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Abstract
We present a sparse optimization framework for extracting sparse shape priors from a collection of 3D models. Shape priors are
defined as point-set neighborhoods sampled from shape surfaces which convey important information encompassing normals
and local shape characterization. A 3D shape model can be considered to be formed with a set of 3D local shape priors,
while most of them are likely to have similar geometry. Our key observation is that the local priors extracted from a family of
3D shapes lie in a very low-dimensional manifold. Consequently, a compact and informative subset of priors can be learned
to efficiently encode all shapes of the same family. A comprehensive library of local shape priors is first built with the given
collection of 3D models of the same family. We then formulate a global, sparse optimization problem which enforces selecting
representative priors while minimizing the reconstruction error. To solve the optimization problem, we design an efficient solver
based on the Augmented Lagrangian Multipliers method (ALM). Extensive experiments exhibit the power of our data-driven
sparse priors in elegantly solving several high-level shape analysis applications and geometry processing tasks, such as shape
retrieval, style analysis and symmetry detection.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

As the scale of available 3D shapes on internet becomes surpris-
ingly large, a growing number of data-driven methods have been
proposed in computer graphics community over the past decade.
By leveraging the prosperity of big data, these techniques are in-
troduced with the goal of extracting high-level shape information
and meaningful mappings from 3D model databases. They devote
themselves to automatically mining latent patterns in geometry and
structure of shapes, instead of relying on hard-coded rules or ex-
plicitly programmed instructions. With these learned patterns serv-
ing as strong priors, many geometry processing applications can be
solved more accurately and efficiently [XKHK15].

Image priors have become a popular tool in image processing as
they have been applied to different applications such as image de-
noising [EA06, XZZ∗15], structural image editing [BSFG09] and
more. Image priors are defined as patches formed by pixels with-
in a fixed square area. One famous approach [EA06] is the use
of sparse and redundant image patch representations over trained
dictionaries for image denoising. With the success achieved in 2D
image processing applications, prior-based methods also accom-
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plish an outstanding progress in 3D shape processing by taking
advantage of the self-similarity concept. These methods are main-
ly exploited in 3D surface denoising [YBS06], 3D shape recon-
struction [PMG∗05,GSH∗07] and point cloud compression [HMH-
B08, DCV14]. Similar to image priors, 3D shape priors are point-
set neighborhoods sampled from a 3D model within a bounding
sphere. Suppose that any 3D model can be considered to be formed
with a set of local patches, which we refer to as local shape priors,
it is obvious that most of them are likely to have similar geometry.
Consequently, the corresponding sets of local shape priors would
possess a significant number of redundant elements sharing similar
geometric properties. Thus, it is reasonable to leverage few of them
to represent a 3D model, or even represent a whole family of 3D
models. Meanwhile, we observe that the local shape priors extract-
ed from a family of 3D models lie in a very low-dimensional man-
ifold, Therefore, a compact and informative subset of priors can be
learned to efficiently encode all shapes of that family, leading to a
number of promising applications in computer graphics.

In this paper, we concentrate on learning techniques to distill an
efficient set of local shape priors from existing 3D model repos-
itories. The goal is then converted to select a compact dictionary
of priors from the library to reconstruct all database models. These
priors, referred to as "sparse priors", are able to represent the sur-
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face of 3D models within the same family, and can be regarded
as a highly effective and promising tool in many high-level geom-
etry processing applications, see Section 5.3. It is worth pointing
out that a similar work is proposed in [RXX∗17].Their framework
is mainly based on the Affinity Propagation (AP) method [FD07],
which is a naïve way to learn the representative priors. They tend
to optimize the reconstruction error without any theoretical guar-
antee. Furthermore, AP clustering suffers from a few drawbacks:
1) a small perturbation of similarities may influence the choice of
one or few exemplars, leading to a different partitioning of the data;
2) priors selection is restricted by a hard constraint, in which each
prior is forced to be its own self-exemplar if it is decided to be an
exemplar by other priors, hence, the change of one exemplar may
result in a large avalanche of other changes and 3) when dealing
with irregular multi-dimensional data, AP clustering strongly relies
on cluster-shape regularity and it may force the division of single
clusters into separate ones. In contrast, our method minimizes the
error in a direct manner, in which the optimization is divided into
several sub-problems that have closed form solutions with theoret-
ical guarantees. In addition, their method is not able to handle big
datasets. Given the variance of shapes within a single class of ob-
ject, learning from a small number of shapes (as in their case) is
unlikely to cover the variety needed for the whole class of object.

