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Abstract— We propose to synthesize feasible caging grasps for
a target object through computing Caging Loops, a closed curve
defined in the shape embedding space of the object. Different
from the traditional methods, our approach decouples caging
loops from the surface geometry of target objects through
working in the embedding space. This enables us to synthesize
caging loops encompassing multiple topological holes, instead of
always tied with one specific handle which could be too small
to be graspable by the robot gripper. Our method extracts
caging loops through a topological analysis of the distance
field defined for the target surface in the embedding space,
based on a rigorous theoretical study on the relation between
caging loops and the field topology. Due to the decoupling, our
method can tolerate incomplete and noisy surface geometry of
an unknown target object captured on-the-fly. We implemented
our method with a robotic gripper and demonstrate through
extensive experiments that our method can synthesize reliable
grasps for objects with complex surface geometry and topology
and in various scales.

1. INTRODUCTION

As an important type of robot grasping, caging grasps [1],
[2], [3], as compared to force-closure grasps [4], [5], [6], [7],
are advantageous in handling target objects with unknown or
uncertain surface geometry and/or friction properties. This
makes caging grasps more practically applicable in a wide
spectrum of real scenarios. We are especially interested in a
simple yet effective type of caging grasp formed by caging
loops. A caging loop is a closed curve in three dimensional
space computed around some part of the target object and
used to guide robot grippers to form a caging grasp.

Existing methods on 3D caging grasp are based either on
the geometric (e.g. [8]) or the topological (e.g. [9]) informa-
tion of the target surface, or even both [10]. A common issue
to these methods is that the computed caging curves seriously
depend on topological and geometrical features of objects,
while being oblivious to the relative size between the target
object and the gripper. Taking the genus-4 Indonesian-Lady
model in Fig. 1 for example. The six handles on the model
are all seemingly good candidates for grasping. However,
when the size of the model is too small compared to the
robot gripper, these handles will no longer be graspable since
the holes may be too small for the fingers to pass through.
In such case, a more feasible grasp would be enclosing
the object with a loop encompassing multiple handles (see
Fig. 1(top) and Fig. 2(a)).
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Fig. 1. Grasping a 3D-printed Indonesian-Lady model (the top and middle
row) in two sizes. Our method is able to synthesize caging loops (red circles)
encompassing multiple topological handles, when the object is too small to
be grasped on one handle (top row). When the object is large, our method
naturally grasps one handle (middle row). The two cases are integrated
seamlessly in method. The bottom row shows how a caging loop computed
in the embedding encloses the two handles of a pliers. The 3D objects
are acquired by two RGBD cameras and reconstructed on-the-fly (middle
column). As a reference, a human grasp is shown to the left for each object.

Another issue with geometry-based caging curves is that
they easily lead to non-convex spatial curves which are not
suited for guiding the gripper configuration. The example
in Fig. 2(d) demonstrates such case, where the gripper
penetrates into the object due to the non-convexity of the
caging loop. Estimating a convex hull for the spatial loop
still cannot guarantee a penetration-free configuration.

A. Motivation And Contribution

These examples motivated us in seeking to “fill up” those
small topological holes and “smooth out” the geometric
details on the target surface, before computing caging curves.
Therefore, we advocate computing caging loops in the
embedding space of the target surface, through a topological
analysis of the distance field defined for the target surface in
the embedding space.

We conduct a theoretical study on the fundamental
relationship between caging loops and Morse singularities
(including minimal, maximal and saddle points) of a spatial
distance function. Based on that, we develop an algorithm
of caging loop extraction through saddle point detection and



analysis, within a proper grasping space defined in account of
the gripper size. Working with a distance function defined in
the embedding space naturally decouples the shape of caging
loops from the geometric details of the target surface, while
still keeping them aware of the overall shape of the target
object. The caging loops are properly placed and scaled
based on the relative size of the gripper against the target
shape, rather than always tied with a specific handle as in
traditional approaches.

Another benefit of working in embedding space is the
tolerance of incomplete and noisy surface geometry of the
target object. This makes our method especially suited for
synthesizing grasps for unknown objects which are captured
and reconstructed on-the-fly, with a minimal effort of robot
observation. In our implementation (see Fig. 4), two depth
cameras are deployed to capture the target object from two
(front and back) views. Even with such a sparse capturing
and low-quality reconstruction, our method can still synthe-
size feasible caging loops for robust grasping.

