
EUROGRAPHICS 2020
R. Mantiuk and V. Sundstedt
(Guest Editors)

Volume 39 (2020), Number 2
STAR – State of The Art Report

Learning Generative Models of 3D Structures

Siddhartha Chaudhuri1,2 Daniel Ritchie3 Jiajun Wu4 Kai Xu5† Hao Zhang6

1Adobe Research 2IIT Bombay 3Brown University 4Stanford University
5National University of Defense Technology 6Simon Fraser University

Figure 1: A sampler of representative results from generative models of 3D shape and scene structures that were learned from data [HKM15,
FRS∗12, WLW∗19, LXC∗17].

Abstract

3D models of objects and scenes are critical to many academic disciplines and industrial applications. Of particular interest is
the emerging opportunity for 3D graphics to serve artificial intelligence: computer vision systems can benefit from synthetically-
generated training data rendered from virtual 3D scenes, and robots can be trained to navigate in and interact with real-world
environments by first acquiring skills in simulated ones. One of the most promising ways to achieve this is by learning and
applying generative models of 3D content: computer programs that can synthesize new 3D shapes and scenes. To allow users to
edit and manipulate the synthesized 3D content to achieve their goals, the generative model should also be structure-aware: it
should express 3D shapes and scenes using abstractions that allow manipulation of their high-level structure. This state-of-the-
art report surveys historical work and recent progress on learning structure-aware generative models of 3D shapes and scenes.
We present fundamental representations of 3D shape and scene geometry and structures, describe prominent methodologies
including probabilistic models, deep generative models, program synthesis, and neural networks for structured data, and cover
many recent methods for structure-aware synthesis of 3D shapes and indoor scenes.

CCS Concepts
• Computing methodologies → Structure-aware generative models; Representation of structured data; Deep learning; Neural
networks; Shape and scene synthesis; Hierarchical models;

† Corresponding author: kevin.kai.xu@gmail.com

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

1. Introduction

3D models of objects and scenes are critical to many indus-
tries, academic disciplines, and other applications. The entertain-
ment industry—including games, animation, and visual effects—
demands 3D content at increasingly large scales to create immer-
sive virtual worlds. Virtual and augmented reality experiences, now
becoming mainstream, also require this type of content. Architects,
interior design firms, and furniture retailers increasingly rely on
3D models of objects, buildings, and indoor living spaces to visu-
alize possibilities, advertise products, and otherwise engage with
customers. Of particular interest is the emerging opportunity for
3D graphics to be a service for artificial intelligence: computer vi-
sion systems can benefit from synthetically-generated training data
rendered from virtual 3D scenes, and robots can be trained to navi-
gate in and interact with real-world environments by first acquiring
skills in simulated ones.

Ideally, the stakeholders in these different areas would have ac-
cess to 3D modeling tools which would allow them to easily cre-
ate, edit, and manipulate 3D objects and scenes in order to sat-
isfy their goals. Unfortunately, this ideal is far from being realized.
Though the demand for 3D content has never been greater, the prac-
tice of creating 3D content is still largely inaccessible. Traditional
3D modeling software is notoriously complex, requiring extensive
training and experience to be used at a high proficiency level. A po-
tential alternative to modeling virtual 3D worlds “from scratch” is
to instead acquire them from the real world, via photogrammetry or
some other 3D scanning process, followed by 3D shape/scene re-
construction. Such processes come with their own problems, how-
ever: the scanning equipment can be expensive and cumbersome to
use, the 3D models produced are often of poor quality and lack the
organization and structure necessary to make them easily editable,
and last but not the least, reconstruction from real-world scenes
does not allow controllability over the generated content and limits
the creativity of the content developer.

One of the most promising ways out of this quagmire is through
generative models of 3D content: computer programs that can syn-
thesize new 3D shapes and scenes. To be usable by non-expert 3D
modelers in the disciplines mentioned previously, these programs
should not require significant technical expertise to create—rather
than being written by hand, they should be learned from data. To
allow users to edit and manipulate the synthesized 3D content to
achieve their goals, the generative model should also be structure-
aware: it should express 3D shapes and scenes using abstractions
that allow manipulation of their high-level structure.

This report surveys historical work and recent progress on learn-
ing structure-aware generative models of 3D shapes and scenes. We
first discuss the different representations of 3D geometry and 3D
structure that have been proposed, with their respective strengths
and weaknesses. Next, we give an overview of the most promi-
nent methods used to define and learn generative models of struc-
tured 3D content. We then survey the applications in which these
ideas have been used, ranging from synthesis of part-based shapes
to generation of indoor scenes. Finally, we highlight some remain-
ing open problems and exciting areas for future work.

This report is a follow-up to our previous tutorial of the same

name [CRXZ19]. We cover an expanded scope of material (in-
cluding program induction methods), more comprehensively sur-
vey work in different sub-fields of 3D structure generation, and in-
clude references to the very latest, cutting-edge results. We also
present a more systematic breakdown of different 3D structure rep-
resentations, methods for generating them, and under what circum-
stances each method is likely to perform best.

