
GRASS: Generative Recursive Autoencoders for Shape Structures

JUN LI, National University of Defense Technology
KAI XU∗, National University of Defense Technology, Shenzhen University, and Shandong University
SIDDHARTHA CHAUDHURI, IIT Bombay
ERSIN YUMER, Adobe Research
HAO ZHANG, Simon Fraser University
LEONIDAS GUIBAS, Stanford University

Fig. 1. We develop GRASS, a Generative Recursive Autoencoder for Shape Structures, which enables structural blending between two 3D shapes. Note the
discrete blending of translational symmetries (slats on the chair backs) and rotational symmetries (the swivel legs). GRASS encodes and synthesizes box
structures (bottom) and part geometries (top) separately. The blending is performed on fixed-length codes learned by the unsupervised autoencoder, without
any form of part correspondences, given or computed.

We introduce a novel neural network architecture for encoding and syn-
thesis of 3D shapes, particularly their structures. Our key insight is that

3D shapes are effectively characterized by their hierarchical organization
of parts, which reflects fundamental intra-shape relationships such as ad-

jacency and symmetry. We develop a recursive neural net (RvNN) based
autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code.

The code effectively captures hierarchical structures of man-made 3D objects

of varying structural complexities despite being fixed-dimensional: an asso-

ciated decoder maps a code back to a full hierarchy. The learned bidirectional

mapping is further tuned using an adversarial setup to yield a generative

model of plausible structures, from which novel structures can be sampled.

Finally, our structure synthesis framework is augmented by a second trained

module that produces fine-grained part geometry, conditioned on global

and local structural context, leading to a full generative pipeline for 3D

shapes. We demonstrate that without supervision, our network learns mean-

ingful structural hierarchies adhering to perceptual grouping principles,

produces compact codes which enable applications such as shape classifica-

tion and partial matching, and supports shape synthesis and interpolation

with significant variations in topology and geometry.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape analysis;

∗
Corresponding author: kevin.kai.xu@gmail.com

© 2017 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3072959.3073613.

Additional Key Words and Phrases: analysis and synthesis of shape struc-

tures, symmetry hierarchy, recursive neural network, autoencoder, genera-

tive recursive autoencoder, generative adversarial training

ACM Reference format:
Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas

Guibas. 2017. GRASS: Generative Recursive Autoencoders for Shape Struc-

tures. ACM Trans. Graph. 36, 4, Article 52 (July 2017), 14 pages.

https://doi.org/10.1145/3072959.3073613

1 INTRODUCTION
Recent progress on training neural networks for image [van den

Oord et al. 2016b] and speech [van den Oord et al. 2016a] synthe-

sis has led many to ask whether a similar success is achievable in

learning generative models for 3D shapes. While an image is most

naturally viewed as a 2D signal of pixel values and a piece of speech

as a sampled 1D audio wave, the question of what is the canonical
representation for 3D shapes (voxels, surfaces meshes, or multi-view

images) may not always yield a consensus answer. Unlike images or

sound, a 3D shape does not have a natural parameterization over a

regular low-dimensional grid. Further, many 3D shapes, especially

of man-made artifacts, are highly structured (e.g. with hierarchi-

cal decompositions and nested symmetries), while exhibiting rich

structural variations even within the same object class (e.g. consider

the variety of chairs). Hence, the stationarity and compositionality

assumptions [Henaff et al. 2015] behind the success of most neural

nets for natural images or speech are no longer applicable.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

https://doi.org/10.1145/3072959.3073613
https://doi.org/10.1145/3072959.3073613

52:2 • J. Li et al

RvNN decoder RvNN encoder

𝑛-D
root code

𝑛-D
random noise

Generator Discriminator

real

generated

real
structures

generated
structures

32D

part code

323 part
voxelization

(a) RvNN auto-encoder pre-training (b) RvNN-GAN training

32D

part code

(c) Volumetric part geometry synthesis

Training Testing

training
parts

Fig. 2. An overview of our pipeline, including the three key stages: (a) pre-training the RvNN autoencoder to obtain root codes for shapes, (b) using a GAN
module to learn the actual shape manifold within the code space, and (c) using a second network to convert synthesized OBBs to detailed geometry.

In this paper, we are interested in learning generative neural nets
for structured shape representations of man-made 3D objects. In

general, shape structures are defined by the arrangement of, and

relations between, shape parts [Mitra et al. 2013]. Developing neu-

ral nets for structured shape representations requires a significant

departure from existing works on convolutional neural networks

(CNNs) for volumetric [Girdhar et al. 2016; Wu et al. 2016, 2015;

Yumer and Mitra 2016] or view-based [Qi et al. 2016; Sinha et al.

2016; Su et al. 2015] shape representations. These works primarily

adapt classical CNN architectures for image analysis. They do not

explicitly encode or synthesize part arrangements or relations such

as symmetries.

Our goal is to learn a generative neural net for shape structures

characterizing an object class, e.g. chairs or candelabras. The main

challenges we face are two-fold. The first is how to properly “mix”, or

jointly encode and synthesize (discrete) structure and (continuous)

geometry. The second is due to intra-class structural variations. If

we treat shape structures as graphs, the foremost question is how

to enable a generic neural network to work with graphs of different
combinatorial structures and sizes. Both challenges are unique to our

problem setting and neither has been addressed by networks which

take inputs in the form of unstructured, fixed-size, low-dimensional

grid data, e.g. images or volumes.

Our key insight is that most shape structures are naturally hier-
archical and hierarchies can jointly encode structure and geometry.

Most importantly, regardless of the variations across shape struc-

tures, a coding scheme that recursively contracts hierarchy or tree

nodes into their parents attains unification at the top — any finite

set of structures eventually collapses to root node codes with a

possibly large but fixed length. We learn a neural network which

can recursively encode hierarchies into root codes and invert the

process via decoding. Then, by further learning a distribution over

the root codes for a class of shapes, new root codes can be generated

and decoded to synthesize new structures and shapes in that class.

Specifically, we represent a 3D shape using a symmetry hierar-
chy [Wang et al. 2011], which defines how parts in the shape are

recursively grouped by symmetry and assembled by connectivity.

Our neural net architecture, which learns to infer such a hierarchy

for a shape in an unsupervised fashion, is inspired by the recur-
sive neural nets (RvNN)1 of Socher et al. [2012; 2011] developed for

1
Note that we are adding the letter ‘v’ to the acronym RNN, since by now, the term

RNN most frequently refers to recurrent neural networks.

text and image understanding. By treating text as a set of words

and an image as a set of superpixels, an RvNN learns a parse tree

which recursively merges text/image segments. There are two key

differences and challenges that come with our work:

• First, the RvNNs of Socher et al. [2011] always merge two

adjacent elements and this is modeled using the same net-

work at every tree node. However, in a symmetry hierarchy,

grouping by symmetry and assembly by connectivity are

characteristically different merging operations. As well, the

network structures at a tree node must accommodate as-

sembly, reflectional symmetry, and rotational/translational

symmetries of varying orders.

• Second, our main goal is to learn a generative RvNN, for
part-based shape structures that are explicitly represented

as discrete structural combinations of geometric entities.

To accomplish these goals, we focus on learning an abstraction of

symmetry hierarchies, which are composed of spatial arrangements

of oriented bounding boxes (OBBs). Each OBB is defined by a fixed-

length code to represent its geometry and these codes sit at the

leaves of the hierarchies. Internal nodes of the hierarchies, also

characterized by fixed-length codes, encode both the geometry of

its child OBBs and their detailed grouping mechanism: whether by

connectivity or symmetry.

We pre-train an unsupervised RvNN using OBB arrangements

endowed with box connectivity and various types of symmetry. Our

neural network is an autoencoder-based RvNN which recursively

assembles or (symmetrically) groups a set of OBBs into a fixed-

length root code and then decodes the root to reconstruct the input;

see Figure 2(a). The network comprises two types of nodes: one to

handle assembly of connected parts, and one to handle symmetry

grouping. Each merging operation takes two or more OBBs as input.