The aim of this paper is to formulate a global, sparse optimiza-
tion to alleviate the problems caused by the hard constraints in the
affinity propagation algorithm. It enforces selecting representative
priors from the library while minimizing the reconstruction error.
As the first advantage, our algorithm is adaptive to the complex-
ity of the data and does not rely on the cluster-shape regularity.
In addition, we introduce a balance parameter that puts a trade-off
between the number of sparse priors and the reconstruction error.
As a result, our method does not require to pre-define the number
of clusters in advance. Considering the non-convexity of the opti-
mization problem, we design an efficient solver by first converting
the problem into a convex problem and then decomposing it into
several sub-problems that have closed-form solutions.

By manipulating the sparse priors, we develop a number of
promising high-level applications. Following the Bag-of-Words
framework, our sparse priors can be used to build a compact and in-
formative shape descriptor that is able to deal with different shape
categories. We demonstrate through examples the robustness of our
prior-based descriptor to several transformations and strengths, and
its effectiveness for shape retrieval and style analysis. Furthermore,
the sparse priors can be utilized to detect symmetries within input
point clouds. The key idea is to assign labels to the priors according
to their nearest sparse prior, and use these labels to find symmetries
or repetitive structures. To the best of our knowledge, this is the
first attempt on learning 3D local shape priors from a collection of
models via sparse optimization, and using them to handle various
advanced geometry processing operations.

Overall, our main contributions can be summarized as follows:

• We formulate a global, sparse optimization problem that en-
forces selecting representative shape priors from a collection of
3D shapes while minimizing the reconstruction error.

• We design an effective solver so that the closed-form solution
can be achieved on this optimization problem. We show that

these learned priors construct a compact and informative shape
representation of the whole family of object.

• Based on the learned sparse priors, we develop a number of
promising high-level applications including shape retrieval, style
analysis and symmetry detection, which exhibit the flexibility
and adaptivity of our approach to different application scenarios.

2. Related Work

Data-Driven Shape Analysis and Processing. The key point of
data-driven methods is to improve the analysis and processing of
individual shapes by analyzing and aggregating information from a
set of shapes. We refer the reader to the survey on data-driven shape
analysis and processing techniques [XKHK15]. The applications
of such techniques include a variety of methods such as shape re-
trieval [TV08,LBBC14], shape reconstruction [PMG∗05,GSH∗07]
and matching [VKZHCO11].However, these works focus only on
some specific geometry processing tasks, while our work can be
applied to solve a variety of application scenarios.

Self-similarity. Self-similarity detection has been a predomi-
nant issue that has gained interest over the past decade. Previous
works in image processing [BCM05] attempt to tackle this prob-
lem, by introducing the notion of non-local means (NLM). Their
idea is to denoise a pixel by exploiting pixels of the whole im-
age that may entail the same information. Barnes et al. [BSFG09]
presented an interactive image editing tool by using a random-
ized algorithm to find similar image patches. More recently, Xu et
al. [XZZ∗15] proposed a patch group (PG) based algorithm to learn
image priors for denoising. By taking advantage of self-similarity,
some outstanding progresses have also been accomplished in 3D
shape processing. It has mainly exploited in surface denoising [YB-
S06, Dig12, GAB12], reconstruction [GSH∗07, SDK09, ZSW∗10],
surface registration [Son15] and compression [HMHB08,DCV14].
Schnabel et al. [SDK09] considered a hole filling approach where
the reconstruction is guided by a set of primitive shapes such as
planes and cylinders. While in [ZSW∗10], the authors introduced
a scan-consolidation framework using repeated geometry in urban
buildings to enhance imperfect scans of urban models. [Dig12]
and [GAB12] proposed to exploit the surface self-similarity for
surface denoising and meshless geometry processing respectively.
Hubo et al. [HMHB08] and Dign et al. [DCV14] both presented
a compression technique that encodes the point clouds based on
shape self-similarity. In our work, we investigate the same non-
local idea, by using the self-similarity patches learned from 3D
collection models in various geometry processing tasks.

