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I. THE ACCURACY OF 3D SHAPE CLASSIFICATION ON
MODELNET DATASETS

TABLE I
ACCURACY OF CLASSIFICATION ON MODELNET DATASETS

Method ModelNet 40 ModelNet 10

SPH [1] 68.20% %-
LFD [2] 75.50% -%

ShapeNets [3] 77.00% 83.50%
PointNet [4] 86.20% -%
PointNet++ [5] 91.90% -%
MVCNN [6] 90.10% -%
Pairwise [7] 90.70% 92.40%

CNN MAX 88.62% 90.50%
CNN AVE 89.00% 91.00%
VDN Channel 90.37% 93.50%
VDN Part 90.25% 93.00%

This section examinates the classification accuracy of our
methods. We firstly make the comparison with the State-of-
the-Art methods on the original ModelNet 40, which is shown
in Table I. Then we evaluate the classification accuracy of
each category in ModelNet 40. The experiments and parameter
settings here are the same as previous examples.

We make a comparison on the classification accuracy with
the State-of-the-Art methods, including SPH, LFD, ShapeNets,
PointNet, MVCNN, and Pariwise. We use the same training
and testing split of ModelNet40 and ModelNet10 as in [3].
And then we averaged per-class accuracy to make a detailed
comparison with other methods. Since our network is a view-
based method, we mainly focus on its comparison with view-
based state-of-the-art like MVCNN and pairwise. As we can
see, pairwise achieves best classification performance around
different methods. Compared with pairwise adopting depth
images and greyscale images, our methods only used depth
images as input. On ModelNet40, although the proposed view
discerning network outperforms MVCNN in terms of retrieval
task, the performance of MVCNN is better than VDN on
classification. We think the reason is that MVCNN adopted
additional post-processing that a one-vs-rest linear SVMs was
trained to classify shapes using extracted image features.
However, taking into account the goal of end-to-end training,
our method got the classification results directly from the
softmax layer in the network.

Fig. 1 shows the classification accuracy of all categories. As
can be seen, most of the categories achieve high classification
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Fig. 1. Accuracy of classification on ModelNet 40

accuracy, while the accuracy of some categories may not
be satisfying, like plant pots. This deficiency results from
the limitation of our methods, which is presented in section
Limitation and Failure Cases in the paper.

There is an interesting discovery that the improvement of
our method on classification task is lower than the gain on
the retrieval task, compared with baseline method CNN AVE.
Therefore, we visualize some results of classification and
retrieval tasks in Fig. 2. As we can see, for the same query
model, both our method and baseline method give the correct
classification. However, the baseline method has some mis-
takes in later search results and our method retrieves objects
more accurately.

II. THE PROCESSING OF GENERATING THE OCCLUSION
AND BACKGROUND CLUTTER DATASETS

To evaluate the robustness of our methods when encounter-
ing the noise in practical applications, we generate the noisy
datasets with ModelNet 40, where models are influenced by
object occlusion and background clutter. Fig. 3 shows the
process of generating the object occlusion and background
clutter datasets. For object occlusion, the original 3D shape
is placed in the center and another irrelative 3D model as the
occlusion is set beside it. Then we render the images from
different angles for multiple views. The models as occlusion
are randomly selected from ModelNet 40 and the size of them
vary for training and testing phases. Specifically, we set the
size of the occlusion 1.2 times the original one for the training
phase and the scale of occlusion changes from 0.3 to 2.1 in
the testing phase. For background clutter, we first render the
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Fig. 2. Retrieval results and classification results of our proposed method(VDN Part) and the baseline method(CNN AVE). Green represents the retrieval
result and classification result for each query model of VDN Part. And blue represents the results from CNN AVE. The red box denotes the wrong searched
object. This figure is best viewed in color.
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Fig. 3. Generating the noise of object occlusion and background clutter. (a)
The occlusion is set next to the model and images of the concatenated 3D
shape are rendered from different angles. (b) 2D images are rendered from
original shape and concatenated with the background clutter.
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Fig. 4. Accuracy of classification on ModelNet 40 with occlusion