Our RvNN learns how to best organize a shape structure into a

symmetry hierarchy to arrive at a compact and minimal-loss code

accounting for both geometry and structure.

To synthesize new 3D shapes, we extend the pre-trained autoen-

coder RvNN into a generative model. We learn a distribution over

root codes constructed from shape structures for 3D objects of the

same class, e.g. chairs. This step utilizes a generative adversarial

network (GAN), similar to a VAE-GAN [Larsen et al. 2015], to learn a

low-dimensional manifold of root codes; see Figure 2(b). We sample

and then project a root code onto the manifold to synthesize an OBB

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:3

arrangement. In the final stage, the boxes are filled with part geome-

tries by another generative model which learns a mapping between

box features and voxel grids; see Figure 2(c). We refer to our overall

generative neural network as a generative recursive autoencoder for
shape structures, or GRASS. Figure 2 provides an overview of the

complete architecture.

The main contributions of our work can be summarized as fol-

lows.

• The first generative neural networkmodel for structured 3D

shape representations — GRASS. This is realized by an au-

toencoder RvNN which learns to encode and decode shape

structures via discovered symmetry hierarchies, followed

by two generative models trained to synthesize box-level

symmetry hierarchies and volumetric part geometries, re-

spectively.

• A novel RvNN architecture which extends the original

RvNN of Socher et al. [2011] by making it generative and

capable of encoding a variety of merging operations (i.e.

assembly by connectivity and symmetry groupings of dif-

ferent types).

• An unsupervised autoencoder RvNN which jointly learns

and encodes the structure and geometry of box layouts of

varying sizes into fixed-length vectors.

We demonstrate that our network learns meaningful structural

hierarchies adhering to perceptual grouping principles, produces

compact codeswhich enable applications such as shape classification

and partial matching, and supports generative models which lead

to shape synthesis and interpolation with significant variations in

topology and geometry.

2 RELATED WORK
Our work is related to prior works on statistical models of 3D shape

structures, including recent works on applying deep neural net-

works to shape representation. These models can be disciminative

or generative, and capture continuous or discrete variations. We

review the most relevant works below. Since our focus is shape

synthesis, we emphasize generative models in our discussion.

Statistical shape representations. Early works on capturing statis-

tical variations of the human body explored smooth deformations of

a fixed template [Allen et al. 2003; Anguelov et al. 2005; Blanz and

Vetter 1999]. Later papers addressed discrete variations at the part

level, employing stochastic shape grammars coded by hand [Müller

et al. 2006], learned from a single training example [Bokeloh et al.

2010], or learned frommultiple training examples [Talton et al. 2012].

Parallel works explored the use of part-based Bayesian networks

[Chaudhuri et al. 2011; Kalogerakis et al. 2012] and modular tem-

plates [Fish et al. 2014; Kim et al. 2013] to represent both continuous

and discrete variations. However, these methods are severely limited

in the variety and complexity of part layouts they can generate, and

typically only work well for shape families with a few consistently

appearing parts and a restricted number of possible layouts. In a

different approach, Talton et al. [2009] learn a probability distribu-

tion over a shape space generated by a procedure operating on a

fixed set of parameters. We are also inspired by some non-statistical

shape representations such as the work of Wang et al. [2011] and

van Kaick et al. [2013] on extracting hierarchical structure from a

shape: our goal in this paper is to learn consistent, probabilistic,

hierarchical representations automatically from unlabeled datasets.

Mitra et al. [2013] provide an overview of a range of further works

on statistical and structure-aware shape representations.

Deep models of 3D shapes. Recently, the success of deep neural

networks in computer vision, speech recognition, and natural lan-

guage processing has inspired researchers to apply such models

to 3D shape analysis. While these are of course statistical shape

representations, their immediate relevance to this paper merits a

separate section from the above. Most of these works have focused

on extending computer vision techniques developed for images –

2D grids of pixels – to 3D grids of voxels. Wu et al. [2015] pro-

pose a generative model based on a deep belief network trained

on a large, unannotated database of voxelized 3D shapes. They

show applications of the model to shape synthesis and probabilistic

shape completion for next-best view prediction. Girdhar et al. [2016]

jointly train a deep convolutional encoder for 2D images and a deep

convolutional decoder for voxelized 3D shapes, chained together so

that the vector output of the encoder serves as the input code for

the decoder, allowing 3D reconstruction from a 2D image. Yan et

al. [2016] propose a different encoder-decoder network for a similar

application. Yumer and Mitra [2016] present a 3D convolutional

network that maps a voxelized shape plus a semantic modification

intent to the deformation field required to realize that intent.

In a departure from voxel grids, Su et al. [2015] build a powerful

shape classifier based on multiple projected views of the object, by

fine-tuning standard image-based CNNs trained on huge 2D datasets

and applying a novel pooling mechanism. Masci et al. [2015] build

a convolutional network directly on non-Euclidean shape surfaces.

Qi et al. [2016] discuss ways to improve the performance of both

volumetric and multi-view CNNs for shape classification. In a recent

work, Tulsiani et al. [2017] develop a discriminative, CNN-based

approach to consistently parse shapes into a bounded number of

volumetric primitives.

We are inspired by the work of Huang et al. [2015], who develop

a deep Boltzmann machine-based model of 3D shape surfaces. This

approach can be considered a spiritual successor of Kalogerakis et

al. [2012] and Kim et al. [2013], learning modular templates that

incorporate fine-grained part-level deformation models. In addition

to being fully generative – the model can be sampled for a point

set representing an entirely new shape – the method automatically

refines shape correspondences and part boundaries during training.

However, like the prior works, this approach is limited in the variety

of layouts it can represent.

Wu et al. [2016] exploit the success of generative adversarial nets

(GAN) [Goodfellow et al. 2014] to improve upon the model of Wu et

al. [2015]. At its core, their model is a generative decoder that takes

as input a 200-D shape code and produces a voxel grid as output.

The decoder is trained adversarially, and may be chained with a

prior encoder that maps, say, a 2D image to the corresponding shape

code. The method supports simple arithmetic and interpolation on

the codes, enabling, for instance, topology-varying morphs between

different shapes. Our work is complementary to this method: we

seek to develop a powerful model of part layout variations that can

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:4 • J. Li et al

accurately synthesize complex hierarchical structures beyond the

representational power of low-resolution grids, can be trained on

relatively fewer shapes, and is independent of voxel resolution.

Neural models of graph structure. The layout of parts of a shape
inherently induces a non-Euclidean, graph-based topology defined

by adjacency and relative placement. Several works, not concern-

ing geometric analysis, have explored neural networks operating

on graph domains. The most common such domains are of course

linear chains defining text and speech signals. For these domains,

recurrent neural networks (RNNs), as well as convolutional neural

networks (CNNs) over sliding temporal windows, have proved very

successful. Such linear models have even been adapted to generate

non-linear output such as images, as in the work of van den Oord et

al. [2016b; 2016c], producing the image row by row, pixel by pixel.

These models are, however, limited in such adaptations since it is

difficult to learn and enforce high-level graph-based organizational

structure. Henaff et al. [2015], Duvenaud et al. [2015] and Niepert

et al. [2016] propose convolutional networks that operate directly

on arbitrary graphs by defining convolution as an operation on the

radial neighborhood of a vertex. However, none of these works en-

able generative models. A different approach to this problem, which

directly inspires our work, is the recursive neural network (RvNN)

proposed by Socher et al. [2012; 2011], which sequentially collapses

edges of a graph to yield a hierarchy. We build upon the autoen-

coder version of this network, adapting it to learn the particular

organizational principles that characterize 3D shape structure, and

to extend it from a deterministic model to a probabilistic generative

one.

3 OVERVIEW
Our method for learning GRASS, a hierarchical, symmetry-aware,

generative model for 3D shapes, has three stages, shown in Figure 2.

In this section, we summarize the stages and highlight important

components and properties of the neural networks we use.