Subset Selection and Clustering. Finding a compact and in-
formative subset of a large collection of data points has been the
center of many problems in computer vision and computer graph-
ics communities. An increasing number of algorithms have been
proposed to handle this difficult and ill-posed problem. One class
of these methods finds representatives from data points that lie in
one or multiple low-dimensional subspaces and typically operate
on the measurement data vectors directly. The Rank Revealing QR
(RRQR) algorithm [BMD09] tries to select a subset of columns of
the data matrix that gives the best conditioned submatrix. This al-
gorithm relies on low-rankness assumption, and it is not guaranteed
to find the globally optimal solution. In addition, randomized and
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Figure 1: Overview of our algorithm. Given a shape repository - chairs, we extract priors from each shape to construct prior library, which
are inserted into a search structure based on their descriptors. An optimization model is then performed to obtain the most representative
priors, referred to as sparse priors. Subsequently, these priors can be utilized for multiple high level applications in geometry processing.

greedy algorithms [Tro09] for selecting few columns from a low-
rank matrix have also been proposed. [ESV12] and [EMO∗12] as-
sumed that the data can be represented as a linear combination of
the representatives, and formulated the problem of finding repre-
sentatives as a joint-sparse recovery problem. The second class of
algorithms finds representatives on the assumption that there is a
natural grouping of the data collection. These algorithms typical-
ly operate on similarities/dissimilarities between data points. Kme-
doids [KR87] algorithm, similar to Kmeans, tries to find K repre-
sentatives from pairwise dissimilarities between data points. How-
ever, it depends on the initialization and their performances drop a
lot as the number of representatives increases. The Affinity Propa-
gation (AP) algorithm [FD07] takes as input measures of similarity
between pairs of data points, and tries to find exemplars by pass-
ing messages between data points. However, a small perturbation
of similarities may influence the choice of one or few exemplars.
Other clustering methods such as hierarchical and spectral cluster-
ing assume that the data are distributed around cluster centers, and
they can not handle big data because of the size of the similarity
matrix. Compared to these subset selection and clustering method-
s, our method has several advantages. First, it is insensitive to the
initialization and adaptive to the complexity of the data. Second, it
does not assume that the data are distributed around some centers.
Third, the number of representatives k is determined automatically.

3. Overview

Our algorithm, expecting a 3D model repository as input, aims at
learning a set of 3D sparse priors. The pipeline of our data-driven
sparse priors is outlined in Figure 1.

The first step is the construction of 3D prior library in Sec-
tion 4.1. Given a collection of 3D models of the same family, we
start by sampling point-set neighborhoods, which are regarded as
local shape priors. Since the local priors are sampled from mesh
models, their geometric information such as descriptors, normals
and points belonging to sharp features can be easily computed. We
extract such information and store them for later use. Therefore, we
are able to obtain both the 3D priors and their corresponding shape
descriptors, which comprise our initial prior library.

The second major phase is the sparse priors learning, where a s-
mall number of representative priors, namely sparse priors, are ex-

tracted in Section 4.2. The initial prior library usually contains a
significant number of duplicated priors. Thus, we aim at extracting
the most representative priors from the library. To this end, we con-
sider a learning framework that enforces selecting representative
priors from the library. More specifically, we seek the set of sparse
priors by minimizing the reconstruction error defined as our objec-
tive function. Considering this non-convexity optimization prob-
lem, we design a relaxation strategy to convert it into a convex op-
timization problem, which is solved by the Augmented Lagrange
Multipliers method. As a result, a small number of representative
priors are obtained from the library.

Finally, we show the potential of our sparse priors in dealing with
several geometry processing applications such as shape retrieval,
shape style analysis and symmetry detection in Section 5.3.

4. Algorithm

In this section, we discuss the two successive steps of our algorith-
m. The first step selects a subset of points which will serve as center
points, and then decomposes the input point clouds into 3D priors
and computes a feature vector for each prior using the ensemble
of shape function (ESF) descriptors. The second one exploits self-
similarity among prior library to learn a set of representative sparse
priors which is able to represent the input shape repository.

4.1. Prior Library Construction

Given a 3D shape repository, we first sample points on each shape
and signify points belonging to sharp features. We then segmen-
t each shape into priors with a bounding sphere of radius R and
compute their descriptors. Finally, we construct a library of such
local priors. Algorithm 1 provides the implementation details for
the prior library construction.

Prior creation. The creation of our prior library works under the
following statements: 1) the database models are represented as tri-
angle meshes and they belong to the same family of objects; 2) the
sampled points for each shape are supposed to be dense enough so
that meaningful priors can be created, which can be done by setting
a sufficiently large radius R with respect to the point resolution; 3)
the prior centers selected from the sampled point cloud are used to
create the local priors within a radius R, in such a way the point
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Figure 2: Given a database model, a set of points are uniform-
ly sampled. To create prior library, we first pick a point, find its
neighbors within a predefined radius and label them as covered
(in blue). We select a non covered point and continue in the same
manner until all points are covered and all priors are created.

cloud is totally covered. Note that we set the prior radius R as a rel-
ative value to each model in the database to make it scale-invariant.

