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Abstract

In order for the deep learning models to truly understand the 2D images for 3D geometry recovery, we argue that single-
view reconstruction should be learned in a part-aware and weakly supervised manner. Such models lead to more profound
interpretation of 2D images in which part-based parsing and assembling are involved. To this end, we learn a deep neural
network which takes a single-view RGB image as input, and outputs a 3D shape in parts represented by 3D point clouds
with an array of 3D part generators. In particular, we devise two levels of generative adversarial network (GAN) to generate
shapes with both correct part shape and reasonable overall structure. To enable a self-taught network training, we devise a
differentiable projection module along with a self-projection loss measuring the error between the shape projection and the
input image. The training data in our method is unpaired between the 2D images and the 3D shapes with part decomposition.
Through qualitative and quantitative evaluations on public datasets, we show that our method achieves good performance in
part-wise single-view reconstruction.

CCS Concepts
• Computing methodologies → Reconstruction; Shape representations; Point-based models; • Computer systems organiza-
tion → Neural networks;

1. Introduction

The fast advancement of deep learning has greatly boosted the
performance of single-view reconstruction [CXG∗16, GFRG16,
KHM17,FSG17], which is otherwise extremely difficult as a highly
ill-posed problem. Most existing approaches have so far performed
3D reconstruction in a holistic fashion. Through supervised learn-
ing with plenty of image-shape training pairs, the existing models
essentially learn a highly nonlinear map from 2D images to 3D
shapes. Despite the notable success made along this line of re-
search, it is still arguable whether these models do learn how to
interpret the 2D images for 3D reconstruction [TRR∗19].

We advocate that single-view reconstruction, when being per-
formed in a part-aware manner, might lead to more profound un-
derstanding of the 2D images since part parsing and part assem-
bling are involved. The recently proposed Im2Struct [NLX18] is
a typical example of part-based single-view reconstruction, where
a recursive neural network is learned to convert an image into a
hierarchy of part bounding boxes. This method, however, is still
strongly supervised; it requires large amount of training pairs of
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images and box structures. To better approach the true object un-
derstanding in single-view reconstruction, we believe that part-wise
reconstruction should be learned in an weakly supervised fashion.

Figure 1: Given a single-view image, our method is able to re-
cover the corresponding 3D shape as an assembly of semantic parts
(shown with distinct colors).

In this work, we attempt to tackle the problem of weakly-
supervised, part-wise 3D reconstruction from single-view RGB im-
ages. In particular, we learn a deep neural network which takes a
single-view RGB image as input, and outputs a 3D shape in parts
represented by 3D point clouds as showed in Figure 1. The net-
work is composed of a 2D feature extractor and an array of 3D part
generators. The part generators are trained with generative adver-
sarial network (GAN) [GPAM∗14] for 3D point clouds. We devise
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two levels of discriminators to discriminate whether a part or the
whole shape is real or fake. The combination of local and global
GANs helps generate shapes with both correct part shape and rea-
sonable overall structure. By splitting the part generation according
to semantic part labels, the generated parts naturally come with se-
mantic labels. To enhance the part-wise generation, we utilize a
purity loss which minimizes the mutual overlap between the parts
generated by different generators.

Furthermore, we realize a self-taught network training via de-
vising a differentiable projection module [ID18] which is able to
project the reconstructed 3D point cloud into a 2D image. This way,
a self-projection loss can be measured between the projected shape
and the input image. Since the projection module is differentiable,
the loss can be backpropagated through it to optimize part-wise
generators and then 2D feature extractor. This makes the entire net-
work end-to-end trainable. The only supervision required is part
decomposition of the training 3D shapes which, however, do not
need to be paired with the input 2D images. This makes our learn-
ing weakly supervised.

Through extensive qualitative and quantitative evaluations on the
ShapeNet [CFG∗15] dataset, we show that our method achieves
good performance in part-wise single-view reconstruction. We also
demonstrate that our method supports shape interpolation and part-
based crossover between two shapes reconstructed from images.