Geometry and structure encoding. We define an abstraction of

symmetry hierarchies, which are composed of spatial arrangements

of oriented bounding boxes (OBBs). Each OBB is defined by a fixed-

length code to represent its geometry. The fixed length code encodes

both the geometry of its child OBBs and their detailed grouping

mechanism: whether by connectivity or symmetry.

Stage 1: Recursive autoencoder. In the first stage, we train an au-

toencoder for layouts of OBBs. The autoencoder maps a box layout

with an arbitrary number and arrangement of components to a fixed-

length root code that implicitly captures its salient features. The

encoding is accomplished via a recursive neural network (RvNN)

that repeatedly, in a bottom-up fashion, collapses a pair of boxes

represented as codes into a merged code. The process also yields a

hierarchical organizational structure for the boxes. The final code

representing the entire layout is decoded to recover the boxes (plus

the entire hierarchy) by an inverse process, and the training loss is

measured in terms of a reconstruction error and back-propagated

to update the network weights.

Stage 2: Learning manifold of plausible structures. We extend the

autoencoder to a generative model of structures by learning a distri-

bution over root codes that describes the shape manifold, or shape

space, occupied by codes corresponding tomeaningful shapeswithin

the full code space. We train a generative adversarial model (GAN)

for a low-dimensional manifold of root codes that can be decoded

to structures indistinguishable, to an adversarial classifier, from the

training set. Given a randomly selected root code, we project it to

the GAN manifold to synthesize a plausible new structure.

Stage 3: Part geometry synthesis. In the final stage, the synthesized
boxes are converted to actual shape parts. Given a box in a synthe-

sized layout, we compute structure-aware recursive features that

represent it in context. Then, we simultaneously learn a compact,

invertible encoding of voxel grids representing part geometries as

well as a mapping from contextual part features to the encoded

voxelized geometry. This yields a procedure that can synthesize

detailed geometry for a box in a shape structure.

By chaining together hierarchical structure generation and part

geometry synthesis, we obtain the full GRASS pipeline for recursive

synthesis of shape structures.

4 RECURSIVE MODEL OF SHAPE STRUCTURE
In this section, we describe a method to encode shape structures

into a short, fixed-dimensional code. The learned encoding is fully

invertible, allowing the structure to be reconstructed from the code.

In Section 5, we present our method to adversarially tune this struc-

ture decoder to map random codes to structures likely to come from

real shapes. By combining this generator for sampling plausible

shape structures with a method for synthesizing the geometry of

individual parts (Section 6), we obtain our probabilistic generative

model for 3D shapes.

Our key observation is that shape components are commonly

arranged, or perceived to be arranged, hierarchically. This is a nat-

ural organizational principle in well-accepted theories of human

cognition and design, which has been extensively leveraged compu-

tationally [Serre 2013]. Perceptual and functional hierarchies follow

patterns of component proximity and symmetry. Hence, the primary

goal of our structural code is to successfully encode the hierarchical

organization of the shape in terms of symmetries and adjacencies.

An important metric of success is that the hierarchies are consistent
across different shapes of the same category. We achieve this via

a compact model of recursive component aggregation that tries to

consistently identify similar substructures.

Our model is based on Recursive Autoencoders (RAE) for un-

labeled binary trees, developed by Socher et al. [2014]. The RAE

framework proposed by Socher et al. consists of an encoder neural
network that takes two n-dimensional inputs and produces a single

n-dimensional output, and a decoder network that recovers two n-D
vectors from a single n-D vector. In our experiments, n = 80.

Given a binary tree with n-D descriptors for the leaves, the RAE

is used to recursively compute descriptors for the internal nodes,

ending with a root code. The root code can be inverted to recover

the original tree using the decoder, and a training loss formulated

in terms of a reconstruction error for the leaves.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:5

RAEs were originally intended for parsing natural language sen-

tences in a discriminative setting, trained on unlabeled parse trees.

We adapt this framework for the task of learning and synthesizing

hierarchical shape structures. This requires several important tech-

nical contributions, including extending the framework to accom-

modate multiple encoder and decoder types, handling non-binary

symmetric groups of parts, and probabilistically generating shapes

(as described in the subsequent sections).

Criteria for recursive merging. Our model of hierarchical orga-

nization of shape parts follows two common perceptual/cognitive

criteria for recursive merging: a mergeable subset of parts is either

an adjacent pair (the adjacency criterion) or part of a symmetry

group (the symmetry criterion)
2
. An adjacent pair is represented

by the bounding boxes of constituent parts. In this stage, we are

interested only in representing the gross layout of parts, so we dis-

card fine-grained geometric information and store only oriented

part bounding boxes, following earlier work on shape layouts [Ovs-

janikov et al. 2011] — fine-grained geometry synthesis is described

in Section 6. We recognize three different types of symmetries, each

represented by the bounding box of a generator part plus further

parameters: (1) pairwise reflectional symmetry, parametrized by the

plane of reflection; (2) k-fold rotational symmetry, parametrized

by the number of parts k and the axis of rotation; and (3) k-fold
translational symmetry, parametrized by k and the translation offset

between parts. The different scenarios are illustrated in Figure 3.

We generate training hierarchies that respect these criteria, and our

autoencoder learns to synthesize hierarchies that follow them.

Synthesizing training data. To train our recursive autoencoder,

we synthesize a large number of training hierarchies from a dataset

of shapes. These shapes are assumed to be pre-segmented into con-

stituent (unlabeled) parts, but do not have ground truth hierarchies.

We adopt an iterative, randomized strategy to generate plausible

hierarchies for a shape that satisfy the merging criteria described

above. In each iteration, two or more parts are merged into a single

one. A mergeable subset of parts is either adjacent or symmetric.

We randomly sample a pair that satisfies one of the two criteria until

no further merges are possible. In our experiments, we generated 20

training hierarchies for each shape in this fashion. Note that none

2
Currently, we make the reasonable single-object assumption that all parts are con-

nected by either adjacency or symmetry. For disconnected, asymmetric shapes, we

would need further merging criteria.

Fig. 3. Merging criteria used by our model demonstrated with 3D shapes
represented by part bounding boxes (relevant parts highlighted in red).
From left: (a) two adjacent parts, (b) translational symmetry, (c) rotational
symmetry, and (d) reflective symmetry.

of these hierarchies is intended to represent “ground truth”. Rather,

they sample the space of plausible part groupings in a relatively

unbiased fashion for training purposes.

Autoencoder model. To handle both adjacency and symmetry re-

lations, our recursive autoencoder comprises two distinct types of

encoder/decoder pairs. These types are:

Adjacency. The encoder for the adjacency module is a neural

network AdjEnc which merges codes for two adjacent

parts into the code for a single part. It has two n-D inputs

and one n-D output. Its parameters are a weight matrix

Wae ∈ R
n×2n

and a bias vector bae ∈ R
n
, which are used

to obtain the code of parent (merged) node y from children

x1 and x2 using the formula

y = tanh(Wae · [x1 x2] + bae)

The corresponding decoder AdjDec splits a parent code y
back to child codes x ′

1
and x ′

2
, using the reverse mapping

[x ′
1
x ′
2
] = tanh(Wad · y + bad)

whereWad ∈ R
2n×n

and bad ∈ R
2n
.

Symmetry. The encoder for the symmetry module is a neural net-

work SymEnc which merges the n-D code for a generator

part of a symmetry group, as well as them-D parameters of

the symmetry itself into a single n-D output. The code for

a group with generator x and parameters p is computed as

y = tanh(Wse · [x p] + bse)

and the corresponding decoder SymDec recovers the gen-

erator and symmetry parameters as

[x ′p′] = tanh(Wsd · y + bsd)

whereWse ∈ R
n×(n+m)

,Wsd ∈ R
(n+m)×n

, bse ∈ R
n
, and

bsd ∈ R
m+n

. In our implementation, we use m = 8 to

encode symmetry parameters comprising symmetry type

(1D); number of repetitions for rotational and translational

symmetries (1D); and the mirror plane for reflective sym-

metry, rotation axis for rotational symmetry, or position

and displacement for translational symmetry (6D).