Given a database modelM, we uniformly sample a set of points
P on the model. To satisfy the third statement, we select a subset
of points S ∈ P as prior centers. The center selection is done in a
dart-throwing fashion same as [DCV14]. We first pick a point from
P as the first center, find its neighboring points Pr that lie within
a sphere of radius R and label them as covered. We traverse the
point cloud P until a non-covered point is found and a new center
is added to S. The procedure repeats until all points of P are covered
and all priors Pr are created from P, see Figure 2.

Feature vector. Before the learning stage, we require to measure
how well the priors are similar to each other. In this section, we de-
scribe the descriptors used in our method and their computation.
The simple global descriptor, Ensemble of Shape Functions (ES-
F) [WV11], is used as our shape descriptor. It is efficient and very
unique because: 1) it is transformation and scale invariant; 2) it does
not need any preprocessing such as normal estimation and 3) it can
handle data imperfectness such as outliers, noise and incomplete
surfaces. Notice that our algorithm is independent of the descriptor
choice, and other shape descriptors can also be exploited. The ESF
is a global shape descriptor and it consists of an ensemble of ten 64-
bin-sized histograms, concatenated in a single 640 value histogram
describing the properties of the prior. It combines three different
shape functions-distance, angle and area [OFCD01]. See [WV11]
for more details on this descriptor. Figure 2 shows some example
priors with their corresponding ESF histograms.

Finally, the priors are inserted into an efficient data structure Kd-
Tree, where the similarity between two priors is computed using
the `1 distance between their corresponding feature vectors. By this
means, we are able to obtain both the 3D priors and their corre-
sponding descriptors, which comprise our initial prior library.

4.2. Sparse Priors Learning

The prior library consists of a large amount of priors extracted from
the section above, which contains a significant number of duplicat-
ed priors. In this section, we propose an effective algorithm to ex-
tract a small number of representative priors from the library via
convex optimization.

D2 shape function D3 shape functionA3 shape function

IN Out Mixed IN Out Mixed IN Out Mixed Ratio

Figure 3: The ESF descriptor calculated on a prior from Figure 2
with its ten 64-bin sub-histograms of shape functions (D2, A3 and
D3) in left, and the ESF descriptors for some priors extracted from
the same shape are illustrated in the right.

Problem formulation. Given a library of priors P , we are to
extract a subset of P , denoted by P?, which only consists of rep-
resentative priors. Under the framework of dictionary learning, the
learned elements of the dictionary almost never coincide with the
original data. Hence, they can not be considered as good representa-
tives for the collection of data points. In order to find representative
points that coincide with some of the actual data points, a learning
framework is proposed to select representatives from the real data.
More specifically, we learn a compact dictionary of priors that can
efficiently represent the input database models (i.e. prior library).
The geometric distances between priors are represented with the
Euclidean distances between their corresponding descriptors.

Suppose there are N priors in the library, each of which has the
ESF descriptor expressed by a 640-dimension vector. We arrange
them in a "priors matrix" Y ∈ R640×N in a column-wise fashion
Y , [y1,y2 . . . ,yN ] ∈ R640×N . The best set of representative priors
is typically obtained by minimizing the reconstruction error defined
as our objective function:

N

∑
i=1
‖yi−Y ci‖2

2 = ‖Y −YC‖2
F (1)

with respect to the "selection matrix" C , [c1,c2 . . . ,cN ] ∈ RN×N ,
subject to the following constraints:

• To select k� N representative priors from Y , we enforce:

‖C‖0,q ≤ k. (2)

where the mixed norm ‖C‖0,q counts the number of nonzero
rows of C that correspond to the indices of the columns of the
representative priors in Y .

• We tend to select exactly one representative for each prior, and
not as a combination of the representative priors. Therefore, we
enforce ci to be the columns of the identity matrix:

1TC = 1T ,‖ci‖0 = 1. (3)

where ‖ · ‖0 is the number of nonzero element of the column.