We found this simple idea leads to a robust and efficient
algorithm, with theoretical guarantees. We implemented our
algorithm in a grasping system composed of a Barrett WAM
robotic arm with a three-finger gripper and two Xtion Pro
RGB-D cameras. Only depth images are used for recon-
structing the target surface based on the depth fusion tech-
nique [11]. We have conducted numerous evaluations with
both synthetic and real examples to evaluate the performance
of our method. We show that our system is able to robustly
grasp objects with complex surface geometry and topology
and in various scales.

Our work makes the following contributions:

« We propose a novel method for caging grasp synthesis
through topological analysis of shape-aware distance
field defined in shape embedding space. The method
is able to generate relative-scale-aware caging loops for
unknown objects captured on-the-fly.

« We provide a rigorous study on the relation between the
topology of distance field and caging loops, based on
Morse theory, and derive a robust algorithm for caging
loop estimation. We also provide a handful of provably
effective techniques to reduce the computational cost of
our method.

« We implement our method in a grasping system using
robot gripper, and conduct thorough evaluations and
comparisons with both synthetic and real objects.

B. Related Work

Robot grasping is a long-standing yet actively studied
research topic in the fields of robotics and vision. Force-
closure and caging are two typical approaches that have been
developed to synthesize grasps. Force-closure methods [12],
[13], [14], [15], [5], [4] concentrate on finding a stable
grasping configuration for the grippers where a mechanical
equilibrium is achieved. The advantage of such approach is
that the synthesized grasps are usually physically feasible.
The method, however, requires that the 3D shape of the target
model is known a priori and cannot tolerate much the surface

Fig. 2. By decoupling caging loops from target surfaces, our method
synthesizes feasible caging grasps for objects containing tiny topological
handles (a) or presenting concave surface geometry (b); see the red circles
and the corresponding grasps to the right. In contrast, the loops (yellow
circles in ¢ and d) computed over the target surfaces incur gripper-object
collision; see the gripper parts in red color in the bottom row.

defect such as missing data. Furthermore, the contact area
between the gripper and the target surface is often small,
leading to unsteady grasps.

Caging grasps [3], as compared to force-closure ones,
seeks for a sufficiently large contact area and thus are deemed
to have better stability, although they are not designed to
directly reach a mechanical equilibrium. The key benefit
of caging [3] is that it is robust to surface uncertainty
and imperfection. This makes it especially applicable to
unknown objects being captured and reconstructed on-the-
fly. Some works studied the computation of planar cages
in 2D space for planar objects [16], [17], [18], [19].
Most existing approaches to 3D object caging rely on the
topological structure of the target surface [9], [20], [21].
Some further take geometry information into account [10].
However, such approaches cannot compute a caging loop
encompassing multiple handles or deal with different relative
scales between the gripper and the target object.

The Morse theory, as a connection between geometry
and topology, has been widely utilized in the graphics and
visualization fields [22], [23]. In our approach, the core
algorithmic step is to find a caging loop according to a p-
based distance field, where p is a point in the grasping space.
At this point, the Morse theory is used to build a fundamental
relationship between caging loops and Morse saddle points.

II. THEORY
A. Grasping Strategy

In order to define a caging loop, we have to consider
at least geometric and mechanical aspects. The geometric
considerations include:

« A caging loop encompasses the target object - any

penetration into the target shape is not allowed.



« A caging loop encloses some part of the target object
tightly, i.e., cannot be shortened with respect to a slight
perturbance (i.e., stable grasp) or at least goes around
the target object like a great circle enclosing a sphere
(i.e., unstable grasp).

o A caging loop should roughly match the real robot
gripper size.

On the other side, the mechanical considerations include

« The center point of a caging loop should be as close as
possible to the center of gravity of the target shape so
as to minimize the moment of intertia.

« A caging loop should be roughly horizontal so that the
target object can be taken up steadily.

Our strategy is to compute a collection of caging
loop candidates in consideration of the above-mentioned
geometric principles. For purpose of efficient computation,
we also invent a set of filtering techniques to reduce the
number of loop candidates as far as possible.