In practice, the encoders/decoders for both adjacency and symme-

try are implemented as two-layer networks, where the dimensions

of the hidden and output layers are 100D and 80D, respectively.

The input to the recursive merging process is a collection of part

bounding boxes. These need to be mapped to n-D vectors before

they can be processed by the autoencoder. To this end, we employ

additional single-layer neural networks BoxEnc, which maps the

12D parameters of a box (concatenating box center, dimensions and

two axes) to an n-D code, and BoxDec, which recovers the 12D

parameters from the n-D code. These networks are non-recursive,

used simply to translate the input to the internal code representation

at the beginning, and back again at the end.

Lastly, we jointly train an auxiliary classifier NodeClsfr to de-

cide which module to apply at each recursive decoding step. This

classifier is a neural network with one hidden layer that takes as

input the code of a node in the hierarchy, and outputs whether the

node represents an adjacent pair of parts, a symmetry group, or a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:6 • J. Li et al

AdjEncode

AdjDecode

𝑛-D code vec.

12D parameters

𝑛-D code vec.

𝑛-D code vec.

…

𝑛-D code vec. 𝑛-D code vec.

12D parameters

BoxDecode
…

SymEncode

SymDecode

𝑛-D code vec. Symmetry params

𝑛-D code vec.

𝑛-D code vec.

…

Symmetry params

…

NodeClassifier

BoxEncode

Leaf, adjacent or
symmetry?

3D vector

Fig. 4. Autoencoder training setup. Ellipsis dots indicate that the code could
be either the output of BoxEnc,AdjEnc or SymEnc, or the input to BoxDec,
AdjDec or SymDec.

12D parameters

BoxDecode

Result

𝑛-D code vec.

NodeClassifier

AdjDecode

𝑛-D code vec. 𝑛-D code vec. 𝑛-D code vec. Symmetry params

SymDecode

Leaf Adjacent Symmetry

Prediction

Fig. 5. Autoencoder test decoding setup.

leaf node. Depending on the output of the classifier, either AdjDec,

SymDec or BoxDec is invoked.

Training. To train our recursive autoencoder, we use BFGS with

back-propagation, starting with a random initialization of weights

sampled from a Gaussian distribution. The loss is formulated as a re-

construction error. Given a training hierarchy, we first encode each

leaf-level part bounding box using BoxEnc. Next, we recursively

apply the corresponding encoder (AdjEnc or SymEnc) at each inter-

nal node until we obtain the code for the root. Finally, we invert the

process, starting from the root code, to recover the leaf parameters

by recursively applying the decoders AdjDec and SymDec, followed

by a final application of BoxDec. The loss is formulated as the sum

of squared differences between the input and output parameters for

each leaf box.

Note that during training (but not during testing), we use the input

hierarchy for decoding, and hence always know which decoder to

apply at which unfolded node, and the mapping between input and

output boxes. We simultaneously train NodeClsfr, with a three-

class softmax classification with cross entropy loss, to recover the

tree topology during testing. The training setup is illustrated in

Figure 4.

Testing. During testing, we must address two distinct challenges.

The first is to infer a plausible encoding hierarchy for a novel seg-

mented shape without hierarchical organization. The second is to

decode a given root code to recover the constituent bounding boxes

of the shape.

To infer a plausible hierarchy using the trained encoding modules,

we resort to greedy local search. Specifically, we look at all subsets

that are mergeable to a single part, perform two levels of recursive
encoding and decoding, and measure the reconstruction error. The

merge sequence with the lowest reconstruction error is added to the

encoding hierarchy. The process repeats until no further merges are

possible. Particular cases of interest are adjacency before symmetry,
and symmetry before adjacency, as illustrated in Figure 6. For each

such case, we decode the final code back to the input box parameters

(using, as for training, the known merging hierarchy) and measure

the reconstruction error. This two-step lookahead is employed only

for inferring hierarchies in test mode. During training, we minimize

reconstruction loss over the hierarchy for the entire shape, as well

as over all subtrees. Thus, the encoder/decoder units are tuned for

both locally and globally good reconstructions, and at test time a

relatively short lookahead suffices.

To decode a root code (e.g. one obtained from an encoding hierar-

chy inferred in the above fashion), we recursively invokeNodeClsfr

to decide whether which decoder should expand the node. The corre-

sponding decoder (AdjDec, SymDec or BoxDec) is used to recover

the codes of child nodes until the full hierarchy has been expanded

to leaves with corresponding box parameters. The test decoding

setup is illustrated in Figure 5.

Several examples of test reconstructions are shown in Figure 7.

The above procedures are used to encode a novel shape to a root code,

and to reconstruct the shape given just this root code. In Figure 8,

we show how our RvNN is able to find a perceptually reasonable

symmetry hierarchy for a 3D shape structure, by minimizing the

reconstruction error. Given the structure of a swivel chair, the error

is much smaller when a wheel and spike are merged before the 5-

fold rotational symmetry is applied, than if two separate rotational

symmetries (for wheels and spikes respectively) are applied first.

5 LEARNING MANIFOLD OF PLAUSIBLE STRUCTURES
Our recursive autoencoder computes a compact, fixed-dimensional

code that represents the inferred hierarchical layout of shape parts,

and can recover the layout given just this code associated with the

root of the hierarchy. However, the autoencoder developed so far is

not a generative model. It can reconstruct a layout from any root

code, but an arbitrary, random code is unlikely to produce a plausible

Adjacent

Reflective
sym.

Adjacent

6-fold
rot. sym.

Fig. 6. Different two-step encoding orders for two examples, found by min-
imizing reconstruction errors during testing. Left: Symmetry (reflective)
before adjacency. Right: Adjacency before symmetry (6-fold rotational).

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:7

Input box structure Recovered structure

Refl. sym.Refl. sym.

Input box structure

7-fold
trans. sym.Refl. sym.

Refl. sym.5-fold
rot. sym.

Recovered structure

Fig. 7. Examples of reconstructing test shapes, without known hierarchies,
by successively encoding them to root codes, and decoding them back.
The encoding hierarchies inferred by our RvNN encoder are shown at the
bottom.

5-fold rot.
sym.

5-fold rot.
sym.

5-fold rot.
sym.

(a) (b) (c)

Fig. 8. Our RvNN encoder can find a perceptually reasonable symmetry
hierarchy for a 3D shape structure, through minimizing reconstruction error.
Given an input structure (a), the reconstruction error is much smaller if
parts are grouped by adjacency before symmetry (b), instead of symmetry
before adjacency (c).

layout. A generative model must jointly capture the distribution of

statistically plausible shape structures.

In this section, we describe ourmethod for converting the autoencoder-

based model to a fully generative one. We fine-tune the autoencoder

to learn a (relatively) low-dimensional manifold containing high-

probability shape structures. Prior approaches for learning feasible

manifolds of parametrized 3D shapes from landmark exemplars in-

clude kernel density estimation [Fish et al. 2014; Talton et al. 2009],

multidimensional scaling [Averkiou et al. 2014], and piecewise prim-

itive fitting [Schulz et al. 2016]. However, these methods essentially

reduce to simple interpolation from the landmarks, and hence may

assign high probabilities to parameter vectors that correspond to

implausible shapes [Goodfellow et al. 2014].

A
d

jD
ec

o
d

e

𝑛
-D

 r
an

d
o

m
 n

o
is

e

𝑛
-D

 c
o

d
e

ve
c.

𝑛
-D

 c
o

d
e

ve
c.

1
2

D
 p

ar
am

.

B
o

xD
ec

o
d

e

…
…

1
2

D
 p

ar
am

.

B
o

xD
ec

o
d

e

…

A
d

jEn
co

d
e

𝑛
-D

 co
d

e vec.
𝑛

-D
 co

d
e vec.

…

1
2

D
 p

aram
.

B
o

xEn
co

d
e

1
2

D
 p

aram
.

B
o

xEn
co

d
e

𝑛
-D

 co
d

e vec.

1
D

 vecto
r

…

…

generated

real

Generator network Discriminator network

Fig. 9. Architecture of our generative adversarial network, showing reuse
of autoencoder modules.