To sum up, the selection problem of k sparse priors can then be
formulated as:

min
C
‖Y −YC‖2

F

s.t. ‖C‖0,q ≤ k, 1TC = 1T , ‖ci‖0 = 1.
(4)
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Algorithm 1 : Prior Library Construction
Input: Shape repository S = {Mi}, i = {1, . . . ,m}, number of sampled
points N, radius R.
Output: Prior library L.

function GENERATE PRIORS(S,N,R)
for i = 1 to m do

P = Sample points (Mi,N);
d = Get bounding box diagonal;
R = R∗d; . relative radius value.
kdtree← P; . kdtree research structure.
for j = 1 to N do

if (Pj .covered == true) then . covered point.
continue;

else . non covered point.
Pj .covered = true; . marked as covered.
Pr← knn (Pj , kdtree, R);
for all p ∈ Pr do

p.covered = true;
end for
V (Pr)= Compute Descriptor (Pr);
L← {Pr,V (Pr)};

end if
end for

end for
return (L);

end function

This is an NP-hard problem as it requires searching over every
subset of the k columns of Y . In addition, the constraint ‖ · ‖0 is
hard to be optimized. Hence, the problem needs to be relaxed to:

min
C
‖Y −YC‖2

F

s.t. ‖C‖1,q ≤ k, 1TC = 1T , C ≥ 0.
(5)

where ‖C‖1,q , ∑
N
i=1 ‖c

i‖q is the sum of the lq norms of the rows
in C. We let q > 1, making the optimization problem in (5) convex.

Optimization Procedure. The optimization problem in (5) is
convex and can be solved by various methods. For efficiency, we
adopt the Augmented Lagrange Multipliers (ALM) [LCWM10]
method. We first convert the problem in (5) to the following equiv-
alent problem:

min
C
‖Y −Y D‖2

F

s.t. ‖C‖1,q ≤ k, 1T D = 1T , J ≥ 0,D =C, D = J.
(6)

We then solve it by minimizing the following augmented La-
grangian function:

L=‖C‖1,q +λ‖Y −Y D‖2
F

+ 〈Z1,D−C〉+ 〈Z2,D− J〉+δ
T (DT 1−1)

+
µ
2
(‖D−C‖2

F +‖D− J‖2
F +‖DT 1−1‖2

2)

s.t. J ≥ 0.

(7)

where 〈·, ·〉 is the matrix inner product, µ > 0 is a penalty parameter
and λ is a balance parameter. Our optimization does not need the
number of sparse priors to be specified, we just need to set λ and
let the algorithm determine the number of priors k automatically.

Algorithm 2 : Sparse Priors Learning
Input: Priors matrix Y .
Output: Sparse priors matrix C.

Initialization:
D = C = J = 0,δ = 0,Z1 = Z2 = 0,µ = 10−6, µmax = 106,ρ = 1.1, and
ε = 10−8.
while not converged do

update matrices D,C,J:
D← Equation (8);
C← Equation (9);
J← Equation (10);
update δ and lagrange multipliers Z1,Z2:
Z1,Z2,δ← Equation (11);
update parameter µ:
µ← min(ρµ,µmax)
check convergence conditions:
‖DT 1−1‖∞ < ε; ‖D− J‖∞ < ε; ‖D−C‖∞ < ε.

end while

Figure 4: Effect of the balance parameter on the number of sparse
priors for the human, Chair and Airplane shape databases.

The above problem can be minimized with respect to C, D, and
J respectively, by fixing the other variables and updating the La-
grange multipliers Z1 and Z2. The pseudo-code for the optimization
procedure is outlined in Algorithm 2.

More specifically, we initialize the parameters of our algorithm,
and iterate the following steps:

Update D: We then minimize the lagrangian L with respect to D
by setting the first derivative of L with respect to D equal to zero.
As a result, D is obtained from:

(λY TY +µI +µ11T )D =

(λY TY +µC+µJ +µ11T −Z1−Z2 +1δ
T ).

(8)

Update C: We fix the values of D, J, δ, Z1 and Z2, and compute
C by minimizing L with respect to C. As a result, we obtain:

C =argmin
C
‖C‖1,q + 〈Z1,D−C〉

+ 〈Z2,C− J〉+ µ
2
‖D−C‖2

F .
(9)

Update J: With fixed D, C, δ, Z1 and Z2, J is obtained by mini-
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Figure 5: Six categories of sparse priors learned by our algorithm. For each database, a set of sparse priors is obtained from a collection of
3D models. Considering the size of figure and explicitness of priors, we only choose to show 48 sparse priors among the learned priors.

mizing L with respect to J:

J = D+Z2/µ. and J = 0 if (Ji j < 0). (10)

Update δ and lagrange multipliers Z1 and Z2 : We fix D, C and
J, and perform gradient ascent with step size of µ to update Z1,Z2
and δ:

δ = δ+µ(D−1).

Z1 = Z1 +µ(D−C).

Z2 = Z2 +µ(D− J).

(11)

Convergence. The convergence of our optimization is monitored
by imposing terminal conditions. During each iteration, we check
whether the changes in these conditions are below a threshold.