In summary, our work makes the following contributions:

• We propose a deep neural network for reconstruction of 3D
shape in parts with semantic labels from single-view RGB im-
ages in a weakly supervised manner.
• We devise two levels of generative adversarial network(GAN)

on point clouds to generate shape with both correct part shape
and reasonable overall structure.
• We conduct extensive evaluation on the public dataset ShapeNet

to demonstrate the effectiveness of our method.

The rest of this paper is organized as follows. Section 2 reviews
the closely related literature. Section 3 provides an overview of
the proposed architecture. Section 4 elaborates the details of our
method. Section 5 presents the experiments, evaluation and appli-
cation of our method. Finally, Section 6 concludes the work and
discusses the future work.

2. Related Work

3D shape reconstruction. It is fundamental research to reconstruct
3D shape from its 2D projections or 2.5D information in computer
vision or graphics. With the development of deep learning and 3D
dataset [CFG∗15,YLZ∗19,MZC∗19], there is an increasing growth
in 3D shape reconstruction work. Below we briefly introduce the
related methods based on deep learning.

The method in [WWX∗17] generates shapes in two stages. They
separately train the 2.5D sketch estimation and 3D shape estima-
tion components firstly. Then the network is fined-tuned on real
images. Zhang et al. [ZZZ∗18] propose an algorithm to capture
more generic and class-agnostic shape priors through the 2.5D rep-
resentations of visible surfaces to generate 3D shapes by just giv-
ing 2D images. It is a smart and common idea to use one inter-

mediate representation (e.g. 2.5D) to connect the 2D and 3D. In-
stead of using any intermediate representations, we prefer using
the shape priors to help better understand the feature of 2D images.
Niu et al. [NLX18] recursively generate 3D shapes based on rela-
tionships between parts. This method is consistent with our spirit,
we reconstruct the 3D shape from the perspective of the part. Wu et
al. [WZZ∗18] implements volumetric convolutional networks with
adversarially learned shape priors to make the generated shape re-
alistic. In contrast, we used the part priors in point clouds to en-
sure the reconstructed model reasonable in semantic parts. Tul-
siani et al. [TZEM17] study the consistency between multi-view
observations using differentiable ray consistency to show single-
view reconstruction. [ID18] presents an approach to reconstruct
high-fidelity shapes and poses from single images. They apply a
differentiable projection operator to get a 2D projection from the
given point set and camera pose. Differentiable operation enables
learning point clouds without explicit 3D supervision. Our method
builds on this approach, however, we use 3D shapes unpaired with
input images to train adversarial network to get priors of parts and
overall shapes. With the recent development of deep implicit sur-
face representation [MON∗19, PFS∗19, CZ19, CTZ20, LSCL19],
several works study differentiable rendering on implicit surfaces
to realize single-view reconstruction [XWC∗19, WS20, NMOG20,
YAL20].

Part-aware shape generation. To our knowledge, our work is
the first to reconstruct 3D shape in point clouds with semantic la-
bels from single images. Since [FKS∗04] first proposes “Modeling
by Example", which picks parts from a shape repository and then
sticks them together. This idea has been employed to various tasks
and has achieved outstanding performance [CKGK11, KCKK12,
XZCOC12].

In the deep learning era, Li et al. [LXC∗17] pioneered part-
based shape generation based on a deep recursive neural network.
Recently, [LNX19] uses a part-aware deep generative network to
model 3D shape variations which is composed of an array of
per-part VAE-GANs and use a part assembly module to corre-
late and assemble the parts into a plausible structure. Schor et
al. [SKZCO19] treat a shape as a (re-)composable set of parts,
so the key idea is to synthesize shapes by varying both the shape
parts and their compositions. However, they both need to pre-
train autoencoders for the shape parts, which is not an effective
and efficient way in realistic usage. The authors of [ZCOAM14,
HFWH15,GYW∗19] utilize the spatial arrangement of parts to gen-
erate shape. Paschalidou et al. [PvGG20] propose a structure-aware
representation goes beyond part-level geometry and focus on global
relations by predicting a binary tree of primitives in an unsuper-
vised manner. However, it cannot construct the tree in a flexible
way causing the airplane body split as two parts without reasonable
semantic information at the first partition. Chen et al. [CYF∗19]
propose a branched autoencoder to generate semantic labels using
different branches.