Recently, generative adversarial networks (GANs) [Goodfellow
et al. 2014] have been introduced to overcome precisely this limi-

tation. Instead of directly interpolating from training exemplars, a

GAN trains a synthesis procedure to map arbitrary parameter vec-

tors only to vectors which a classifier deems plausible. The classifier,

which can be made arbitrarily sophisticated, is jointly trained to

identify objects similar to the exemplars as plausible, and others

as fake. This leads to a refined mapping of the latent space since

implausible objects are eliminated by construction. Given a com-

pletely random set of parameters, the trained GAN “snaps” it to the

plausible manifold to generate a meaningful sample.

In addition to enabling the synthesis of novel but statistically

plausible shape structures, the learned manifold also supports in-

terpolation between shape codes. The application of this feature to

shape morphing is shown in Section 7.

GAN architecture. The architecture of our generative adversarial
network comprises a generator (G) network, which transforms a

random code to a hierarchical shape structure lying on the estimated

manifold, and a discriminator (D) network, which checks whether

a generated structure is similar to those of the training shapes or

not. Our key observation is that we can directly reuse and fine-tune
the autoencoder modules learned in the previous section, instead of

introducing new components. The decoder component (compris-

ing AdjDec, SymDec, BoxDec and NodeClsfr) is exactly what we

need to estimate a structure from a given code: it constitutes the

G network. The encoder component (comprising AdjEnc, SymEnc

and BoxEnc) is exactly what we need to estimate a code for the

generated structure. The final code can be compared to the codes

of training structures using an additional fully connected layer and

a binary softmax layer producing the probability of the structure

being “real”. This constitutes theD network. Hence, we initialize the

GAN with the trained autoencoder modules and further fine-tune

them to minimize the GAN loss. The architecture is illustrated in

Figure 9, and the training procedure described below.

Training. The GAN is trained by stochastic gradient descent using

different loss functions for the discriminator D and the generator

G. In each iteration, we sample two mini-batches: training box

structures x with their associated hierarchies, and random codes

z ∈ Rn . The x samples, with known hierarchies, are passed only

through the discriminator, yielding D (x), whereas the z samples are

passed through both networks in sequence, yielding D (G (z)). The

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:8 • J. Li et al
ra

n
d

o
m

 c
o

d
e
𝑧

All plausible hierarchies

… …

𝐷(𝐺(𝑧))

𝐷𝐺

𝐺

𝐺 𝐷

𝐷

𝐷(𝐺(𝑧))

𝐷(𝐺(𝑧))

0.96

0.85

0.23

Top 𝐾 plausible hierarchies

𝐺(𝑧)

𝐺(𝑧)

𝐺(𝑧)

Classification loss
weighted by 𝐷 𝐺 𝑧𝐺

𝐽𝐺
𝐺 𝐷

NodeClassifier

Geometric training of 𝐺 (𝐷 is fixed)

Structural training of 𝐺

Fig. 10. The training of our GAN model. Left: Given a random code, we
select the top K “plausible” hierarchies from which G can decode a box
structure to best fool D . Right: For each selected hierarchy, the training
of G is split into geometric (top) and structural (bottom) tuning, based on
different loss functions.

loss function for the discriminator is

JD = −
1

2

Ex [logD (x)] −
1

2

Ez [log(1 − D (G (z)))] ,

while the loss function for the generator is

JG = −
1

2

Ez [logD (G (z))] .

By minimizing the first loss function w.r.t. the weights of the net-

workD, we encourage the discriminator to output 1 for each training

sample, and 0 for each random sample. By minimizing the second

loss function w.r.t. the weights of the network G, we encourage the
generator to fool D into thinking a random sample is actually a real

one observed during training. This is a standard adversarial training

setup; see Goodfellow et al. [2014] for more details.

With this straightforward training, however, it is still hard to

converge to a suitable balance between the G and D networks,

despite the good initialization provided by our autoencoder. This is

due to the following reasons. First, when mapping a random code z
to the manifold, theG network (which is just the recursive decoder)

may infer a grossly incorrect hierarchy. The D network finds it easy

to reject these implausible hierarchies, and hence does not generate

a useful training signal for G. Second, the implausible hierarchies

generated from random codes may not provide reasonable pathways

to back-propagate the loss from D so that G can be tuned properly.

Third, since the decoding networks inG are split into geometric (e.g.

AdjDec) and topological (NodeClsfr) types, they should be tuned

separately with different losses deduced from D. To these ends,

we devise the following training strategies and priors, to better

constrain the training process:

• Structure prior for G . In an initial stage, we need to prevent

G from mapping a random code z to a severely implau-

sible hierarchy. This is achieved by introducing a strong

structure prior to G. We constrain the hierarchies inferred

by G to lie in a plausible set. This set includes all hierar-

chies used to train the autoencoder in Section 4. It also

includes all hierarchies inferred by the autoencoder, in test

mode, for the training shapes. For each z, we search the

plausible hierarchies for the top K = 10 ones that best fool

the discriminator, minimizing JG (Figure 10, left). These

hierarchies are then used to back-propagate the loss JG .

• Separate geometric and structural training. Given a selected

hierarchy, we first tune the geometric decoders of G via

back-propagating the corresponding loss JG through the

hierarchy. This tuning is expected to further fool the dis-

criminator, leading to a higher estimateD (G (z)) thatG (z) is
real (Figure 10, top-right). For each selected hierarchy, with

its the newly updated D (G (z)), we then tune the structural

component, NodeClsfr, of G. This is done by minimizing

the classification loss of NodeClsfr at each node in the

given hierarchy, using the node type as ground-truth (Fig-

ure 10, bottom-right). To favor those hierarchies that better

fool D, we weight the loss by D (G (z)).

• Constrained random code sampling. Given the priors and

constraints above, it is still difficult to train G to recon-

struct a plausible hierarchy from arbitrarily random codes.

Therefore, instead of directly feeding it random codes from

a normal or uniform distribution, we feed it codes drawn

from Gaussians around the training samples x , whose mix-
ture approximates the standard normal distribution. Further,

we train a secondary network fl to project these “latent”

codes to a space of potential root codes which are easier

for G to process.

Specifically, G takes samples from a multivariate Gauss-

ian distribution: zs (x) ∼ N (µ,σ) with µ = fµ (Enc (x)) and
σ = fσ (Enc (x)). Here, Enc is the recursive encoder origi-
nally trained with the autoencoder (before adversarial tun-

ing), running in test mode. fµ and fσ can be approximated

by two neural networks.

We train to minimize the reconstruction loss on x , in
addition to the generator loss in the GAN. In fact, the net-

works Enc andG constitute a variational autoencoder (VAE)

if we also tune Enc when learning the parameters of the

Gaussian distribution. This leads to an architecture simi-

lar to the VAE-GAN proposed by Larsen et al. [2015]; see

Figure 11.

Consequently, we also impose the loss function for VAE

that pushes this variational distribution p (zs (x)), over all
training samples x , towards the prior of the standard normal

distribution p (z). In summary, we minimize the following

loss function:

L = LGAN (zp) + α1Lrecon + α2LKL

The GAN loss is LGAN = logD (x) + log(1 −D (G (fl (zp)))),
with zp ∼ p (z). This loss is minimized/maximized by G/D,
respectively. The reconstruction loss is defined as Lrecon =
∥G (fl (zs (x))) − x ∥2. The Kullback-Leibler divergence loss,
LKL = DKL (p (zs (x)) ∥ p (z)), forces the mixture of local

Gaussians to approximate the standard normal distribution.

We set α1 = 10
−2

and α2 = 10 in our experiments.

