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Abstract
Linear Dynamical Systems are widely used to study the un-
derlying patterns of multivariate time series. A basic assump-
tion of these models is that high-dimensional time series
can be characterized by some underlying, low-dimensional
and time-varying latent states. However, existing approaches
to LDS modeling mostly learn the latent space with a pre-
scribed dimensionality. When dealing with short-length high-
dimensional time series data, such models would be eas-
ily overfitted. We propose Reduced-Rank Linear Dynami-
cal Systems (RRLDS), to automatically retrieve the intrin-
sic dimensionality of the latent space during model learning.
Our key observation is that the rank of the dynamics matrix
of LDS captures the intrinsic dimensionality, and the vari-
ational inference with a reduced-rank regularization finally
leads to a concise, structured, and interpretable latent space.
To enable our method to handle count-valued data, we in-
troduce the dispersion-adaptive distribution to accommodate
over-/ equal-/ and under-dispersion nature of such data. Re-
sults on both simulated and experimental data demonstrate
our model can robustly learn latent space from short-length,
noisy, count-valued data and significantly improve the pre-
diction performance over the state-of-the-art methods.

Introduction
Deciphering the latent structure from high-dimensional time
series is one of the fundamental problems of Artificial In-
telligence, which has been extensively applied in various
fields from social, economics, to biology science (Linder-
man, Stock, and Adams 2014; She, So, and Chan 2015;
She, Chen, and Chan 2016; So et al. 2016; Hein et al. 2016).
In such settings, many studies and theories posit that high-
dimensional time series are noisy observations of some un-
derlying, low-dimensional, and time-varying signal of in-
terest (Pfau, Pnevmatikakis, and Paninski 2013; Archer et
al. 2014; Sussillo et al. 2016). Linear Dynamical Systems
(LDS) have been employed to extract a low-dimensional
implicit network structure from observed multivariate time
series data (Archer et al. 2014; Lakshmanan et al. 2015;
Linderman et al. 2017), which captures the variability of ob-
servations, both spatially and temporally.

However, two main challenges exist when using LDS to
retrieve an optimal implicit network structure. First, the ex-
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Figure 1: Latent trajectories reconstructed from (a) unconstrained dynamics matrix
and (b) reduced-rank dynamics matrix (different colors indicate different simulated
trials). The low-dimensional manifold in (b) is smoother and better structured.

isting models need a predefined latent dimensionality. In or-
der to ensure the models’ capability, it is typically set to
be a large value, which leads to the difficulties in model-
ing the short-length high-dimensional time series data due
to overfitting. This modeling problem is troublesome since
the short-length time series data exist in many real-world
scenarios. For example, in neuroscience, we cannot obtain
long sequences of high-quality neural data in experiments
because of (i) the short lifetime of some neurons, (ii) the
limited viable time of recording materials and (iii) the micro-
movement of recording electrodes during an activity of the
animal (Spira and Hai 2013). In the clinical domain, the
length of patient clinical data is usually less than 50 because
the hospitalization period for most patients is less than two
weeks (Banaee, Ahmed, and Loutfi 2013). In economics, the
econometric multivariate time series, such as gross domestic
product and consumer price index, are measured quarterly or
yearly which results in short-length data.

Second, real-world time series data are often count-valued
(rather than real-valued). The application of standard LDS,
which assumes the observation follows Gaussian distribu-
tion, is infeasible (She, So, and Chan 2016). Examples in-
clude multiple spike trains recorded from neural popula-
tions (Paninski et al. 2010), the data of trades on the S&P
100 index (Linderman and Adams 2014), to name just a
few. Extensions on model to handle count nature of the
data are necessary. Recently, Poisson linear dynamical sys-
tem (PLDS) (Buesing et al. 2014) was proposed for count
data modeling. Nevertheless, the Poisson assumption im-
plies equal dispersion of the observations, i.e., the condi-
tional mean and variance are equal. This limits PLDS in
characterizing neural spike counts, which are commonly ob-



served to be either over- or under-dispersed (variance greater
or less than mean) (Churchland et al. 2010; She, Jelfs, and
Chan 2016). Without a proper distribution capturing the dis-
persion of count data, one cannot learn the variability of the
data, thus failing to infer an optimal implicit network.