B. Mathematical Formulation

Imagine the scenario of a caging grasp where the fingers
of the gripper stretch to two opposite directions, roughly
forming a loop; See Fig. 1 and Fig. 2. In the following, we
shall formally characterize in which space we extract caging
loops and systematically establish properties of caging loops.

The surface S of the target object, typically represented as
a watertight mesh, divides the whole R? space into interior
parts and exterior parts, where only the visible free space
(the outmost surface exterior space) is helpful to determine
areal grasp configuration. Rather than constrain caging loops
lying on the target surface S, we relax caging loops from §
to the shape embedding space.

Definition 2.1: The visible free space separated by the
target surface S is called the grasping space.

Generally speaking, a stable grasp is desired, i.e., the
caging loop encloses some part of the target object tightly
and cannot be shortened even with a slight perturbance. In
some rare cases, however, an unstable grasp like a great circle
enclosing a sphere is also acceptable. Both cases imply that
there is a fundamental relationship between caging loops and
locally shortest loops in the grasping space.

Definition 2.2: Suppose the target object S defines a
grasping space G. A closed curve L € G is called a caging
loop candidate if and only if L is locally shortest everywhere,
i.e., for any point p € L, any sufficiently short segment of
L around p cannot be shortened any more. All such loop
candidates constitute a caging loop space, denoted by L.

Property 2.3: Each caging loop L € L touches the target
surface at three or more points.

Proof. Without loss of generality, we assume that L
touches the target surface S at only one point p. Then the
open curve L\p lies in the grasping space but doesn’t touch
S. Considering that a locally shortest curve in R must
be a straight line segment, L\p cannot include a bending
point. Furthermore, p is not only the start point of the
straight line segment L\ p but also its endpoint. Therefore, L
degenerates into a single point under the above assumption,

which contradicts to the given condition that L is a caging
loop. Similarly, it can be shown that the case of two touching
points is impossible.

We can further show that each caging loop consists of an
alternative sequence of straight line segments in the grasping
space and geodesics on the target surface.

Property 2.4: Let S be the target surface. Each caging
loop L consists of an alternative sequence of geodesic paths
lying on § and straight line segments in the grasping space
G, where a geodesic segment may degenerate into a single
point.

In fact, the loop space L includes all geodesic loops
constrained on the surface S and thus cannot be empty, which
can be easily verified from the Lusternick-Schnirelmann
theorem [24].

Theorem 2.5: L is non-empty.

However, it is difficult to directly extract a caging loop
without any further hint. Therefore, we consider a type of
relaxed caging loops.

Definition 2.6: Suppose the target object S defines a
grasping space G. Let p be a point in G. A closed curve
L € G is called a p-based caging loop candidate if and only
if L is locally shortest everywhere except at p. When p is
taken over all points in G, all such loop candidates constitute
a different caging loop space, denoted by L.

We immediately have the following property.

Property 2.7: L is a superset of L.

Remark: Each loop L € L carries a base point p. If we
eliminate those loops that are not locally shortest at the
corresponding base point, then L becomes L. Therefore,
the above property implies that we can select the desirable
caging loop from L.

III. METHODOLOGY

A. Computing Loop Candidates

Fig. 3. An example of Morse-Smale saddle point of the p-based distance
field restricted in a grasping space G.

Let p be a point in the grasping space G. For each point
x in G, we use D,(x) : G — R to denote the length of the
shortest path connecting p and x. D, is called the distance
field rooted at p. Note that the distance is measured in G
rather than on the target surface.
__ Suppose that L, is a p-based loop in the caging loop space
L. It is easy to know that there is a point g € L, such that
q divides L, into two equal-length parts. Obviously, both



the two sub-curves are locally shortest paths in the grasping
space G. In the following, we shall reveal the fact that there is
a fundamental relationship between Morse theory and caging
loops.

Theorem 3.1: Suppose that the target object defines a
grasping space G. Let D, be the distance field rooted at
p € G. Each Morse saddle or maximal point of D, is able
to define a p-based caging loop.

Proof. Let g be an Morse saddle (or maximal) point of
D,,. Since there exists a pair of shortest paths IT;,IT; that go
along opposite directions at g. By combining I1;,II,, we get
a p-based caging loop.