The results of the GAN training process are fine-tuned RvNN

decoder modules and the fl network. The fl network projects a

random n-D vector drawn from the standard normal distribution

to the space of potential root codes, and the tuned decoders map

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:9

𝑧𝑠~𝑁(𝜇, 𝜎)

𝐺 𝐷

𝐺(𝑧)

𝐸𝑛𝑐

𝐸𝑛𝑐(𝑥)

VAE GAN

𝑓𝜇

𝑓𝜎

𝜇

𝜎

𝑧𝑝~𝑝(𝑧)

𝑓𝑙

Fig. 11. Confining random codes by sampling from a learned Gaussian
distributions based on learned root codes Enc (x). Jointly learning the dis-
tribution and training the GAN leads to a VAE-GAN network.

the projected vector to a structure lying on the plausible manifold.

Together with a module to generate fine-grained part geometry, de-

scribed in the next section, this constitutes our recursive, generative

model of 3D shapes.

6 PART GEOMETRY SYNTHESIS
In the previous sections, we described our generative model of part

layouts in shapes. The final component of our framework is a gener-

ative model for fine-grained part geometry, conditioned on the part

bounding box and layout. Our solution has two components. First,

we develop a fixed-dimensional part feature vector that captures

both the part’s gross dimensions and its context within the layout.

Second, we learn a low-dimensional manifold of plausible part ge-

ometries while simultaneously also learning a mapping from part

feature vectors to the manifold. This mapping is used to obtain the

synthesized geometry for a given part in a generated layout. Below,

we describe these steps in detail.

Structure-aware recursive feature (SARF). The recursive generator
network produces a hierarchy of shape parts, with each internal

node in the hierarchy represented by an n-D code. We exploit this

structure to define a feature vector for a single part. A natural con-

textual feature would be to concatenate the RvNN codes of all nodes

on the path from the part’s leaf node to the root. However, since

paths lengths are variable, this would not yield a fixed-dimensional

vector. Instead, we approximate the context by concatenating just

the code of the leaf node, that of its immediate parent, and that

of the root into a 3n-D feature vector (Figure 12). The first code

captures the dimensions of the part’s bounding box, and the latter

two codes capture local and global contexts, respectively.

Concatenated code

Fig. 12. Construction of structure-aware recursive feature (SARF) for a part
in a hierarchy. We concatenate the RvNN codes of the part, its immediate
parent, and the root into a fixed-dimensional vector.

32 FC

SARF code

32x32x32 input
part volume 32D

SARF code

Training Testing

training
parts

32x32x32 output
part volume

32x32x32 output
part volume

96
256

384
256 256

384
256

96

6

32 FC

512 FC

512 FC

Fig. 13. Training and testing setup for part geometry synthesis.

(a) (b) (c) (d)

Fig. 14. Geometry synthesis from part structure. Given a generated part
structure (a), we synthesize the geometry inside each part box in volumetric
representation (b). The per-box volumes are then embedded into a global
volume (c) from which we reconstruct the final meshed model (d).

SARF to part geometry. In the second stage, we would like to map

a SARF feature vector to the synthesized geometry for the part,

represented in our prototype as a 32 × 32 × 32 voxel grid. Such a

mapping function is difficult to train directly, since the output is

very high (8000) dimensional yet the set of plausible parts spans
only a low-dimensional manifold within the space of all outputs.

Instead, we adapt a strategy inspired by Girdhar et al. [2016]. We

set up a deep, convolutional autoencoder, consisting of an encoder

GeoEnc to map the voxel grid to a compact, 32D part code, and a

decoder GeoDec to map it back to a reconstructed grid. The learned

codes efficiently map out the low-dimensional manifold of plausi-

ble part geometries. We use the architecture of Girdhar et al., and

measure the reconstruction error as a sigmoid cross-entropy loss.

Simultaneously, we use a second deep network GeoMap to map an

input SARF code to the 32D part code, with both networks accessing

the same code neurons. The mapping network employs a Euclidean

loss function. We train both networks jointly, using both losses,

with stochastic gradient descent and backpropagation. At test time,

we chain together the mapping network GeoMap and the decoder

GeoDec to obtain a function mapping SARF codes to synthesized

part geometry. The training and test setups are illustrated in Figure

13. The synthesis of the overall shape geometry is done by predict-

ing part-wise 3D volumes, which are then embedded into a global

volume, from which we reconstruct the final meshed model. See

Figure 14 for an example.

7 RESULTS AND EVALUATION
We evaluate our generative recursive model of shape structures

through several experiments. First, we focus on validating that our

autoencoder-based RvNN learns the “correct” symmetry hierarchies,

where correctness could be qualified in different ways, and the

resulting codes are useful in applications such as classification and

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:10 • J. Li et al

M1 M2

G1 G2 G3

A2A1

refl. refl.

refl.trans.

rot.

refl.trans.

Fig. 15. Our RvNN encoder correctly parses six out of seven 2D box arrange-
ments designed to test handcrafted, perceptually-based grouping rules
from [Wang et al. 2011]. The G2 rule is violated in our example, with 2-fold
translational symmetry (highlighted in the red box) taking precedence over
the reflectional one.

partial matching. Then we test the generative capability of our

VAE-GAN network built on top of the RvNN.

Dataset: We collected a dataset containing 1000 3D models from

five shape categories: chairs (500), bikes (200), aeroplanes (100),

excavators (100), and candelabra (100). These models are collected

from the ShapeNet and the Princeton ModelNet. Each model is pre-

segmented according to their mesh components or based on the

symmetry-aware segmentation utilized in [Wang et al. 2011]. The

average number of segments per shape is 12 for chairs, 10 for bikes,

7 for aeroplanes, 6 for excavators, and 8 for candelabra. Symmetric

parts are counted as distinct. We do not utilize any segment labels.

Our RvNN autoencoder is trained with all shapes in the dataset.

The generative VAE-GAN is trained per category, since its training

involves structure learning which works best within the same shape

category. Part geometry synthesis is trained on all parts from all

categories.

Learning recursive grouping rules. In the original work on sym-

metry hierarchies by Wang et al. [2011], a total of seven precedence

rules (labeled M1, M2, G1, G2, G3, A1, and A2; see the Appendix for

a reproduction of these rules) were handcrafted to determine orders

between and among assembly and symmetry grouping operations.

For example, rule A1 stipulates that symmetry-preserving assembly

should take precedence over symmetry-breaking assembly and rule

M2 states that assembly should be before grouping (by symmetry)

if and only if the assembled elements belong to symmetry groups

which possess equivalent grouping symmetries. These rules were

inspired by Gestalt laws of perceptual grouping [Köhler 1929] and

Occam’s Razor which seeks the simplest explanation. One may say

that they are perceptual and represent a certain level of human

cognition.

The intriguing question is whether our RvNN, which is unsuper-

vised, could “replicate” such cognitive capability. To test the rules,

we designed seven box arrangements in 2D, one per rule; these

patterns are quite similar to those illustrated in Wang et al. [2011].

… …

refl.

…

rot.

…

rot.

…… … … … …

Fig. 16. Inferred hierarchies are consistent across sets of shapes, shown for
two shape classes (candelabra and chairs).

For rule A2, which involves a connectivity strength measure, we

simply used geometric proximity. In Figure 15, we show the seven

box arrangements and the grouping learned by our RvNN. As can

be observed, our encoder correctly parses all expected patterns ex-

cept in the case of G2, where 2-fold translational symmetry takes

precedence over the reflectional one in our example.

Consistency of inferred hierarchies. Our RvNN framework infers

hierarchies consistently across different shapes. To demonstrate

this, we augment two categories of our segmented dataset – chair
and candelabra – with semantic labels (e.g., for chairs: “seat”, “back”,

“leg”, and “arm”). Note that these labels occur at relatively higher

levels of the hierarchies, since legs, backs, etc., may be subdivided

into smaller parts. If the hierarchies are consistent across shapes,

these high-level labels should follow a consistent merging order.