In view of these limitations, we propose a novel solu-
tion to infer the implicit network from short-length, noisy
count data. We focus on the dynamics matrix of LDS, which
represents the influence that one latent node exerts on the
subsequent activity of another. In other words, the dynam-
ics matrix is used to govern the node evolution of the im-
plicit network. Our key observation is that the rank of the
dynamics matrix captures the intrinsic dimensionality of the
state space of the nodes. To prevent LDS from overfitting
given short-length data, we seek to learn a compact low-
rank dynamics matrix. Specifically, we compose two dif-
ferent low-rank priors for dynamics matrix, i.e., multivari-
ate Laplacian and nuclear norm, which offer similar per-
formance for retrieving the intrinsic dimensionality and are
widely applied to different scenarios(Gao and Yuille 2016;
Gao, Ma, and Yuille 2017). Moreover, to facilitate the learn-
ing of reduced-rank dynamics matrix from count data, we
introduce the dispersion-adaptive (DA) distribution and de-
velop a novel, flexibly-parameterized observation model.

Figure 1 demonstrates the advantage of reduced-rank dy-
namics matrix with DA distribution in recovering low di-
mensional manifolds from short-length, noisy count-valued
time series data. The observation is 40-dimension (i.e. 40D)
time series data, which is modeled with a 10D dynamics
matrix (same initial states). It shows that our method suc-
cessfully retrieves three intrinsic dimensionalities from the
dynamics matrix, leading to a smoother and better struc-
tured manifold indicated by the three dimensional curves,
while the method with unconstrained dynamics matrix fails.
In summary, our contributions are four-folds:
• We propose to retrieve intrinsic dimensionality of multi-

variate time series by imposing two reduced-rank struc-
tures on the dynamics matrix.

• We introduce a count-valued exponential family distribu-
tion (calledDA distribution) to capture the dispersion na-
ture of count data, and derive a variety of commonly used
distributions as special cases.

• We utilize a latent, reduced-rank linear dynamical model
to modulate expectation of DA observation distribution,
thus forming a novel linear dynamical system model.

• We develop a Variational Bayes Expectation Maximiza-
tion (VBEM) algorithm by extending the current state-of-
the-art methods to the novel model.
Our framework is evaluated against the baseline meth-

ods on both simulated and real-world data. The promising
performance demonstrates that our method is able to: (1)
automatically reduce redundant dimensions of latent state
space, which prevents overfitting with large number of pre-
defined latent states; (2) significantly improve prediction
performance over baseline methods for noisy neuronal spik-
ing activities; and (3) robustly and efficiently retrieve in-
trinsic dimensionality of underlying complex neural systems
from two experimental datasets.

Background
Linear Dynamical System (LDS), with well-developed in-
ference and learning methods, is an elegant mathematical
framework for modeling and learning multivariate time se-
ries (MTS). LDS models real-valued MTS {yt ∈ Rq}Tt=1
using latent states {xt ∈ Rn}Tt=1:

xt|xt−1 ∼ N (xt|Axt−1, Q), (1)
yt|xt ∼ N (yt|Cxt, R). (2)

Eq. 1 represents state dynamics, and Eq. 2 is the observa-
tion model. Briefly, {xt} is evolved via a dynamics matrix
A ∈ Rn×n. Observations {yt} are generated from {xt} via
a emission matrix C ∈ Rq×n. These two processes have
Gaussian noise with mean 0 and covariance matrices Q and
R respectively. The initial state x1 is multivariate Gaussian
distribution with mean x0 and covariance Q0. The complete
set of the LDS parameters is Ω = {A,C,Q,R,x0, Q0}.

While in some LDS applications, the model parameters
are known a priori, in the majority of real-world applica-
tions they are unknown, and we learn them from MTS data.
This can be done with LDS learning methods such as the
Expectation-Maximization (Ghahramani and Hinton 1996)
or spectral learning (Buesing, Macke, and Sahani 2012).

Related Work
Various regularization methods have been proposed for both
time series modeling and prediction tasks with LDS under
different applications (Charles et al. 2011). These can be di-
vided into four categories: (1) state regularization; (2) in-
novation regularization; (3) combination regularization; and
(4) parameter regularization.

State Regularization The latent states {xt}Tt=1 are spar-
sified at each step of Kalman filter inference. Charles et
al. (2011) incorporates sparsity constraints to achieve a
sparse state estimate x̂t at each time stamp. Angelosante et
al. (2009) treats state sequence {xt}Tt=1 as a state estimate
matrix and enforces a row level group lasso on this matrix.