Sung et al. [SSK∗17] propose to learn a deep network for part se-
lection and assembly. Zhu et al. [ZXC∗18] develop a recursive neu-
ral network to assemble two substructures into a structurally coher-
ent 3D shape. Li et al. [LMS∗20] introduce a single-image-guided
3D part assembly problem and using a two-module pipeline to
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Figure 2: Reconstruction results of the proposed pipeline with known camera pose. RGB images are the input, the results are colored
according to the part label: seat (olive), back (purple), armrests (blue) and legs (green).

solve it by inferring part relationships. Different from our method,
this method requires image and a set of part point clouds as inputs.
Wu et al. [WZX∗20] propose seq-to-seq learning for part-based re-
construction from single-view images.

Wang et al. [WSH∗18] take a global-to-local (G2L) generative
model to synthesize 3D man-made shapes in volumetric represen-
tation. They use global discriminator to distinguish between the
real and the generated shapes, while the local discriminators are
focusing on the individual local parts. Global-to-local generative
models have achieved great success in 2D area [ISSI17, HZLH17].
We adopt this method in point cloud representation to ensure the
generated local semantic parts and the whole shape are plausible.

3. Overview

3.1. Problem Statement

The goal of our work is to reconstruct 3D shape with semantic la-
bels from single-view RGB images. The 3D shape is represented
as a point set S = {Pl} with l = 1, ...,L and Pl = {(xi,yi,zi)}K

i=1. K
is a predefined constant and l is the label of shape parts. We use K
= 2000 by default which is sufficient to present the shape part with
high resolution.

3.2. Approach

Weakly supervised learning to reconstruct 3D shapes from single-
view RGB images is challenging, especially when semantic labels
are required to be predicted together. To address this problem, we
design a deep neural network which consists of three modules: fea-
ture extractor, part-wise shape generator and camera pose predictor.
For each shape category with L semantic parts, the part-wise shape
generator contains L local GANs and one global GAN to generate
shape with both correct part structure and reasonable overall shape.

The network architecture of our model is shown in Figure 3.
During the training stage, assuming two RGB images x1 and x2
are taken as input, which are captured from two different views to-
wards the same object. In fact, x1 can be the same one as x2, we
prefer using two different views to better describe this method. f̂1
and f̂2 are the features extracted from image x1 and image x2 re-
spectively. f̂1 is split to L code segments and fed to the L genera-
tors to recover semantic shape parts Ŝ1 = {Ŝl}. While f̂2 is passed

to camera pose predictor to estimate the view point Q̂2. Inspired by
the work [ID18], we empoly a differentiable projection P to render
the assembled shapes Ŝ1 according to the view point Q̂2, and get a
2D silhouette v̂ = P(Ŝ1, Q̂2). Then the difference between the sil-
houette images v̂ and the ground truth is measured as the projection
loss.

The part-wise generator is trained to learn how to generate rea-
sonable shape part respectively. To train each shape part genera-
tor, the corresponding 3D shape parts are taken as real samples for
each local GAN to form the adversarial loss. The global GAN aims
to further improve the part connectivity and overall quality by ex-
ploiting the whole shape priors. It should be noticed that both the
3D complete shapes and shape parts are not required to be paired
with the input image, which offers great flexibility for training data
preparing. The purity loss, designed to measure the consistency of
labels in a local region, is introduced to prevent the overlapping be-
tween different semantic parts. In reference time, the method can
predict 3D shape with semantic labels given just one single-view
image.

4. Method and Implementation Details

4.1. Network Architecture Details

Our network consists of three modules: feature extractor, part-wise
shape generator and camera pose predictor. The 2D feature extrac-
tor takes RGB image with size 228∗228∗3 as input and contains 7
layers totally. Each of the first 4 layers contains one convolutional
layer with a stride of 2, one batch normalization layer and followed
by a LeakyReLU activation function. Then two fully connected lay-
ers are added to extract the global feature of image as a 1024 vector.
After this, the feature extractor is split into two branches for shape
generation and pose prediction respectively. The first branch uses
one MLP to transfer the 1024 latent vector into a 256 ∗ L vector,
where L is the number of semantic labels of the object category.
The other branch outputs 1024 vector as camera pose feature in-
stead of 256∗L vector.