For example, the seat and legs should be merged before the seat and

back are merged. Let ℓp denote the label of part p. Given another

label ℓ, let h(p, ℓ) denote the shortest distance from p to an ancestor

that it shares with a part with label ℓ. Note that h(p, ℓp) = 0 by

definition. Let Sℓ be the set of parts with label ℓ. For labels ℓ1, ℓ2,

we measure the probability Pℓ (ℓ1 ≺ ℓ2) that ℓ1 is more regularly

grouped with ℓ than ℓ2 as
∑
p∈Sℓ I(h(p, ℓ1) < h(p, ℓ2))/|Sℓ |, where I

is the indicator function and the sum is additionally restricted over

shapes in which all three labels appear. The overall consistency is

estimated as one minus the average entropy over all label triplets:

C = 1 +

(
|L|

3

)−1 ∑
ℓ,ℓ1, ℓ2∈L, ℓ,ℓ1,ℓ2

Pℓ (ℓ1 ≺ ℓ2) log2 Pℓ (ℓ1 ≺ ℓ2)

The average consistency over the two categories of training shapes

was measured as 0.81, and over the two categories of test shapes

as 0.72. The high values show that our RvNN infers hierarchies

consistently across different shapes. Figure 16 shows several pairs

of shapes with consistent inferred hierarchies.

Classification of shape structures. Our autoencoder generates com-

pact encodings for shapes segmented into arbitrary numbers of

parts, via a recursively inferred hierarchy. To test whether these

codes effectively characterize shapes and shape similarities, we con-

ducted a fine-grained shape classification experiment for each of

four classes: airplane, chair, bike, and candle. The sub-classes were:

airplane – 5 classes including jet, straight-wing, fighter, delta-wing,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MV-CNN

3DShapeNets

Recall

P
re
ci
si
o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MVCNN

3DShapeNets

Recall

P
re
ci
si
o
n

Candle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MV-CNN

3DShapeNets

Recall

P
re
ci
si
o
n

Chair

Airplane

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours

MV-CNN

3DShapeNets

Recall

P
re
ci
si
o
n

Bike

Fig. 17. Precision-recall plots for classification tasks.

swept-wing; chair – 5 classes including armchair, folding, swivel,

four-leg, sofa; bike – 4 classes including motorcycle, casual bicycle,

tricycle, mountain bike; and candelabra – 3 classes including with

arms, w/o arm, with two-level arms. To represent each shape, we

used the average of all codes in the shape’s hierarchy, which, as in

Socher et al. [2011], we found to work better than just the root.

Following the standard protocol for each category of shapes,

we hold out one shape in turn, and sort the remaining shapes by

increasing the L2 distance between average codes, terminating the

results by a variable upper limit on the distance. The number of

results from the class of the query shape are considered as true

positives.

We show precision-recall plots for four classes of interest in Figure

17. The average accuracy of (subclass) classification over all four

classes is 96.1%.

As baselines, we show the performance of two state-of-the-art

descriptors on this task [Su et al. 2015; Wu et al. 2015]. This is not an

entirely equal-grounded comparison: our method leverages a prior

segmentation of each shape into (unlabeled) parts, whereas the base-

line methods do not. However, our method does not consider any

fine-grained part geometry, only oriented bounding box parameters.

The considerable improvement of our method over the baselines

demonstrates that gross structure can be significantly more impor-

tant for shape recognition than fine-grained geometry, and accurate

and consistent identification of part layouts can be the foundation

of powerful retrieval and classification methods.

Partial structure matching. While the previous experiment tested

full shape retrieval, it is also interesting to explore whether subtree

codes are sufficiently descriptive for part-in-whole matching. As

before, we use the average of codes in a subtree as the feature for the

subtree. Figure 18 contains some partial retrieval results, showing

that our method correctly retrieves subparts matching the query.

Shape synthesis and interpolation. Our framework is generative,

and can be used to synthesize shapes from the learned manifold in

a two-step process. First, the VAE-GAN network is sampled using a

random seed for a hierarchical bounding box layout. Second, the leaf

nodes of the hierarchy are mapped to fine-grained voxelized geome-

try, which is subsequently meshed. Several examples of synthesized

shapes are shown in Figure 19.

Our model can also be used to interpolate between two topologi-

cally and geometrically different shapes. For this task, we compute

the root codes of two shapes via inferred hierarchies. Then, we

linearly interpolate between the codes, reconstructing the shape

at each intermediate position using the synthesis procedure above.

Although intermediate codes may not themselves correspond to

root codes of plausible shapes, the synthesis procedure projects

them onto the valid manifold by virtue of the VAE-GAN training.

We demonstrate example interpolations in Figure 20. Note that our

model successfully handles topological changes both in the part

layout and within parts, while maintaining symmetry constraints.

Unlike Jain et al. [2012], we do not require prior knowledge of part

hierarchies. Unlike both Jain et al. and Alhashim et al. [2014], we do

not require part correspondences either, and we can handle smooth

topological changes in individual parts.

Implementation and Timing. Our RvNN and VAE-GAN are imple-

mented in MATLAB. The geometry synthesis model is implemented

using the MatConvNet neural network library. Pre-training the au-

toencoder (Section 4) took 14 hours. Adversarial fine-tuning (Section

5) took about 20 hours for each shape class. Training the part geome-

try synthesis network (Section 6) took 25 hours. Mapping a random

code vector to the manifold of plausible structures to synthesize a

hierarchy takes 0.5 seconds, and augmenting it with synthesized

fine-grained part geometry takes an additional 0.2 seconds per part.

8 DISCUSSION, LIMITATION, AND FUTURE WORK
With the work presented, we have only made a first step towards

developing a structure-aware, generative neural network for 3D

shapes. What separates our method apart from previous attempts

at using neural nets for 3D shape synthesis is its ability to learn,

Query Top ranked box structures

Fig. 18. Partial structure retrieval results for two shape classes (chair and
bicycle). The query and matching parts are highlighted in red.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:12 • J. Li et al

Fig. 19. Examples of shapes synthesized from different classes.

without supervision, and synthesize shape structures. It is satisfying
to see that the generated 3D shapes possess cleaner part structures,

such as symmetries, and more regularized part geometries, when

compared to voxel fields generated by previous works [Girdhar

et al. 2016; Wu et al. 2016]. What is unsatisfying however is that we

decoupled the syntheses of structure and fine geometry. This hints

at an obvious next step to integrate the two syntheses.

The codes learned by our RvNN do combine structural and geo-

metric information into a single vector. Through experiments, we

have demonstrated that the hierachical grouping learned by the

RvNN appears to conform to perceptual principles as reflected by

the precedence rules handcrafted by Wang et al. [2011]. The codes

also enable applications such as fine-grained classification and par-

tial shape retrieval, producing reasonable results. However, the

internal mechanisms of the code and precisely how it is mixing

the structural and geometric information is unclear. The fact that it

appears to be able to encode hiearachies of arbitrary depth with a

fixed-length vector is even somewhat mysterious. An interesting

future work would be to “visualize” the code to gain an insight on all

of these questions. Only with that insight would we be able to steer

the code towards a better separation between the parts reflecting

the structure and the parts reflecting low-level geometry.

Our current network still has a long way to go in fully mapping

the generative structure manifold. We cannot extrapolate arbitrarily –

we are limited to a VAE-GAN setup which samples codes similar to,

or in between, the exemplars. Hence, our synthesis and interpolation

are confined to a local patch of that elusive “manifold”. In fact, it

is not completely clear whether the generative structure space for

a 3D shape collection with sufficiently rich structural variations

is a low-dimensional manifold. Along similar lines, we have not

discovered flexible mechanisms to generate valid codes, e.g., by

applying algebraic or crossover operations, from available codes.

All of these questions and directions await future investigations. It

would be interesting to thoroughly investigate the effect of code

length on structure encoding. Finally, it is worth exploring recent

developments in GANs, e.g. Wasserstein GAN [Arjovsky et al. 2017],

in our problem setting. It would also be interesting to compare with

plain VAE and other generative adaptations.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable comments

and suggestions. We are grateful to Yifei Shi, Min Liu and Yizhi

Wang for their generous help in data preparation and result pro-

duction. Jun Li is a visiting PhD student at the University of Bonn,

supported by the China Scholarship Council. This work was sup-

ported in part by NSFC (61572507, 61532003, 61622212), an NSERC

grant (611370), NSF Grants IIS-1528025 and DMS-1546206, a Google

Focused Research Award, and awards from the Adobe, Qualcomm

and Vicarious corporations.