Innovation Regularization The error of state estimation
is called “innovation”, i.e., ||x̂t −Ax̂t−1||. `1 regularization
is applied on innovation during state estimation, which can
help to balance fidelity to the measurements against the spar-
sity of the innovations (Asif et al. 2011).

Combination Regularization Ghanem and Ahuja (2010)
trains a dictionary of LDSs, in which each LDS is learned
via one trial training MTS. The final LDS is a weighted
combination of these individual LDSs, whose weights are
regularized by an `1 penalty.

Parameter Regularization (?) Parameter regularization
imposes regularization penalties on the parameters of a LDS
during the learning process. Boots et al. (2007) limited the
largest eigenvalue of dynamics matrix within unit circle to
avoid unstable latent dynamics. A spectral algorithm has
been proposed to learn a stable LDS, which is good for sim-
ulating and predicting from learned system. Our solution in
reduced-rank linear dynamical system belongs to this cate-
gories as we introduce a low-rank dynamics matrix for re-
covering the intrinsic dimensionality.



Our method is different from category (1) and (2) be-
cause both of them learn a sparse representation for latent
states {xt}Tt=1 while they assume all parameters of LDS as
a priori. The combination regularization in (3) require extra
training process since they need to construct a LDSs dic-
tionary from different MTS. For limited time series data in
our case, they are unable to solve the overfitting problem
and retrieve the intrinsic dimensionality of MTS. While our
method belongs to the same category (4) as the stable LDS
proposed by Boots et al. (2007), we focus on different as-
pects of the problem. They attempt to achieve stability in
LDS, while we aim to find an appropriate state space and
prevent overfitting given a small amount of MTS count data.

For learning LDS model from Gaussian observations,
standard EM algorithm (Ghahramani and Hinton 1996) can
iteratively find the maximum likelihood solution. Subspace
Identification (SubspaceID) method compute an asymptoti-
cally unbiased solution in closed form by using oblique pro-
jection and Singular Value Decomposition (Van Overschee
and De Moor 2012). For learning LDS model from count
observations, Busing et al. proposed Poisson Linear Dynam-
ical Systems (PLDS) and to learn it using spectral learning
method (2012) or variational inference (2014). The Poisson
assumption of count data, while offering algorithmic conve-
niences, implies the conditional mean and variance of count
data are equal. This property is improper in some analy-
sis of count data, which are observed to be either over- or
under-dispersed (Churchland et al. 2010). Thus, it is crucial
to develop more general observation distributions to capture
over/equal/under-dispersion of count data.

To address these needs, we also employ a count-valued
exponential family distribution (weighted Poisson distribu-
tion), which is superior to current methods in two aspects:
(i) adaptive dispersion, where a log-convex/linear/concave
weight function will produce the expected over/equal/under-
dispersion; (ii) flexible setting, with a variety of previous
work are derived as special cases under this distribution.

Methodology
Reduced-Rank Structure
In order to recover the intrinsic dimensionality from MTS
datasets through the rank of dynamics matrix A, we shall
choose specific priors which can induce the desired low-rank
property. We have two choices of inducing a low-rank dy-
namics matrix: (1) a multivariate Laplacian prior and (2) a
nuclear norm prior as shown in Table 1:

Prior Name Prior Form Regularization
Multivariate Laplacian ∝ exp(−β1||Ai||2) β1||Ai||2

Nuclear norm ∝ exp(−β2||A||∗) β2||A||∗
Table 1: Prior choices for dynamics matrix

(1) Multivariate Laplacian prior It assumes every row in
dynamics matrix A is independent of each other and has the
multivariate Laplacian density. Also in order to avoid over-
fitting, we introduce a multivariate Gaussian prior to each
element in A , which leads to the ridge regularization. Then,

we combine the multivariate Laplacian prior and Gaussian
prior to get a new prior pML(A), as

log pML(A) = −β1

n∑
i=1

‖Ai‖2 −
β2

2
‖A‖2F + const, (3)

where β1,β2 are regularization parameters. {Ai}ni=1 indi-
cates rows of A. ‖ · ‖2 and ‖ · ‖F are `2 and Frobenius norm.

(2) Nuclear norm prior It can be regarded as a convex
relaxation of the number of non-zeros eigenvalues (i.e.,the
rank) of the dynamics matrix A. We get an alternative prior
pNN (A) by applying nuclear norm density and multivariate
Gaussian to dynamics matrix, as

log pNN (A) = −β3‖A‖∗ −
β4

2
‖A‖2F + const, (4)

where ‖ · ‖∗ is nuclear norm. β3, β4 are regularization pa-
rameters. {βi}4i=1 are selected (in all experiments) by the in-
ternal cross validation while optimizing model’s predictive
performance. We impose pML(A) and pNN (A) separately
to the learning process, and derive two methods to optimize
a low-rank dynamics matrix.

