are shown using distinct colors,
s+« while the contextual information is illustrated with red

sss dots and dashed lines. The majority of objects can be
se6 recognized correctly, benefiting from the contextual in-
s+7 formation. The geometric ambiguity between different
s4s categories of objects, such a keyboard and a book, are
s resolved with the help of contextual information. Some
ss0 segments are correctly segmented but not successfully
s51 recognized due to capability of our recognition model
ss2 learned from the limited model database. This can be
ss3 improved by collecting more data and training a more
ss¢ powerful model.

555 We evaluate our method on the database of [36] con-
ss6 taining 58 indoor scenes collected using KinectFusion.
ss7 We compare to three alternative methods: the sliding
sss shapes [21], a reduced version of our method by us-
ss0 ing linear SVM classifiers, and a reduced method with-
se0 out using contextual information. The precision-recall
se1 curves for recognition are plotted in Figure 13. It is
s62 obvious that our method outperforms sliding shapes,
ses thanks to the object-group-level analysis and the MKL
se¢ classifiers in our method. The reduced method with-
ses out contextual information is slightly inferior to sliding
ses shapes. This is because sliding shapes use a plethora
se7 of classifiers, which is three orders of magnitude more
ses than what our method uses.

se0 As demonstrated in Figure 14, our method benefits from
s70 the contextual information in two ways. First, context
s71 helps to eliminate recognition ambiguity. For example,
s72 the object in Figure 14 (a) can either be a book or a
s73 keyboard, which is correctly recognized with the help
s74 of the monitor-keyboard-mouse combo. Second, con-
s75 text can enhance the recognition ability under low data
s76 quality. For example, the cup in Figure 14 (b) is hard
577 to be recognized due to the low data quality, where the
s78 cup-cup group helps recognize it.

s79 We make two observations from the results. (1) The
ss0 precision is consistently high with the increasing of the
ss1 recall. (2) The recall converges to a high value but never
ss2 reaches 1 with the precision decreasing. These obser-
ss3 vations can be explained by the inter-restriction of the
ss« multiple MKL classifiers. Our method finds a labeling
ses that tries to satisfy all the MKL detectors as much as
sss possible, leading to more reliable labeling result.

se7 To evaluate the performance our method on cluttered
sss scenes, we scan six desktop scenes with an increasing
sss degree of object clutter. The objects we recognized are
so0 highlighted with boxes in Figure 15. It is clear that our
sor method achieves robust recognition on these cluttered
se2 scenes, especially the one in Figure 15 (c). As a com-
se3 parison, the method in [22] cannot recognize the mouse
se4 in (c), because the contour-based approach fails when

11



(b)

Figure 14: The contextual knowledge could benefit ob-
ject recognition in two ways. (a): Resolving recognition
ambiguity: The keyboard in blue box is recognized cor-
rectly due to the contextual information of the monitor-
keyboard-mouse combo. (b): Enhancing recognition
ability: The cup in blue box is in low scan quality but
can be recognized based on the cup-cup combo.

(a)

=

Figure 15: Our recognition results on several scenes
with increasing degree of object from (a) to (f). The
monitors, keyboards and mouses are correctly recog-
nized by our method and labeled with blue, orange and
green boxes.

ses dealing with cluttered scenes due to the incorrect con-
s96 tour extraction. The contour of the red box area in (¢) is
se7 shown on the top-right corner.

I book
Il bottle
B indeterminacy

Figure 16: A failure case of our method. Our method
cannot recognize most of the objects in a cluttered scene
(c). This is due to the fact that the scene point cloud is
only a single-view scan (b).

see Time Performance. For a scene with 100K points, the
se0 segment detection takes 20 seconds. The training proce-
so0 dure of our object recognition is determined by the num-
et ber of individual object and object group categories. In
02 Our case, it takes about 1 hour to train a classifier us-
e0s ing SimpleMKL averagely. The training process takes
s+ about 32 hours in total for the 18 objects and the 10 ob-
e0s ject groups. The testing time is determined by the num-
eos ber of segments and the degree of object clutter. The
e07 testing time for the scenes in Figure 18 (a) to (f) are 7.8,
s 19.1, 39.5, 20.3, 1.7 and 12.9 minutes, respectively.

e0o Limitations. Our method has the following limitations.
s10 First, our method does not provide a mechanism to deal
11 With input data with severe missing parts. For example,
s12 if the input contains only a single-view scan, our method
s13 would not be able to produce meaningful segments for
e14 further analysis. A failure case of this is shown in Fig-
e15 ure 16. Second, our method can tolerate only moder-
s16 ate shape variation. It might fail when recognizing ob-
s17 jects with too special structure of segment graph, such
s18 as the case shown in Figure 17. Last, our method works
s19 the best for a scene containing a planar support. Al-
e20 though quite commonly seen in everyday indoor envi-
e21 Tonments, the assumption does not generalize well for
s22 outdoor scenes.
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Figure 18: A gallery of scene understanding results by our method.

623 7. Discussion and future work

24 To achieve object analysis from clustered subscenes, we
e25 have developed a unified framework for the discovery of
e26 both individual objects and object groups, both of which
e27 are based on the contextual information learned from a
e2s database of 3D scene models. Our method makes the
20 contextual information applicable even without know-
30 ing the object segmentation of the input scene. The lat-
e31 ter has so far been predominantly assumed by existing
e32 methods, e.g., [22].

633 We see three venues for future work. First, our current
e3¢ work focuses on subscene analysis. It would be inter-
635 esting to extend our method to deal with whole scene,

63 leading to multi-scale scene analysis in a unified frame-
sa7 work. Currently, the contextual information is based on
e3s spatial proximity. As another future work, we would
s30 like to expand our contextual features with multi-modal
s40 Object interaction, such as dynamic motion, to address
ss1 more complex mutual relations among objects. Finally,
es2 it is natural to utilize our framework in robot-operated
s43 autonomous scene scanning and understanding.
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