The part-wise shape generator contains L generators for differ-
ent semantic parts individually (e.g., back, seat, leg and armrest for
chair), which consists of three fully connected layers, each is fol-
lowed by one LeakyReLU except the last layer by Tanh. The last
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Figure 3: An overview of our network architecture. Given two views of the same object, we predict the corresponding shape with semantic
information and the camera pose. Then we use L part discriminators and one global discriminator to ensure the shape and part are reason-
able. At the same time, we use a differentiable projection to generate the view of the predicted shape from the predicted camera pose. The
purity loss can ensure the semantic part clean.

fully connected layer outputs N ∗3 points, where N = 2000 by de-
fault is the number of points of each semantic part. Finally, the L
generated shape parts are assembled in orders to form a reasonable
shape with semantic labels. The assembly operation here we used
is just concatenate the outputs of part generators for simplification.
Furthermore, we use global GAN to adjust the global consistency.

The camera pose predictor contains three fully connected layers
and outputs a quaternion to present the camera pose. For local and
global discriminators, we choose to use PointNet [QSMG17] to ex-
tract the feature of reconstructed shape parts and the overall shape
and output true or false to present its judgement. For simplicity, we
do not try PointNet++ [QYSG17] or other more complex network
to learn the feature of the point and make judgement, although it
may give more accurate judgment in theory.

4.2. Differentiable Point Clouds

Given a predicted point cloud S = {pi,si}N
i , with a camera pose

Q, the differentiable point clouds projection P can generate a view
v = P(S,Q). N is the number of points, si is the scale and and pi =
(xi,yi,zi) is the position of the point p.

Differentiable point clouds. Firstly, we random sample some
points from S to speed up the projection process without compro-
mising quality. Because there are few meaningful points of S ob-
tained at the beginning of training, as the number of iterations in
the training process increases, S is getting closer and closer to the
ground truth, and the number of sampling points keeps increas-
ing. Then we convert the camera pose Q to the corresponding pro-
jective transformation TQ. Then we use p̂i = TQ ∗ pi to compute
the position of points on the standard coordinate frame. After the
transformation operation, it needs to be discretized into a 3D vol-
ume with resolution D1×D2×D3 by using trilinear interpolation
and be smoothed via 3D convolutions. Note that the third index
corresponds to the projection axis and [1,D3] represents the range
between the closest and furthest to the camera.

Nextly, A differentiable ray tracing formulation proposed by

[TEM18] is applied after the scaling operation by multiply si . In
order to prevent that the foreground points disturb the sign from
occluded points during the projection process, the ray termination
probabilities r can be calculated from the occupancies o by the for-
mulation:

rk1,k2,k3 =


ok1,k2,k3

k3−1

∏
u=1

(1−ok1,k2,u), if k3 ≤ D3

D3

∏
u=1

(1−ok1,k2,u), if k3 = D3 +1

(1)

In the end, based on the ray termination probabilities we ob-
tained, we can project the volume to 2D plane by the formulation:

vk1,k2 =
D3+1

∑
k3=1

rk1,k2,k3 yk1,k2,k3 , (2)

where y is a parameter being set manually, here we use yk1,k2,k3 =
1−δk3,D3+1 to get the silhouette.

Projection loss. The predicted view can be synthesized by ren-
dering the reconstructed point cloud according to the estimated
camera pose: v̂i, j = P(Ŝi, Q̂ j). Then we define the projection loss
as the difference between the projection of the reconstructed shape
and the ground truth:

Lpro j(Ŝ, Q̂) =
1

Nmi

N

∑
i=1

mi

∑
j1, j2=1

∥∥∥v̂i
j1, j2 − vi

j2

∥∥∥2

2
, (3)

where N means the number of objects in one category and mi means
the total view numbers of the i-th object. The projection loss mea-
sures the difference between all pairs of the rendered image and the
ground truth.