Dispersion-adaptive (DA) Distribution
For count-valued observations, we define the DA distribu-
tion as the family of count-valued probability distribution:

pDA(Y = k; θ, w(·)) =
w(k) exp(θk)

k!E[w(Y )]
, k ∈ N (5)

where θ ∈ R and the function w(·) : N → R parameter-
izes the distribution, and E[w(Y )] =

∑
k∈N

w(k) exp(θk)
k!

is the
normalizing constant. It can be viewed as an extension of
Poisson distribution with a weight function w(·). This kind
of generalizations has been of interest since del Castillo et al.
(2005), and they proved that: (1) log-concave/linear/convex
functions w(·) imply under/equal/over-dispersed distribu-
tions; (2) the expectation of any weighted Poisson distri-
bution is monotonically increasing with θ, for a fixed w(·).
Figure 2 (a) demonstrates different w(·) functions model the
dispersion of count data, and controlling θ can adjust the
mean value of DA distribution. As shown in Figure 2 (b),
we derive many of the commonly used count-data distribu-
tions as special cases ofDA, by restricting the w(·) function
and θ to have certain parametric form. Figure 2 shows that
DA offers a rich, flexible exponential family for count data,
and allowsw(·) and θ to be interpretable for capturing statis-
tics of count-valued data.

Reduced-Rank Linear Dynamical System (RRLDS)
With two reduced-rank structures and DA distribution in
hand, we now couple them with a latent, linear dynami-
cal system. This system, which we call RRLDS, is benefi-
cial for modeling limited count data to retrieve intrinsic di-
mensionality. We apply it to model time series data (spike
counts) recorded from brain neurons, and it is straightfor-
ward to extend it to describe and interpret other count-
process observations. Denoting yit,r as the spike count of
neuron i ∈ {1, . . . , q} at time t ∈ {1, . . . , T} on experimen-
tal trial r ∈ {1, . . . , R}, we assume the spiking activities
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Figure 2: (a) The mean and variance of theDA distribution with different choices of the function w(·). With a fixed logw(·), increasing θ can drive mean
and variance to be larger (darker dots); (b) Common count distributions are special cases ofDA distribution by parameterizing θ and w(·).

of neurons are noisy count observations of underlying low-
dimensional latent states xt,r ∈ Rn(n < q) (modulating
mean value of DA distribution) and define the DA observa-
tion model as:

yit,r|xt,r ∼ DA(c>i xt,r, wi(·)). (6)

We parametrize θ = c>i xt,r, where C = [c1, · · · , cq]> ∈
Rq×n is emission matrix mapping latent space to observa-
tion space. wi(·) is a neuron-specific function capturing the
dispersion property of each time series. The evolution of la-
tent state xt,r is described by a linear first-order process:

x1,r ∼ N (x1,r|x0, Q0),

xt,r|xt−1,r ∼ N (xt,r|Axt−1,r +But−1,r, Q). (7)

Here, x0 and Q0 are the mean and covariance of the ini-
tial state and Q is the covariance of the innovations. Exter-
nal input ut,r with coupling effects B are considered in the
process of latent evolution. For example, in the hippocam-
pal experiments to be presented in the Results section, the
rat’s position (trajectory) can be regarded as external stimuli,
and location-stimulus filter B is obtained under this setting.
Meanwhile, reduced-rank structures pML(A) and pNN (A)
are imposed on dynamics matrix A.
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Figure 3: Illustration of the two stages of RRLDS.

RRLDS is illustrated in Figure 3 along with two-stage
model structure: The first stage includes reduced-rank struc-
tures composed on the dynamics matrix A, which governs
the evolution of latent states xt. The second stage maps la-
tent states xt onto responses yt via DA observation model,
which learns the dispersion property.

Variational Bayes Expectation-Maximization (VBEM) al-
gorithm is adopted for estimating latent states x1:T,r (E-
step) and parameters Θ = {A,B,C,Q,Q0,x0 {wi(·)}pi=1}

(M-step). Since the posterior distribution of x1:T,r has no
analytical solution, an approximation step is implemented
via a variational lower bound. Meanwhile, two regulariza-
tion strategies are proposed for optimizing dynamics matrix.