images from original 3D shapes. Then we randomly combine
the 2D images with the 3D scene from SUNCG [8]. 112 3D
scenes from SUNCG are used to generate the background
clutter images. Fig. 4 presents the classification accuracy of
all categories on ModelNet 40 with object occlusion and Fig.
5 shows the examples of noisy datasets. Compared with the
performance on original dataset, the classification accuracy on
occlusion dataset still achieves satisfying results, which proves
the robustness of our method when dealing with the occlusion
effect.
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Fig. 5. Examples of datasets with object occlusion and background clutter. (a) Models with object occlusion (b) Models with background clutter.
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III. BACKWARD PROPAGATION OF THE LOSS FUNCTION

In the paper, we have introduced the loss function of View
Discerning Network. Here, we will discuss the optimization
of the shape feature F and the classification layer under the
loss L. The loss function is fomulated as below:

L =
1

2M
{
2M∑
j=1

LSj
+

M∑
i=1

[siEi + (1− si)max(M− Ei, 0)]}

(1)
where

Ei = ‖N2i−1 −N2i‖22 (2)

LSj refers to the Softmax loss value for the j-th pair of
models. N2i−1 and N2i are obtained via L2-normalization
of the shape features F2i−1 and F2i, which compose a shape
pair. s provides similarity information between them. If they
are from the same category, s is set to 1, otherwise set to
0. M denotes the desired distance between shape features
of different categories, which is manually adjusted based on
specific cases.

Based on Equation 1, we can obtain the derivative of L with
respect to F:

∂L

∂F2i−1
= s̃i ·

∂Ei

∂F2i−1
+
∂LS2i−1

∂F2i−1

∂L

∂F2i
= s̃i ·

∂Ei

∂F2i
+
∂LS2i

∂F2i

(3)

where

s̃i =

{
2si − 1, M≥ Ei

si, M < Ei

(4)

According to Equation 2, we can derive the derivative of E
with respect to F as below:

∂Ei

∂F2i−1
= 2(N2i−1 −N2i) ·

∂N2i−1

∂F2i−1

∂Ei

∂F2i
= 2(N2i −N2i−1) ·

∂N2i

∂F2i

(5)

Now a detailed version of Equation 3 can be derived by
combining it with Equation 5:

∂L

∂F2i−1
= 2s̃i · (N2i−1 −N2i) ·

∂N2i−1

∂F2i−1
+
∂LS2i−1

∂F2i−1

∂L

∂F2i
= 2s̃i · (N2i −N2i−1) ·

∂N2i

∂F2i
+
∂LS2i

∂F2i
(6)

We also pay attention to the learning of the classification
layer, which generates the classification vector out of the shape
feature. The parameter vector of it is called PC. According
to the chain rule of network back-propagation, the derivative
of L with respect to PC is represented as:

∂L

∂PC
= αPC +

2M∑
j=0

∂LSj

∂PC
(7)

where α is the weight decay coefficient.

IV. THE RUNTIME ANALYSIS OF VIEW DISCERNING
NETWORK

Compared with MVCNN, VDN introduces an additional
score generation unit, leading to extra computational cost and
runtime cost. In Table II, we give a comprehensive analysis
of the time cost of our method. “CNN” includes feature
extraction for views, “CNN MAX” includes feature extraction
and max-pooling aggregation and “VDN” includes feature
extraction, score generation and weighted aggregation. Note
that all methods use the same base network architecture and
we use 10 views per 3D shape.

As the table shows, the least time-consuming method is
CNN MAX. Compared with CNN method, the aggregated
feature in CNN MAX leads to less computation than learning
to extract each visual feature. The time cost of VDN is 1.15
times the time cost of CNN MAX while processing a shape
and this extra time cost mainly because of the generation of
scores. It is shown that the score generation unit can bring
an extra 15% ( 112−97

97 ) time cost compared to the original
MVCNN.

TABLE II
RUNTIME COMPARISON ON MODELNET40

Method test time (per shape)

CNN 103.3 ms
CNN MAX 97.0 ms
VDN 112.1 ms
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