Although the above discussion is assumed in the contin-
uous setting, Morse-Smale theory is also well defined in the
discrete setting; see more details in [23]. We can inherit the
spirit in [23] and distinguish Morse saddle points, minimal
points and maximal points by considering the relative magni-
tude at a voxel and its neighboring voxels. As Fig. 3 shows,
we label p’s neighbor with a “+” if the neighbor has a
higher value and a “-” otherwise. It is easy to know that
there are at most 2° possible configurations. Fig. 3 gives a
typical situation of Morse saddle point, where two opposite
neighbors are labeled with “-”” while the other four neighbors
are labeled with “+”. Similarly, a voxel is classified as a
maximal point if all 6 neighbors are labeled with “-”.

Based on Theorem 3.1, it is natural to devise a naive
algorithm (see Algorithm 1) to build the p-based caging loop
space L.

Algorithm 1: A naive algorithm for computing L

Initialize L to be empty.
Compute a sample set P in the grasping space G.
for each point pe P C G do
Compute the distance field D,,.
for each Morse saddle or maximal point q of D), do
Trace a p-based caging loop.
Add it into L.

B. Filtering Rules

However, L is very large generally. We need to invent a
handful of filtering rules to reduce the computational cost.
First of all, the reduction of the grasping space G is much
helpful to filter out redundant caging loops.

Theorem 3.2: Let H be the convex hull of the target
surface S. Any caging loop must lie between S and H.

Secondly, Property 2.3 asserts that the base point p can
be constrained on the target surface S, which cannot cause
missing any useful caging loop. In fact, the location of p can
be more restricted; See the following theorem.

Theorem 3.3: For a point p on the target surface S, if both
the principal curvatures are negative, p cannot determine a
caging loop.

Proof. Suppose L, is a caging loop. The sufficiently short
segment of L, around p can be viewed as the intersection

between a normal plane at p and the target surface S. Since
both the principal curvatures at p are negative, the loop can
be shortened by moving p toward G a little bit, leading to a
contradiction.

Finally, even if the base point p is given, there is no need
to compute the entire distance field D, since an overly long
loop is no use for grasping. It is sufficient to limit the sweep
process in an appropriate range comparable to the gripper
size. In practice, it is reasonable to require that the total
stretching length of the robot gripper (twice as long as the
gripper finger), denoted by 2k, should be larger than one
half of the length of the caging loop. Therefore, during the
computation of the p-based distance ficld, we can terminate
the sweep process when the sweep radius amounts to 2h
since at this moment, any p-based caging loop longer than
4h has been found.

Taking the above speedup techniques simultaneously into
consideration, we give an advanced algorithm for computing
caging loops; See Algorithm 2 (the difference from Algo-
rithm 1 is underlined).

Algorithm 2: An advanced algorithm for computing L

Initialize L to be empty.
Compute the grasping space G between the target
surface S and its convex hull; see Theorem 3.2.
for each sample point p € S with one of the principal
curvatures being positive (see Theorem 3.3) do
Compute D, with a sweep radius of 2A.
for each Morse-saddle point g of D, do
Trace a p-based caging loop.
Add it into L.

IV. IMPLEMENTATION

In a real grasping scenario, the gripper thickness cannot
be negligible - a gripper cannot stretch into small topological
holes or gaps. A commonly used technique is to filter
out those infeasible caging loops by checking interference.
Rather than leave it to ex post interference analysis, in
this paper, we take each gripper finger as a skeleton curve
equipped with a sweep radius r. In implementation, we offset
the target surface outward in a distance of r and require any
caging loop to be lying in the grasping space G, separated
by the r-offset surface S,. Fig. 4 shows an implementation
details of our approach.

A. Grasping Space G,

Given a scanned point cloud {(x;,n;)} of the target shape,
we shall adapt the radial basis function (RBF) technique
[25] to represent the r-offset surface S,, which is central to
define the grasping space G,. The general RBF with regard
to {(x;,m;)} is defined as follows:

£ = Ywi (e —x1) + P,



Fig. 4.

()

An overview of our caging loop based grasping system. (a) Our system setup, composed of one robotic arm and two depth cameras. (b) The

incomplete point cloud scanned by the two depth cameras. (c) The r-offset surface of the reconstructed target object that defines the grasping space. (d) A
p-based distance field and two Morse saddle points (blue). (e) Two caging loop candidates induced by the two Morse saddle points. (f) The yellow loop
is filtered since it is far from being locally shortest at the base point (red). (g) A simulation of grasping. (h) Real grasping conducted by our system.

where ¢ (1) =t is the basis function used in our experiments,
and the weighting coefficients {w;} and the low-degree
(typically linear) polynomial P(x) is undetermined. Taking
x; into the RBF, we have

Yo wid () + (1) e = /() = 0.