Inference (E-step)

We need to characterize the full posterior distribution of
latent states given the observations y1:T,r and parameters
Θ, such that: p(x1:T,r|y1:T,r,Θ). This distribution is in-
tractable, and usually we make a Gaussian approximation.
Denote x̄r = vec(x1:T,r) and ȳr = vec(y1:T,r). For ease
of notation in the paper we drop the trial index r. Thus, we
use Gaussian approximation as p(x̄|ȳ) ≈ q(x̄) = N (µ,Σ).
We identify the optimal (µ,Σ) by maximizing a variational
Bayesian lower bound (also called “ELBO”) over the vari-
ational parameters µ and Σ as:

L(µ,Σ) = Eq(x̄)

[
log

(
p(x̄|Θ)

q(x̄)

)]
+Eq(x̄) [log p (ȳ|x̄,Θ)] (8)

The first term of Eq. 8 is the negative Kullback-Leibler di-
vergence between the variational distribution and prior dis-
tribution, encouraging the variational distribution to be close
to the prior. The second term involving the DA likelihood
encourages the variational distribution to explain the obser-
vations well. The integrations in the second term are in-
tractable due to non-conjugation. We use the ideas of Khan
et al. (2013) to derive a further lower bound. First, we ex-
pend the second term using DA likelihood via Eq. 6 as

Eq(θit)

[
log pDA

(
yit|θit, wi(·)

)]
= Eq(θit)

[
yitθ

i
t + log

wi(y
i
t)

yit!
− log

K∑
k=0

exp(kθit)wi(k)

k!

]
, (9)

where θit = c>i xt. Denoting mi
t,k = kθit + logwi(k) −

log(k!) = kc>i xt + logwi(k)− log(k!), we can see mi
t,k is

a linear transformation of xt. Under the variational distribu-
tion mi

t,k is also normally distributed mi
t,k ∼ N (hit,k, ρ

i
t,k).

We have hit,k = kc>i µt + logwi(k) − log k!, and ρit,k =

k2c>i Σtci, where (µt,Σt) is the expectation and covariance
matrix of xt under variational distribution. Then, Eq. 9 is
reduced to Eq(mi

t,k)[m
i
t,k − log

∑
k exp(mi

t,k)]. A further



lower bound can then be derived by Jensen’s inequality:

Eq(mi
t,k

)[m
i
t,k − log

∑
k

exp(mi
t,k)] (10)

≥ hit,k − log
∑
k

exp(hit,k + ρit,k/2) = f(hit, ρ
i
t).

Combining Eq. 8 and Eq. 10, we can get a tractable varia-
tional lower bound, where L∗(µ,Σ) ≤ L(µ,Σ) as

L∗(µ,Σ) = Eq(x̄)

[
log

(
p(x̄|Θ)

q(x̄)

)]
+
∑
t,i

f(hit, ρ
i
t). (11)

In the E-step, we maximize the new lower bound L∗ via its
dual (Khan et al. 2013). Finally, we have sufficient statistics
Ex̄[xtx

>
t ], Ex̄[xt−1x

>
t ], and Ex̄[xt], which are necessary to

M-step. Details are derived in the supplementary materials.

Learning (M-step)
The M-step requires maximization of L∗ over Θ. This
process involves the optimization of three parts: (1) dy-
namics matrix A; (2) other dynamical system parameters
{B,Q,Q0,x0}; and DA model parameters {C, {wi(·)}pi }.
Optimization of A In M-step, dynamics matrix A is opti-
mized via maximizing Ex̄[

∑T
t=2 log p(xt|xt−1)]+log p(A).

We already introduced two reduced-rank structure pML(A)
and pNN (A). Below we briefly outline two efficient algo-
rithms (i.e., A1 and A2) and our novel contributions.

A1: pML(A) Two levels of constraints were applied to A:
(1) multivariate Laplacian prior; and (2) multivariate Gaus-
sian prior. The first leads to low-rank structure and the sec-
ond prevents overfitting. Here the objective function is

min
A
g(A) + β1

n∑
i=1

‖Ai‖2 +
β2

2
‖A‖2F , (12)

where g(A) = 1
2

∑T
t=2 Ex̄[‖xt − x̂t‖2Q−1 ] and x̂t−1 =

Axt−1 − But−1. β1, β2 are selected by the internal cross
validation. Eq. 12 can be transformed into a quadratic prob-
lem with a non-smooth Euclidean norm (details shown in
supplementary materials), as

argminA
1

2
a>Ha− b>a+ β1

n∑
i=1

‖Ai‖2. (13)

For clarity a = vec(A>), and Q−1 = LL>. We reformulate

H = Q−1 ⊗
T∑
t=2

Ex̄[xt−1x
>
t−1] + β2In2 ,

b = L⊗
T∑
t=2

Ex̄[xtx
>
t−1 −But−1x

>
t−1]> vec(L).