Effect of the balance parameter. Figure 4 shows the percent-
age of selected sparse priors from the library as a function of the
balance parameter λ. The range of values in the interval [0.01,0.5]
produces less than 6% reduction of the prior library size, and pro-
vides a good time/quality compromise.

5. Results and Applications

In this section, we present the performance and versatility of
our learning method. We show experimental results on a variety
of shape databases. The effectiveness of our learning method is
demonstrated through comparisons with several related clustering
methods. To further assess our algorithm, we show some potential
applications using our data-driven sparse priors.

5.1. Diverse Datasets

To evaluate our method, we test it over datasets across
six shape categories: humans (71), chairs (531), airplanes
(284), animals (62), mechanical parts (93) and vases (328)
from Watertight Track of the SHREC 2007, Princeton Shape
Benchmark [SMKF04], SCAPE [ASK∗05], Geotopo [ALX∗14],
Co-segmentation [WAvK∗12] and the benchmarks provided

by [KLM∗13] and [SP04]. For each one of these 6 categories, we
run our algorithm to generate the prior library and learn the sparse
priors. Figure 5 illustrates some of the sparse priors. Running time
statistics and parameters for each dataset are shown in Table 1.

5.2. Comparison to Clustering methods

We compare our method to several related methods:

• K-means++: K-means algorithm divides the input data into sev-
eral clusters with equal variance by minimizing the inertia where
each cluster is described by the mean of its points. By using a
technique to seed initial centers, k-means++ algorithm assigns
the input points to their nearest center. It creates the new centers
by taking the mean value of all points in each cluster and repeats
until the value is smaller than a threshold.

• Hierarchical clustering: it seeks a hierarchy of clusters from
the input data by progressively merging clusters based on their
distance (points are likely to be connected to nearby points than
to farther ones).

• Spectral clustering: a similarity matrix is built based on the rel-
ative similarity of each point pair in the input data and the Lapla-
cian matrix is computed on it. The algorithm then maps the input
points based on the eigenvectors of the Laplacian matrix.

All these methods require to pre-define the number of clusters.
However, in our method, the number of sparse priors k can be mon-
itored by the parameter λ. To evaluate the accuracy of the learned
sparse priors, we define an error measure as:

Errk =
N

∑
i=1

d(V (Pr)−V (Pr?)). (12)

where N is the number of priors presented in the library, k is the
number of sparse priors, V (∗) is the descriptor of prior ∗, Pr? is the
nearest sparse prior to the prior Pr and d(V (Pr)−V (Pr?)) is the
Euclidean distance between the descriptors of the two priors Pr and
Pr?. Note that the centers of the clusters given by k-means++ algo-
rithm may not belong to the original input descriptors as required
for comparison with other methods. To keep comparison fair, we
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Figure 6: Comparison to clustering methods. Performances of various method on six model databases show that our algorithm outperforms
other clustering approaches. According to the plots, our algorithm (blue) can achieve a smaller reconstruction error with the same number
of sparse priors than the other three methods.

compute the nearest descriptor from the original input data to each
cluster center given by k-means++.

In Figure 6, we generate plots to examine the distributions of the
errors for all the methods, where the x-axis represents the reduc-
tion percentage of the prior library, and the y-axis shows the dis-
tributions of errors. For each shape category, our method learns k
sparse priors where k ∈ {1%,2%,5%,10%,20%,30%,50%,70%}
from the prior library size and for each k we compute the error
Errk. The plots reveal that our method outperforms other clustering
methods and yields smaller reconstruction errors for all databases,
indicating that our method learns the sparse priors more effectively.

5.3. Applications

The sparse priors learned by our method are a powerful new tool
to solve a variety of geometry processing tasks. To name a few, in
this section, we demonstrate how they can be exploited for shape
retrieval, shape style analysis and symmetry detection.

Prior-based Descriptor. Inspired by the Bag-of-Words (BoW)
framework, we apply our sparse priors to construct a compact and
informative shape descriptor, which is able to deal with non-rigid
shape deformations to some extent. Given a 3D model, we learn
the set of k sparse priors P? as explained in sections 4.1 and 4.2,
where each sparse prior is associated with its ESF descriptor. Giv-
en a new 3D model, we sample points and generate its priors using
algorithm 1. For each prior, we apply approximate nearest neigh-
bors (ANN) to find the corresponding nearest sparse prior fromP?.
Indeed, the prior-based representation is obtained by counting the
number of the priors matched to each sparse prior in P?, where
the resulting signature is a histogram of occurrences. Note that the
dimension of the prior-based descriptor is equal to the number of
the sparse priors k. Finally, we take advantage of these histograms
as our prior-based descriptors. Figure 7 illustrates the steps of our
descriptor extraction process.