Furthermore, considering that the point x; +rn; that lies on
the r-offset surface S,,, we have

n
Yo wid (|l +mj—xill) + (1,x))Te = f(xj+mj) =r,
i

where ¢ = (co,c1,¢2,¢3) is unknown. At the same time, in
the RBF based approach, the four side conditions are

n n n 1
Zwi = ZW,‘X,‘ = Zwi)’i = ZWiZi =0.
i i i i

The above formulation can be finally transformed into a
linear system from which we can immediately compute {w;}
and P(x). To this cnd, we find an implicit surface f(x) =r
to represent the r-offset surface S,. If the shape embedding
space is discretized into voxels, it is very easy to identify
outside voxels that meet f(x) > r, which can be viewed as
a discrete representation of the grasping space G;,.

B. Gripper Configuration

Upon obtaining a desirable caging loop L, we need to
determine the origin position o of the gripper, as well as
an orthogonal frame to set the gripper orientation, which
facilitates a real grasp. Suppose that L is represented by
a point sequence {pi,p2,---,pn}. Imagine that there is an
inward cone rooted at p € {p1, p2,---, p,} and the center line
of the cone coincides with the normal vector at p; See Fig. 5.

(If p is not located on §,, the normal vector is discussed
later.) We further define 6, to be the maximum open angle
under the condition that no penetration occurs between the
inward cone and the target shape. The origin point o is then
selected from {py, p2,---,pn} SO as to maximize the opening
angle. Let ¢ = 2LH2EEPn e the center point of L. We then
define the first direction Diry as follows:

Dirp = 2—¢_
lo—c]|

which roughly means the forward direction of the gripper.
Considering that the loop L is roughly a planar curve, we
can fit L using a plane n-x = b, where n is a unit vector.
Finally, we define Dir, as follows:

Dir, = Diry X n.

If the triple (o,Dir,Diry) is able to define a valid grasping
configuration (no global interference happens), we use it to
guide the orientation of the gripper and launch a real grasp.
In our experiments, the gripper will spread its fingers and
move to the point o first. It then wraps the target object
tightly with the hint of Dir; and Dir,.

In Fig. 5, we show some examples on how to find a valid
grasping configuration assuming that a desirable caging loop
has been found. The key step is to check global interference
in the simulation environment of OpenRAVE. It can be
observed that our approach can report different gasping
configurations on the same model with different sizes.

Remark: If p is not located on S, Dir; is given by t, xn,
where t, is the tangent direction of the loop L at p and n is
the normal to the fitting plane of L.



Fig. 5. Inferring the gripper configuration based on a caging loop. In order
to define a valid caging configuration, we check global interference in the
simulation environment of OpenRAVE. Row 1: Large-size Kitten; Row 2:
Small-size Kitten; Row 3: Large-size Yoga; Row 4: Small-size Yoga.

V. EXPERIMENTAL RESULTS

We conducted both simulation and mechanical experi-
ments to validate our approach. In this section, we first
test the effectiveness of our algorithm on a variety of
complex objects. We then show that our algorithm can
be applied to 3D shapes with various levels of noise and
geometric features. After that, we demonstrate the superior
caging ability of our approach on real grasping scenarios
(the digital models of the target objects are unknown in
advance). Finally, we give the timing statistics of the main
computational steps.

A. Test on High-genus Models in Various Sizes

There are a number of research works on caging a 3D
shape, which largely fall into one of the following three
categories: topology guided [9], geometry guided [8] and
topology & geometry guided [10], [26]. Existing approaches,
whether topology guided or geometry guided, consider only
those loops constrained on the target surface. Therefore, it is
hard for them to deal with small topological holes or small
gaps. As shown by the comparison in Fig. 6, our algorithm

&g @
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Fig. 6. Caging loops generated on the Fertility and Yoga models with
various sizes. (a) Caging loops (yellow) produced by the method in [8]. (b)
Caging loops (red) computed by our method.

handles 3D shapes with small topological holes and is aware
of the relative size between the gripper and the shape. More
caging loop examples can be found in Fig. 7.