Eq. 13 can be casted into second order cone program
(SOCP) and solved using existing SOCP solvers. SOCP al-
ways provides solutions with high precision (low duality
gap) when the state size remains moderate (<50), which is
the case in our experiments. The transformed SOCP is given
as

min
α0,··· ,αn

α0 + β1

n∑
i=1

αi

s. t. α0 ≥
1

2
a>Ha− b>a, αi ≥ ‖Ai‖2. (14)

A2: pNN (A) We assume that dynamics matrix A has a
nuclear norm density and similarly to pML(A), we also as-
sume a multivariate Gaussian prior for each element inA. In
this case, our objective function becomes:

min
A
g(A) + β3‖A‖∗ +

β4

2
‖A‖2F . (15)

Denoting h(A) = g(A) + β4

2 ‖A‖
2
F , which is convex and

differentiable with respect to A. We can minimize Eq. 15
based on generalized gradient descent algorithm:

A(j+1) = proxdj

(
A(j) − dj 5 h(A(j))

)
, (16)

here proxdj (·) is the singular value soft-thresholding oper-
ator, and dj is the step size in iteration j. We select the step
size to assure fast convergence rate based on Theorem 1 and
proof is in the supplementary material.

Theorem 1 Generalized gradient descent with a fixed step
size d ≤ 1/(‖Q−1‖F · ‖

∑T−1
t=1 E[xtx

>
t ]‖F + β3) for minimiz-

ing Eq. 15 has convergence rateO(1/J), where J is the total
number of iterations.

Optimization of {B,Q,Q0,x0} With variational distri-
bution q(x̄), the part of the likelihood about Gaussian linear
dynamics is quadratic with respect to x̄, and has closed form
solutions based on Ghahramani and Hinton (1996).

Optimization of {C,w(·)} The part of the likelihood in-
volving DA observation distribution is not a standard form
as in previous work (Ghahramani and Hinton 1996). In our
model, considering all experimental trials, we have

LC,w(·) =

q∑
i=1

T∑
t=1

R∑
r=1

yit,r(c
>
i µt,r) + log(wi(y

i
t,r)) (17)

− log(

K∑
k=1

wi(k)

k!
exp(k(c>i µt,r) +

1

2
k2c>i Σt,rci)).

This part is concave and can be optimized efficiently
using existing convex optimization techniques. In prac-
tice, we initialize our parameters using Laplace-EM algo-
rithm (Buesing et al. 2014), which empirically gives runtime
advantages, and produces a sensible optimum.

Above steps provide a fully inference and learning algo-
rithm (VBEM), which is summarized by Algorithm 1.

Results
To demonstrate the generality of DA and verify our algo-
rithmic implementation, we first test inference and learning
method on extensive simulated data. Then we evaluate the
prediction performance by comparing with state-of-the-arts
over two neuroscience datasets. Finally, we verify that our
method can retrieve the intrinsic dimensionality from those
multivariate time series, which is substantially more power-
ful than the existing works. Table 2 lists the abbreviations of
methods compared in the Results part.



Algorithm 1 Framework of inference and learning (VBEM)

Input:
• {A,B,C,Q,Q0,x0, w(·)} initialized via Laplace-EM.
• Observation sequences yit and stimuli sequences uit

with i ∈ {1, . . . , q} and t ∈ {1, . . . , T}.
Output: Ex̄[xt], Θ̂ = {Â, B̂, Ĉ, Q̂, Q̂0, x̂0, {ŵi(·)}pi=1}

1: repeat
2: E-step:
3: Compute new ELBO : L∗(µ,Σ) from Eq. 11
4: {µ,Σ} ← dual optimization over L∗(µ,Σ)
5: p(x̄|ȳ, θ)← N (µ,Σ)
6: Compute Ex̄[xtx

>
t ], Ex̄[xt−1x

>
t ], and Ex̄[xt].