Shape retrieval. Nowadays, the fast growth of 3D shape reposi-
tories makes the non-rigid shape retrieval one of the big challenges
in search and classification. In this part, we bring the spirit of our
prior-based descriptor to the problem of non-rigid shape retrieval.
Each 3D model has to be associated with its prior-based descriptor.
Given a query shape, the goal is to retrieve similar shapes from a
collection of 3D models, where the similarity between two shapes
is quantitatively measured by the Euclidean distance based on their
respective descriptors.

… …

…

…

…

Figure 7: Prior based descriptor. Given a chair model, we learn
the set of sparse priors (Orange). Given a new chair model, we
generate its priors (blue), and find their nearest sparse priors. By
accumulating the number of matched priors to each sparse prior, a
histogram as a compact description for the chair model is obtained.

To evaluate the robustness of our shape descriptor to different
classes of transformations, we conduct a set of experiments on the
SHREC 2010 robust large-scale shape retrieval benchmark as it is
the only dataset that includes multiple modifications and transfor-
mations with different strength of each shape [BBC∗10]. It con-
sists of 1184 shapes, out of which 456 unrelated shapes are used
as negatives, whereas 715 transformed shapes obtained from 13
shape classes are used as queries. The queries are obtained from
the 13 shapes by applying 11 classes of transformations with five
different strengths (55 per shape). Notice that each query shape has
only one corresponding shape in the dataset. The transformation-
s consist of isometry, topology, sampling, local and global scale,
big holes and micro holes, noise, shot noise, partial occlusion, and
mixed transformations. For each query shape, we run our algorith-
m to obtain the first r top-ranked retrieved shapes from the null
shapes (456 negatives and 13 positives). Some of these retrieved
shapes are illustrated in Figure 8. The retrieval quality is quanti-
tatively evaluated using the mean Average Precision (mAP). Ta-
ble 2 presents the retrieval performance of our method. We refer the
reader to [BBC∗10] for the performance of other retrieval method-
s. Comparisons to tables 1 to 10 from [BBC∗10] demonstrate the
ability of our method to achieve accurate results. As shown, our
method can efficiently deal with isometry, topology, global scale,
micro and big holes classes and it shows a performance of 83.74%
mAP on the full query set.
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Figure 8: Shape retrieval results on the SHREC 2010 robust large-scale shape retrieval benchmark. Our algorithm is able to retrieve
the relevant shapes (red boxes) for different transformations and strengths. The results demonstrate the effectiveness of our prior-based
descriptors in providing a compact and informative description of 3D shapes.
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Figure 9: Shape style analysis using our learned sparse priors. Given three model repositories (vases, tele-aliens and chairs), our algorithm
automatically learns their sparse prior sets (first column). We then utilize the corresponding spare priors to generate prior-based descriptors
for each shape. Finally, a clustering method is employed to classify the models into several clusters with distinct styles.

Shape style analysis. In recent years, a growing number of on-
line 3D shape repositories have caused an increasing demand to
effectively organize and explore these large 3D shape collection-
s. Man-made objects, like chairs, usually convey the design intent,
and style is often a significant component of the intent. Distinct vi-
sual styles are omnipresent in art and design. The main challenge in
this context is to distinguish the style from the structure, which can
be regarded as a high-level ill-posed problem. While understand-
ing style is crucial to shape understanding, very little research in
computer graphics has explored shape styles.

To investigate the problem of style analysis, we rely on our prior-
based description to truly capture how the styles differ from the in-
put shapes. Here, we are faced with an input set already belonging
to the same family, and our goal is to further refine the classifi-
cation. For instance, we first extract descriptors for a given set of
3D models within the same family, and then group the stylistically
similar shapes using the spectral clustering technique to form what

we call style clusters. Figure 9 shows our style clustering results on
several classes of 3D models, where shape classes are arranged in-
to rows and styles into columns. As illustrated, our prior-based de-
scriptor is a key indicator of stylistic similarity between 3D shapes.

Symmetry detection. It aims at discovering redundancy in the
form of reoccurring structures in geometric objects. For the graph-
based symmetry detection [BBW∗08], one may construct the graph
based on extracted feature points and then detect symmetric geom-
etry by graph matching. Such graph construction can be readily
achieved by our sparse priors.