REFERENCES
Ibraheem Alhashim, Honghua Li, Kai Xu, Junjie Cao, Rui Ma, and Hao Zhang. 2014.

Topology-Varying 3D Shape Creation via Structural Blending. In Proc. SIGGRAPH.
Brett Allen, Brian Curless, and Zoran Popović. 2003. The Space of Human Body Shapes:

Reconstruction and Parameterization from Range Scans. In Proc. SIGGRAPH.
Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,

and James Davis. 2005. SCAPE: Shape Completion and Animation of People. In Proc.
SIGGRAPH.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. arXiv
preprint arXiv:1701.07875 (2017).

Melinos Averkiou, Vladimir Kim, Youyi Zheng, and Niloy J. Mitra. 2014. ShapeSynth:

Parameterizing Model Collections for Coupled Shape Exploration and Synthesis.

EUROGRAPHICS (2014).
Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of 3D

Faces. In Proc. SIGGRAPH. 187–194.
Martin Bokeloh, Michael Wand, and Hans-Peter Seidel. 2010. A Connection Between

Partial Symmetry and Inverse Procedural Modeling. In Proc. SIGGRAPH.
Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun.

2011. Probabilistic Reasoning for Assembly-Based 3DModeling. In Proc. SIGGRAPH.
David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-

Bombarelli, Timothy Hirzel, Al’an Aspuru-Guzik, and Ryan P. Adams. 2015. Convo-

lutional Networks on Graphs for Learning Molecular Fingerprints. In Proc. NIPS.
Noa Fish, Melinos Averkiou, Oliver van Kaick, Olga Sorkine-Hornung, Daniel Cohen-Or,

and Niloy J. Mitra. 2014. Meta-representation of Shape Families. In Proc. SIGGRAPH.
Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a

predictable and generative vector representation for objects. In Proc. ECCV.
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In

Proc. NIPS.
Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks on

Graph-Structured Data. CoRR abs/1506.05163 (2015). http://arxiv.org/abs/1506.05163

Haibin Huang, Evangelos Kalogerakis, and Benjamin Marlin. 2015. Analysis and

synthesis of 3D shape families via deep-learned generative models of surfaces. In

Proc. SGP.
Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel. 2012. Explor-

ing Shape Variations by 3D-Model Decomposition and Part-based Recombination.

In EUROGRAPHICS.
Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun.

2012. A probabilistic model for component-based shape synthesis. ACM Trans.
Graph. (Proc. SIGGRAPH) 31, 4 (2012).

Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and

Thomas Funkhouser. 2013. Learning Part-based Templates from Large Collections

of 3D Shapes. In Proc. SIGGRAPH.
W. Köhler. 1929. Gestalt Psychology. Liveright.
Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and OleWinther. 2015. Autoencod-

ing beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300
(2015).

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.

2015. Geodesic convolutional neural networks on Riemannian manifolds. In ICCV
Workshops.

Niloy Mitra, Michael Wand, Hao Zhang, Daniel Cohen-Or, and Martin Bokeloh. 2013.

Structure-aware shape processing. In Eurographics State-of-the-art Report (STAR).
Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006.

Procedural Modeling of Buildings. In Proc. SIGGRAPH.
Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning Convolu-

tional Neural Networks for Graphs. In Proc. ICML.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

http://arxiv.org/abs/1506.05163

GRASS: Generative Recursive Autoencoders for Shape Structures • 52:13

Fig. 20. Linear interpolation between root codes, and subsequent synthesis, can result in plausible morphs between shapes with significantly different
topologies.

Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J. Mitra. 2011. Exploration of

Continuous Variability in Collections of 3D Shapes. In Proc. SIGGRAPH.
Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai, Mengyuan Yan, and Leonidas J

Guibas. 2016. Volumetric and multi-view CNNs for object classification on 3D data.

In Proc. CVPR.
Adriana Schulz, Ariel Shamir, Ilya Baran, David Isaac William Levin, Pitchaya Sitthi-

Amorn, and Wojciech Matusik. 2016. Retrieval on Parametric Shape Collections.

ACM Trans. Graph. (to appear) (2016).

Thomas Serre. 2013. Hierarchical Models of the Visual System. In Encyclopedia of
Computational Neuroscience, Dieter Jaeger and Ranu Jung (Eds.). Springer NY.

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep Learning 3D Shape Surfaces

using Geometry Images. In Proc. ECCV.
Richard Socher. 2014. Recursive Deep Learning for Natural Language Processing and

Computer Vision. Ph.D. Dissertation. Stanford University.

Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and Andrew Y.

Ng. 2012. Convolutional-Recursive Deep Learning for 3D Object Classification. In

Proc. NIPS.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

52:14 • J. Li et al

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christopher D. Manning. 2011. Parsing

Natural Scenes and Natural Language with Recursive Neural Networks. In Proc.
ICML.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-

view convolutional neural networks for 3D shape recognition. In Proc. ICCV.
Jerry Talton, Lingfeng Yang, Ranjitha Kumar, Maxine Lim, Noah Goodman, and Radomír

Měch. 2012. Learning Design Patterns with Bayesian Grammar Induction. In Proc.
UIST. 63–74.

Jerry O. Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun. 2009.

Exploratory Modeling with Collaborative Design Spaces. In Proc. SIGGRAPH Asia.
Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. 2017.

Learning Shape Abstractions by Assembling Volumetric Primitives. In Proc. CVPR.
Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. 2016a.

WaveNet: A Generative Model for Raw Audio. CoRR abs/1609.03499 (2016). http:

//arxiv.org/abs/1609.03499

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016b. Pixel Recurrent

Neural Networks. CoRR abs/1601.06759 (2016). http://arxiv.org/abs/1601.06759

Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and

Koray Kavukcuoglu. 2016c. Conditional Image Generation with PixelCNN Decoders.

CoRR abs/1606.05328 (2016). http://arxiv.org/abs/1606.05328

Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir,

and Daniel Cohen-Or. 2013. Co-Hierarchical Analysis of Shape Structures. In Proc.
SIGGRAPH.

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,

and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects. In EURO-
GRAPHICS.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenen-

baum. 2016. Learning a Probabilistic Latent Space of Object Shapes via 3D

Generative-Adversarial Modeling. In Proc. NIPS.
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,

and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric

shapes. In Proc. CVPR.
Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspective

Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D

Supervision. In Proc. NIPS.
M. E. Yumer and N. J. Mitra. 2016. Learning Semantic Deformation Flows with 3D

Convolutional Networks. In Proc. ECCV.

APPENDIX:
PRECEDENCE RULES FOR SYMMETRY HIERARCHY
We reproduce the precedence rules stipulated in Wang et al. [2011]

for sorting symmetry grouping and assembly operations:

M1 (Grouping before assembly): Grouping by symmetry takes

precedence over assembly operations, with an exception given by

the next rule (M2).
M2 (Assembly before grouping): Assemble before grouping if

and only if the assembled nodes belong to symmetry cliques which

possess equivalent grouping symmetries.

G1 (Clique order): If there are still symmetry cliques of order

greater than two in the contraction graph, then higher-order cliques

are grouped before lower-order ones.

G2 (Reflectional symmetry): If there are only order-2 cliques in

the graph, then group by reflectional symmetry before rotational

symmetry and translational symmetries.

G3 (Proximity in symmetry clique): If G1 and G2 cannot set a

precedence, e.g., between rotational and translational symmetries of

the same order, then grouping of part ensembles closer in proximity

takes precedence.

A1 (Symmetry preservation): Symmetry-preserving assembly

takes precedence over symmetry-breaking assembly.

A2 (Connectivity strength): If A1 cannot set a precedence, then

order assembly operations according to a geometric connectivity
strength measure.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 52. Publication date: July 2017.

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1606.05328

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Recursive model of shape structure
	5 Learning manifold of plausible structures
	6 Part geometry synthesis
	7 Results and evaluation
	8 Discussion, limitation, and future work
	References