7: M-step:
8: if p(A)← pML(A) then
9: A← SOCP solving Eq. 14

10: else p(A)← pNN (A)

11: d← 1/(‖Q−1‖F · ‖
∑T−1
t=1 E[xtx

>
t ]‖F + β3)

12: Compute gradient of h(A)
13: A← proxd (A− d5 h(A))
14: end if
15: {B̂, Q̂, Q̂0, x̂0} ← argmaxθ Ex̄k [log p(x̄|θ)].
16: {Ĉ, {ŵi(·)}pi=1} ← optimization over Eq. 17
17: until convergence

with Reduced Rank w/o Reduced Rank
with DA RRLDS-ML /-NN DALDS
w/o DA RRLDS (w/o DA) alternative LDSs

Table 2: Abbreviations for our method and several baselines. ML stands for Multivari-
able Laplacian and NN for Nuclear Norm. Alternative LDS methods include vanilla
LDS (Ghahramani and Hinton 1996), PLDS (Buesing, Macke, and Sahani 2012), Sub-
spaceID (Van Overschee and De Moor 2012) and StableLDS (Boots, Gordon, and
Siddiqi 2007).

Simulated results
Reconstruction of Latent States We evaluate the perfor-
mance of proposed variational inference for posterior distri-
bution of latent states, given a known set of parameters Θ,
observed data {y1:T,r}2r=1 and stimuli {u1:T,r}2r=1. The in-
trinsic dimensionality of simulated data is set to the number
of latent states (xt,r ∈ R3) in inference. The true state tra-
jectories {xt,r}2r=1 (grey) and the posterior mean estimates
{E [xt,r]}2r=1 (black) are plotted in Figure 4, with 3 states
of 2 trials. It shows that our variational inference method
achieves faithful reconstruction of the state trajectories.

Parameter Estimation For parameter estimation, it is in-
appropriate to perform element-wise comparison between
the estimated parameters and ground-truth. This is because
dynamics matrices are unique (in terms of producing the
same observations) only up to linear transformations. There-
fore, we opt to compare the invariants of the estimated and
true parameters as in Macke et al. (2015).

Figure 5 (a) compares the eigenvalue spectrum of the esti-
mated (by RRLDS-ML/-NN (w/o DA), PLDS) and the true
dynamics matrices. The true rank of dynamics matrix is 10
(# blue circles), while the number of latent states is initial-
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Figure 4: Reconstruction of latent states from multiple count data. Top row: true (grey)
and estimated (black) trajectories of 3 latent states in simulated trial #1; Bottom row:
the performance in simulated trial #2.

ized to be 20, larger than the rank. The experiment is per-
formed on the simulated data y with 40 sequences, each of
which has 100 bins. It verifies that RRLDS-ML/NN (w/o
DA) indeed result in a low-rank estimation of the dynam-
ics matrix, with higher accuracy than PLDS. Specifically,
PLDS overfits the data with redundant eigenvalues, instead,
our method learns a rank-10 dynamics matrix from the ini-
tial 20D state space, leaving the rest of eigenvalues to be 0.

Given the estimated parameters, Figure 5 (b) plots the ele-
ments of stationary covariance matrix (Macke, Buesing, and
Sahani 2015) for the predicted (using RRLDS-NN) and true
count data, also demonstrating the accuracy of our estima-
tion.
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Figure 5: (a) The spectrum of estimated dynamics matrices using RRLDS-ML (red
triangle), RRLDS-NN (yellow square) and LDS with Poisson observation model
(PLDS, purple cross). The true complex eigenvalue spectrum is indicated with blue
circles. Results of both RRLDS-ML/-NN methods (w/o DA) are close to true eigen-
values, while PLDS fail to eliminate redundant dimensionality. (b) Scatter plot of the
elements in stationary covariance matrix of predicted and true count data.

Prediction performance We compare the predictive log-
likelihood of the learned systems by RRLDS-ML/-NN,
DALDS and PLDS. A higher predictive log-likelihood im-
plies better performance. Figure 6 (a) shows the results of
four LDSs, each with a dynamics matrix of rank-2, 4, 6, 8,
and 10. The number of latent states is 10, and the dimen-
sion of simulated observations y1:T is 40. The length is 500
for training data and 100 for testing data. Ten trials in total
are simulated. DALDS outperforms PLDS due to the advan-
tages of dispersion-adaptive distribution. RRLDS-ML/-NN
further improve the prediction accuracy by alleviating over-
fitting with intrinsic dimensionality recovery.