4.3. Local and Global GANs

We train local and global GANs based on the architecture of DC-
GAN proposed by [RMC15] to generate shape with both correct
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part structure and reasonable overall shape. There are L local GANs
focusing on the individual semantic parts recovery, where L denotes
the number of semantic parts in one category. All the local GANs
share the same architecture as well as the global GAN. The global
GAN is aiming to learn the distribution of generated shapes and
the real samples. The shape and part priors provided by the GANs
ensure the semantic part and whole shape plausible and help to gen-
erate high quality shape in the form of point clouds. The adversarial
loss consists of L local adversarial loss and one global adversarial
loss.

Implementation details. For a single local GAN, it is composed
of one generator and one discriminator. Each semantic part genera-
tor is the corresponding part generator of the local GAN. The input
is a 256-vector and the outputs are K points to represent the se-
mantic part of the shape. Each part generator consists of three fully
connected layers followed by one LeakyReLU except the last layer
was followed by Tanh. PointNet is the backbone of the discrimina-
tor to extract the feature of the point cloud and output the binary
number to judge the predicted semantic part is real or fake by us-
ing LogSoftmax method to classify it. Intuitively, the L local GANs
are independent mutually. So they are parallel to each other in the
training time. As for the global GAN, the generator is an array of
the L local generators and the whole shape which is assembled by
all the semantic parts should be viewed as the output. The assembly
unit can use and fine-tune the composition module of [SKZCO19]
or simply concatenate the outputs of part generators. We use the
method of concatenation as assembly unit for simplification and
use global GAN to adjust the overall shape. The global discrimina-
tor has the same architecture as the local discriminators except that
the first layer is adjusted to take K ∗L points as input. We train the
local GANs and global GAN simultaneously.

Adversarial loss. Adversarial loss is designed to use the whole
shape and semantic segmented part priors. For each GAN, the gen-
erator and the discriminator are worked in competition, until the
discriminator cannot distinguish the difference between the real and
the fake. The adversarial loss for each GAN is set as [RMC15]. We
use NLLLoss as a loss function to compare predicted label with the
ground truth label in implementation. The adversarial loss in this
paper between different GANs is weighted as follows:

Ladv = Lglobal +
L

∑
i=1

wiL
i
local , (4)

where wi is the weight of the i-th adversarial loss, we set wi = 1 by
default. L is the number of the local GANs.

4.4. Purity Loss

In order to obtain semantic segmented shape, it is important to
make each part segmented distinctly. Purity loss is devised to pre-
vent the mutual overlap between the parts generated by differ-
ent generators. This part is motivated by the method proposed
by [WSH∗18]. Unlike they calculated the purity loss on 3D reg-
ular grid, we extend it on 3D point clouds for our part-wise shape
reconstruction.

The 2D version of the meaning of purity loss is shown in Figure
4. For one point in point cloud, we calculate the sum of L1 distance

Figure 4: A 2D illustration of the purity loss. (a) shows points
with different parts are mixed. Red points should represent seat.
However, one red point goes into the blue part which should be leg.
The purified result is shown in (c).

between its one-hot label and its n nearest neighbors. In Figure 4,
for the red points (labeled as 0), we calculate the sum of L1 distance
between it and the other n (we set n = 4 by default) blue points
(labeled as 1) as its purity loss.

The purity loss is to compute the sum of Mean Squared Error
between the one hot labels of point and its adjacent points. It can
be summarized as follows:

Lpurity =
K

∑
i=1

n

∑
j=1

∥∥∥li, j
ad j− li

∥∥∥
1
, (5)

where li denotes the label of the i-th point, li, j
ad j defined as the label

of the j-th adjacent point of the i-th point and K is the number the
points of the semantic part, K = 2000 by default.

In summary, our generator loss in the architecture is defined as
follows:

Lgen = wproLpro j +wadvLadv +wpurLpurity. (6)

Intuitively, the contribution of projection loss, adversarial loss
and purity loss to the generator loss depends on wpro, wadv and
wpur respectively. we set wpro = 0.05, wadv = 1 and wpur = 0.05 in
our experiment.