B. Test on Models with Various Levels of Noise and
Geometric Feature

In real grasping scenarios, the target object is often
scanned into a point cloud with noise. Therefore, a key
criteria to evaluate a caging algorithm is whether it is robust
to geometric noise or variations. In Fig. 8, the top row shows
a group of caging loops on the Venus models with various
levels of noise, while bottom row shows a group of caging
loops on the Pillar models with various levels of geometric
details. Both of them exhibit the robustness of our algorithm
against geometric noise and details.

C. Test on Real Objects

In order to validate our approach on real data, we build
a platform with a 7-DoF Barrett WAM arm, a Barrett BH8-
282 three-finger gripper and two Xtion Pro depth cameras.
For each object shown in Fig. 9, we keep the depth cameras
unchanged while rotating the target shape repeatedly for 10
times. In this way, we recorded of the grasp success rates.
A grasp is regarded to be successful if the target shape does
not escape from the gripper during a large-scale movement
that is about 10cm off the ground. We report the success
rate of grasping in Table I. It shows that our approach can
synthesize reliable caging grasps, as compared to traditional
approaches whose success rate is generally about 85%.

D. Performance

In order to accomplish a grasping task, we have to perform
a sequence of shape analysis operations and then send a grasp
instruction to the robot. Recall that we define a grasping
space and search the best caging loop in that space. In our



Fig. 7.

A gallery of caging loops computed for a variety of 3D models. For models with multiple topological handles, we show two caging loops. The

green loop is computed for a relatively large gripper enclosing multiple handles. The red loop, on the other hand, is for a small gripper to grasp a handle.

Fig. 8. Top row: Caging loops on the Venus model with varying levels of
Gaussian noise (relative to the whole model size): 0.01, 0.03, 0.05, 0.07.
Bottom row: Caging loops computed by our method on the Pillar models
are insensitive to varying levels of geometric details.

implementation, we discreticize the bounding box enclosing
the target shape into 50 x 50 x 50 voxels and label each
voxel between the r-offset surface S, and its convex hull
H, with “1”. After that, we extract a set of 500 uniformly
distributed sample points from S, and eliminate those sample
points that do not help determine a caging loop at all (see
Theorem 3.3). Finally, the loop candidate pool is generated
based on Morse theory. Among these steps, the most time-
consuming steps include the grasping space computation,
a distance field generation for a collection of base points
and topological analysis based on Morse theory. The mesh
models shown in this paper are discretized into 2K vertices,
and the average computation time for each model is about
1.5 seconds. It can be seen that our algorithm runs very fast
at this level of resolution. Therefore, if we simultaneously

TABLE I
GRASPING SUCCESS RATE.

Target Object | Success rate
Mug (Fig. 9) 100%
kettle (Fig. 9) 100%
Big Thermos (Fig. 9) 100%
Pliers (Fig. 9) 90%
Big Pliers (Fig. 9) 90%
Small Lamp (Fig. 9) 90%
Big Lamp (Fig. 9) 100%

execute the computation task and the move of gripper, it does
not introduce a noticeable delay.

VI. CONCLUSION AND DISCUSSION

In this work, we propose to synthesize feasible caging
grasps in the shape embedding space of the target object.
Our caging loops are able to encompass multiple small
topological handles and concave regions, which are rela-
tively too small to be grasped, through decoupling their
computation from surface geometry of the target object.
This also facilitates grasp synthesis for unknown objects
which are acquired and reconstructed on-the-fly. Extensive
experimental results exhibit that our approach can deal with
real objects with complex surface geometry and topology,
being aware of the relative size between objects and gripper.

Our current solution has several limitations. First, the
method used for measuring the physical feasibility is merely
a preliminary solution which can definitely be replaced by
other alternatives. Our core method for caging loop computa-
tion, however, ensures the candidate loops are mostly feasible
with respect to the gripper size. Second, the caging loops
computed by our method mainly reflect the geometric aspect
of graspability and do not account for the high level infor-
mation of semantics or functionality. For example, an object
can be grasped in different ways for different purposes.



Fig. 9.
Scanned point clouds, offset surfaces and caging loops, simulation results,
progressive demonstration of real grasping.

Grasping household objects by our system. From left to right:

Synthesizing function related grasps is an interesting venue
for future study.
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