In figure 10, given an input raw scan, we first generate the priors
P and learn the sparse priors P? (presented in different colors). We
then search the n nearest priors for each sparse prior from the input
scan (here n=5), and we label their center points Ci with the same
color of each sparse prior. From these centers, we build a k-NN
graph G(C,E) that describes the similarity structure of the object,
with the labeled center points Ci as nodes and the line segments
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Figure 10: Symmetry detection. (a) Given an input point data, we
learn the set of sparse priors (in different colors). (b) For each s-
parse prior, we find n nearest local priors and label them with the
same colors. A k-NN graph (in black) is then constructed from the
local prior centers. Finally, a subgraph matching technique is em-
ployed to detect the reoccurring pattern. (c) Repetitive structures.

E(i, j) between two centers Ci and Cj as edges (we use k=10). Giv-
en the graph G, we employ a randomized subgraph search algorith-
m [BBW∗08] to identify the reoccurring patterns Si in this graph,
where the label information is incorporated to refine edge match-
ing. There are two remarkable advantages of our prior-based graph
construction. On one hand, the graph nodes have the label informa-
tion corresponding to the matched sparse priors, which significant-
ly accelerates the graph matching process. On the other hand, our
prior matching strategy is performed on point-set neighborhood-
s, which makes the extraction of the graph nodes more robust to
noise than those based on feature point extraction.

5.4. Performance and Parameters

We have implemented our algorithm in C++ and all experiments
are performed on a PC with a 2.4GHz CPU and 6.0 GB of RAM.
Table 1 lists the running time performance and statistics for the
learned sparse priors in Figure 5. The timing of our algorithm in-
cludes prior library generation and sparse priors learning. As can be
seen in the table, the prior generation stage is computationally the
most involved of our pipeline. It actually depends on the number of
shapes presented in the database.

Our method has several parameters: 1) the prior radius R and
the number N of sampled points per shape; 2) the penalty and the
balance parameters. The radius R is chosen relatively to the value
of the diagonal of the bounding box of each model. Through all
experiments, values between 0.05 and 0.1 produce pleasing results
(see Table 1). The number N of sampled points does not affect the
quality of the results (N = 500k points for all experiments).

Table 1: Running time statistics and parameters for different shape
datasets. N: number of 3D models, R: relative radius value, Lib:
size of prior library, k: number of sparse priors, PG-time: priors
generation time and L-time: learning time.

Datasets N R Lib k PG-time L-time
Humans 71 0.1 10153 391 6m51s 5m41s
Chairs 531 0.05 87615 2158 32m48s 25m25s
Airplanes 284 0.05 36636 1212 21m10s 14m51s
Animals 62 0.1 12152 652 4m27s 7m16s
Mech parts 93 0.05 26412 839 8m58s 11m43s
Vases 328 0.05 85608 1423 25m59s 25m37s

Table 2: Retrieval performances of our prior-based descriptors to
different classes of transformations (mAP in %).

Strength
Transform. 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5
Isometry 100.00 100.00 100.00 100.00 100.00
Topology 100.00 100.00 100.00 100.00 100.00
Holes 100.00 100.00 100.00 100.00 100.00
Micro holes 100.00 100.00 100.00 100.00 100.00
Scale 100.00 100.00 100.00 100.00 100.00
Local scale 100.00 100.00 97.69 95.35 94.87
Sampling 100.00 96.15 93.55 85.66 81.76
Noise 100.00 93.27 87.96 74.72 61.46
Shot noise 100.00 95.49 93.95 92.05 92.56
Partial 13.49 12.47 12.31 11.97 12.85
Mixed 85.06 83.28 84.73 79.69 77.61
Average 90.77 89.15 88.19 85.40 83.74

5.5. Limitations

Our method is expected to behave well with different shape cat-
egories. However, there are still a few limitations that have to be
discussed. Our framework is sufficiently general to work with d-
ifferent kind of shape categories; however, it may fail with repos-
itories with a small number of redundant elements. It remains to
be seen whether it works effectively with more challenging shape
categories such as complex organic shapes.

6. Conclusions and Future Work

In this paper, we propose a sparse optimization framework for
learning data-driven sparse priors from a collection of 3D shapes.
A variety of experimental results on synthetic and real data demon-
strate the effectiveness and validity of our method. Our sparse pri-
ors can also be regarded as a highly effective and promising tool to
elegantly solve high-level shape analysis applications and geome-
try processing tasks. We believe that our method is the first attempt
on learning 3D local shape priors from a collection of 3D models
via sparse optimization, which opens the doors for many high-level
shape analysis and understanding applications.

An interesting future research direction is to use the global in-
formation from the input database by using prior graphs that have
high-level information within the shape structures (e.g., symme-
tries and repetitions) and then integrate the local information of the
sparse priors with them.
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