5. Experimental Evaluation

5.1. Dataset

The dataset used to train our framework is divided into two
types. The first type is 2D image-silhouette pairs of objects in
different views. The pair dataset is a subset of ShapeNet 3D
dataset [CFG∗15], derived from the dataset in [ID18]. The image-
silhouette pairs are rendered from ShapeNet models, and we just
use 3 categories in it: chair, airplane and car to train our model and
use the same train/test splits as [ID18]. The second is segmented
semantic shape parts derived from the point cloud dataset with part
annotations produced by [YKC∗16]. These 3D shape parts are un-
paired with the 2D image-silhouette dataset. We divide point clouds
with part annotations into individual segmented parts with the same
number points (Chair: back, seat, legs and armrests, Airplane: body,
tail, wings and engine, Car: body, wheels, hood and roof).

Data augmentation For tasks based on part-wise generation,
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Figure 5: Shape reconstruction from one single RGB input image. All the shapes are shown at the best view on screen. The ground truth
shape and the shape predicted by DPC are without semantic labels. The shape we predicted is colored to intuitively present the segmented
parts and more detailed structure is preserved by our method.

there is an obvious problem to be dealt with. How to represent a
missing part? We use zero to indicate the missing part. Therefore
the local discriminators need to know the zero data is true for the
part. In order to make the training successfully. we randomly put
some zero data into the segmented semantic shape part dataset to
represent the missing part. If one semantic part dose not exist, it is
shown as coordinate origin zero.

5.2. Evaluation Metrics

We use the Chamfer Distance and the Earth Mover’s Distance as
our evaluation metrics for shape reconstruction. The Chamfer Dis-
tance is defined as Equation 7. For each point in one point set, the
Chamfer Distance first finds the nearest point in the other set and
get the average squared distance of them in the point set. For the
other point set, the computation is as well. The Chamfer Distance
requires both distances to measure the difference between two point
sets. The Earth Mover’s Distance is defined as Equation 8. It calcu-
lates the minimum distance of changing one point set into another
point set by a bijective function.

dCD(S1,S2) =
1
|S1| ∑

p1∈S1

min
p2∈S2

||p1− p2||2+

1
|S2| ∑

p2∈S2

min
p1∈S1

||p2− p1||2
(7)

CD EMD
DPC Ours DPC Ours

Airplane 3.50 2.72 1.53 1.26
Car 2.98 2.41 1.06 1.34

Chair 4.15 4.57 1.31 1.27
Mean 3.55 3.24 1.30 1.29

Table 1: Quantitative comparison in Chamfer Distance (CD) and
Earth Mover’s Distance (EMD). The smaller value is better in both
evaluation measures. We present the Chamfer Distance and Earth
Mover’s Distance multiplied by 100.

dEMD(S1,S2) =
1
|S1|

min
φ:S1→S2

∑
p1∈S1

||p1−φ(p1)||2, (8)

where φ : S1→ S2 is a bijection.

5.3. Shape Prediction with Ground-truth Pose

We evaluate our network with known pose on test images both
on qualitative and quantitative aspects. Figure 2 shows some re-
constructed results. The input images are shown on the top row
and the bottom line is the reconstructed 3D shapes. Unlike other
3D shape reconstruction on single image works, our reconstructed
shapes with semantic labels to indicate different parts. We illustrate
the semantic information with different colors.

We compare with DPC [ID18], which can reconstruct point

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chengjie Niu, Yang Yu, Zhenwei Bian, Jun Li, Kai Xu / Weakly Supervised Part-wise 3D Shape Reconstruction from Single-View RGB Images

CD EMD
DPC Ours DPC Ours

Airplane 3.91 3.18 2.21 1.64
Car 3.47 2.42 1.28 2.11

Chair 4.30 4.63 3.55 3.14
Mean 3.89 3.41 2.35 2.30

Table 2: Quantitative comparison of generated shape without
known camera pose in Chamfer Distance (CD) and Earth Mover’s
Distance (EMD).