In Figure 6 (b), we plot the predictive log-likelihood over
the length of the training data, by fixing the rank to be 5
and the predefined number of states to be 10. Results show
that when the training data become long enough, RRLDS-



ML/-NN, and DALDS converge to a similar performance.
It is because the eigenvalue/eigenvector pairs corresponding
to redundant dimensions of dynamics matrix are estimated
close to the ground-truth. The decomposition space of dy-
namics matrix spanned by its eigenvectors is similar for with
or without regularization. However, only RRLDS-ML/-NN
consistently achieve promising predictions for short-length
data, which is more applicable to real-world scenarios.
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Figure 6: Predictive log-likelihood of (a) four learned LDSs with different true ranks
of dynamics matrices, and (b) four rank-5 LDSs learned with different lengths of train-
ing data. The predefined number of latent states is 10 in both (a) and (b). RRLDS-
ML/-NN significantly (p<0.001, paired t-test) outperform alternatives.

Neuroscience Data
We also evaluated our method on two experimental hip-
pocampus datasets (Mizuseki et al. 2009). These two
datasets contain neuronal spike-count data in the brains of
rats performing two different running tasks.

Prediction performance of neural activities Figure 7
shows prediction performances of six LDSs (RRLDS-ML/-
NN, PLDS, SubspaceID, Stable LDS, and LDS) with dif-
ferent predefined number of latent states for Task #1. As
shown by the predictive log-likelihood, while a single la-
tent state cannot model the system well (the bars to the left),
RRLDS-ML/-NN significantly (p < 0.001, paired t-test)
outperform the alternatives.
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Figure 7: Predictive Log-likelihood of Experimental Spiking Activities in Task #1

Figure 8 compares performances for predicting spike
counts of 10 neurons in 100 time bins (Task #2). The color
represents the count value predicted at each time step. Re-
sults demonstrate that RRLDS can capture more details of
spiking activities compared with all baselines. PLDS has
better prediction than SubspaceID, StableLDS and LDS, but
still loses the temporal precision compared with RRLDS.
Specifically, neuron #4 (during time bins 45-65) and neu-
ron #6 (during time bins 80-95) have high and varying fir-
ing rate (highlighted in the figure). RRLDS-NN captured it
precisely, while others failed. We would like to denote that
without Reduced-Rank structures andDA on LDS, the base-
line methods predict spurious spike counts temporally.
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Figure 8: Prediction performance of five models for neurons’ spike counts (Task #2).
The rows of each subfigure indicate spiking sequence of neurons. The color highlights
count values recorded/predicted at each time step.

Retrieval of intrinsic dimensionality We test the retrieval
of intrinsic dimensionality for the complex neural system
based on the estimated rank of dynamics matrix. In Figure
9, each subfigure plots the normalized eigenvalues of the dy-
namics matrices learned from different experimental trials.
It is observed that given the same task, the rank of the opti-
mized dynamics matrix consistently converges to 5 or 6 for
Task #1 and 10 or 11 for Task #2, regardless of varying the
number of latent states (10, 20 or 30).

This result provides a valuable insight into the internal
factors of the neural system: the recorded spiking activities
in hippocampus for the two tasks are intrinsically character-
ized by an underlying low-rank dynamical system.
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Figure 9: Latent state space recovery from neuroscience data using RRLDS-NN. Top
row: Task #1; bottom row: Task #2. Different lines in each subfigure represent dif-
ferent trials. 10, 20, and 30 latent states are selected for testing robustness of RRLDS
for retrieving intrinsic dimensionality.

Conclusion
We have proposed reduced-rank linear dynamical systems
to retrieve the intrinsic dimensionality from short-length,
noisy count-valued data. Two reduced-rank structures and
a dispersion-adaptive distribution family are introduced and
incorporated into our model. Both simulation and experi-
mental results verify the effectiveness of our method in elim-
inating redundant latent dimensions. Extensions to nonlin-
ear dynamical system are left for future work, which may
require higher algorithmic complexity in the learning with
prior pML/NN (A) and weighted functions w(·). The appli-
cations of this system are not limited in neuroscience. We
expect our method can benefit the learning of more concise,
structured, and interpretable patterns from social science
and financial data, which are often observed to be short-
length, noisy and count-valued. We implement RRLDS in
Matlab(2017a), and our code is available at https://
github.com/sheqi/RRLDS
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