clouds from one single image and achieve state of the art results.
However, DPC cannot generate semantic information and we ren-
der their results as the same gray as ground truth. For compari-
son, we use the same training data and the same resolution as DPC
with known camera pose. Figure 5 provides a qualitative compar-
ison. The results show our method achieves a more detailed struc-
ture and more accurate reconstruction than DPC. The position of
engine, the diverse tails in airplane and the round wheels in car
all demonstrate the structure details in shape parts, since our local
GANs put much attention on the the part structure reconstruction.
Shape semantic information also gives us a more intuitive display
of different functions of parts. To demonstrate the quantitative re-
sults, we use Chamfer Distance and Earth Mover’s Distance to ex-
press it in Table 1. Our results perform better than DPC in airplane
categories both in Chamfer Distance and Earth Mover’s Distance.
We contribute it to that our model can transform all the predicted
points into reasonable position. However, there can be some border
points floating using DPC, since the airplane is nearly flat compare
to other categories, it can hard congress the border points into the
airplane body. For chair category, our method is a little worst than
DPC in Chamfer Distance. That is because our model reconstructs
the shapes and the parts plausibly, some rare parts or shapes cannot
be predicted very real to the input image.

5.4. Shape Prediction without Known Pose

Our approach can generate shape from a single-view image, no
matter without any ground truth shape or pose information. We
drop the unrealistic setting of having the pose supervision and pre-
dict the shape without known camera pose from the input single
view image. We compare with the results produced by [ID18] in
the same setting of having no pose constrain. To better express the
quality of the generated results, we report the shape in two differ-
ent views on screen in Figure 6. From the global aspect, the results
of our approach are much more realistic compared to DPC. That
is attributed to our global GAN focusing on generating a plausible
whole shape. In the local view, we observe that our semantic parts
are segmented clearly in the shape. The rotation of wheels in the car
is nearly the same as the ground truth and such details may miss in
the results of DPC. The quantitative results are shown in Table 2.
Our results are better than DPC in both metrics in general. Dur-
ing the weakly supervised training time, the GANs provide much
support to generate plausible shapes.

5.5. Ablation Study

We conduct ablation studies to demonstrate the necessity of the var-
ious losses in our method. The projection part of our method is the
critical connection between input image and shape reconstruction,
therefore it is not removable.

(1) Removing local discriminators and purity loss. The purity
loss is based on the part results. So the purity loss is meaning-
less without local adversarial loss. Local discriminators enable each
part generator to explicitly observe its semantic feature. After re-
moving the local discriminators, we feed the output of part genera-
tors to the global discriminator and then the ablated network cannot
get semantic part feature.

(2) Removing purity loss. The unit learns to prevent the mutual
overlap between the parts and make each part clean. By removing
it, the results may be suboptimal.

(3) Removing global discriminator. This unit is used to make
the result looks reasonably from global aspect. By comparison, we
directly remove the global discriminator and therefore the overall
consistency of the results may be somewhat lacking.

Figure 9 compares the results of all the ablated networks. Firstly,
the greatest impact is caused by the removal of the local discrim-
inators. The results are almost impossible to capture the features
of the input image. What’s more, each part generator outputs one
global shape without any semantic information. Without local dis-
criminators, the ablated network is adjusted by the projection loss
and the global adversarial loss which means part generators can-
not be trained to get semantic information. Secondly, the results of
the removal of purity loss network show some floating points in
space and overlap between different semantic parts demonstrating
the necessary of the purity loss to control the reconstructed part
clean. Finally, the results of removing global discriminator module
are suboptimal on the global aspect. There are some disconnection
between the adjacent parts without global discriminator.

5.6. Comparison on Single-view Reconstruction

We provide comparison on single-view reconstruction with both
state-of-the-art methods and different view settings of our approach
as shown in Figure 10. In general, all of the methods: 3D-R2N2
[CXG∗16], OccNet [MON∗19], DISN [XWC∗19] can predict the
shape with a single-view image as input. However, they cannot pre-
dict the semantic information of the shape. We have to admit that
the representation of implicit surfaces can present better visual im-
pression, like OccNet and DISN. In training time, we can use not
only single-view setting but also multi-view for consistency con-
straints. Because of local and global GANs, our method uses the
part and shape prior to limit the overall consistency of predicted
shape to avoid that the generated shape only looks reasonable from
the view of the input single image. The results of single-view train-
ing are comparable to those existing methods and have semantic
labels of the shape. The results of multi-view training are slightly
better than the results of single-view training because of the consis-
tency constraints of different views.
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Figure 6: Shape prediction without Ground-truth pose. The top row shows the input single image, the next three rows present Ground truth,
DPC results and our results successively. The shapes are displayed in two different views for each input image.

Figure 7: Interpolating between one pair of chairs at the left and
right. The full shape interpolation is shown on the top row, and the
leg part interpolation is provided underneath.

Figure 8: Crossover between two latent space encoded from two
different images. We use dashed boxes to indicate the leg latent
vector in different colors. The red box corresponds to the red chair
image and the gray one matches the gray swivel chair image.

Figure 9: Qualitative results of ablation study.

Semantic Part back seat leg armrest
Correct Rate 71.76% 81.49% 51.78% 84.89%

Table 3: The discriminator accuracy in discriminating the unseen
data.

5.7. Reconstruction Study

To demonstrate that our method does actually perform shape re-
construction instead of shape recognition, we make some defor-
mation on the semantic part training dataset as input to the local
discriminators. The deformation on the semantic part dataset has
two types of chair. One type is the stretch in three dimensions to
make it longer or shorter in different dimensions. Second type is
the translation on different dimensions to make it higher or lower
in different dimensions in space. The judgment of the unseen input
data should be almost 0, if the ability that the discriminator learns
is recognition. However, the correct rate is above fifty percent on
each the semantic part as showed in Table 3. The correct rate on leg
dataset is lower than other categories but also above fifty percent.
The reason is that the complexity of the leg may cause the trans-
formation on it to be incorrect. Obviously, from the experimental
results, we can see that our method is actually to learn the charac-
teristics of the object to be reconstructed, instead of memorizing
the objects that have been seen.
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Figure 10: Single-view reconstruction results of various methods. The fifth to seventh columns with semantic information are the results of
our method. Different views means different view settings during the training time.

Figure 11: Results of shape evolution. 12 chairs evolved from 6
input images using our approach.

5.8. Latent Space Interpolation

Unlike other Shape-from-X works, our work can not only recon-
struct the 3D shape from one single image, but also predict the
semantic labels of each point. Our results has the same property
of segmented shapes, which can be obtained by making opera-
tion on latent space vector, like the results produced by [DXA∗19]
and [WWL∗18]. In our model, we encode the image feature into
different part latent space, and each latent space can be decoded by
the corresponding part generator. After that, we use one trained as-
sembly module to make it consistency. Here we can make the latent
space interpolation both on the whole shape and each semantic part
of the shape. Figure 7 illustrates the shape and part interpolation
results. We choose two generated shapes reconstructed from two
different images individually, then make interpolation between the
two latent space to express the deformation from one to another in
global and local aspect.

5.9. Part-aware Shape DNA

The predicted shape depends on the input RGB image and the
connecting point between shape and image is the latent space en-
coded from the input image. The latent vector can be regarded
as a “shape DNA”: each latent vector defines a part of the shape
uniquely. Such shape DNA can be used to generate diverse shape
world by crossover or mutation similar to [XZCOC12]. We show
the crossover process in Figure 8. The novel shapes are like the re-
sults of two reconstructed shapes exchange their legs, but crossover
makes it in the latent space. In Figure 11, it illustrates 12 novel
chairs by making crossover or mutation of the latent space encoded
from 6 input images.

6. Conclusion

As an weakly supervised single-view shape prediction work, our
method not only achieves good performance on the public dataset
ShapeNet, but also gives the shape correct part structure. Naturally,
the predicted shape in parts with semantic labels can augment the
segmented 3D shape dataset and the semantic information can be
used in many areas, e.g., robots can take action by analyzing the
function of each semantic part from the input images. However,
there is one limitation in our method. Local GAN may cause the
predicted part plausible but not realistic for some rare structure,
although it can help reconstruct the shape from the part aspect and
preserve more detailed structure. For the future work, we plan to
study how to extend our model and use it to reconstruct implicit
shape by using fewer parameters.
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