2. Background & Scope

While there are many potential readers who would benefit from
learning about the subject matter of this report, we have written it
with new graduate students in computer science (and related disci-
plines) in mind as a target audience. Readers are expected to have
a solid understanding of the fundamentals of linear algebra, prob-
ability and statistics, and computer graphics. Some prior exposure
to machine learning concepts will also be helpful (e.g. training vs.
test sets, overfitting), as will exposure to basic neural network con-
cepts (multi-layer perceptrons, convolution, activation functions,
stochastic gradient descent, etc.)

This report is also, by necessity, limited in scope. Specifically,
we focus on learned generative models of structured 3D content. A
learned model is one whose behavior is determined via a database
of examples, rather than authored by hand or any other rule-based
procedure. Structured 3D content refers to 3D shapes and scenes
that are decomposed into sub-structures (e.g. 3D objects made up
of an assembly of parts), as opposed to a monolithic chunk of ge-
ometry. There are many areas of research related to our topic of
focus which we do not discuss in detail. These include:

Non-learned generative models of structured 3D content. The
idea of creating computer programs to synthesize structured 3D
content is an idea almost as old as computer graphics itself.
Grammar-based methods, i.e. recursive expression-rewriting sys-
tems, are the most well-established and most popular. Lindenmayer
systems (L-systems) are a type of grammar in which repeated ex-
pression rewriting is interpreted as gradually growing a structure.
L-systems were popularized by their application to generating trees
and other vegetation [PL96]. Shape grammars are another popular
type of grammar; here, expression rewriting is interpreted as repeat-
edly subdividing an initial shape / region of space to produce ge-
ometry. These have been used for generating buildings [MWH∗06],
building facades [MZWVG07], and complete cities [PM01]. The
above methods all directly generate content by forward execution
of some procedure. There is also significant prior work on methods
that indirectly generate content via optimization, e.g. optimizing
the parameters of a procedure to produce desired outputs. Such ex-
amples include optimizing the output of grammars [TLL∗11], more
general object modeling programs [RMGH15], and procedures that
produce object layouts [YYT∗11, MSL∗11, YYW∗12].

Learned generative models of non-structured 3D content. Re-
cent advances in deep learning have enabled synthesis of com-
plex 3D shapes and scenes without explicit modeling of their in-
ternal structure. Wu et al. [WSK∗15] first used a Deep Belief
Network (DBN) to model a probabilistic space of 3D shapes,
and demonstrated that such a model can be used to synthesize

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Voxel Grid Point Cloud Implicit Surface Triangle Mesh

Figure 2: Different representations for the low-level geometry of individual objects / parts of objects [MPJ∗19].

novel 3D shapes after training on large shape repositories such as
ShapeNet [CFG∗15]. Girdhar et al. [GFRG16] later proposed to
connect the latent representations of 3D shapes and 2D images for
single-image 3D reconstruction. Sharma et al. [SGF16] explored
using denoising autoencoders to learn a latent space of 3D shapes
for shape completion.

Other popular deep learning methods have also been applied to
3D content synthesis. Wu et al. [WZX∗16] first applied genera-
tive adversarial networks (GAN) [GPAM∗14] to voxels; their 3D-
GAN was able to first perform unconditioned synthesis of high-
resolution 3D shapes. Liu et al. [LYF17] extended the model to
allow interactive shape synthesis and editing. As discussed later
in Section 3.1, GANs have later been adapted to other shape rep-
resentations, achieving great successes with point clouds, octrees,
and surface meshes.

Variational autoencoders (VAEs) [KW14] have also demon-
strated their potential in unconditional 3D shape synthe-
sis [BLRW16, SHW∗17], especially on domain-specific areas
such as face and human body modeling with meshes [RBSB18,
TGLX18]. With these modern deep learning tools, researchers have
been able to obtain very impressive results on shape synthesis and
reconstruction.

These papers mostly ignore the structure of 3D shapes and
scenes, and instead aim to synthesize their entire geometry “from
scratch.” In this survey, we focus on works which learn to synthe-
size 3D content while explicitly incorporating their internal struc-
ture as priors.

3. Structure-Aware Representations

A structure-aware representation of a 3D entity (i.e. a shape or
scene) must contain at least two subcomponents. First, it must have
some way of representing the geometry of the atomic structural
elements of the entity (e.g. the low-level parts of a 3D object). Sec-
ond, it must have some way of representing the structural patterns
by which these atoms are combined to produce a complete shape
or scene. In this section, we survey the most commonly-used rep-
resentations for both of these components.

3.1. Representations of Part/Object Geometry

In computer graphics, 3D geometric objects are mainly represented
with voxel grids, point clouds, implicit functions (level sets), and

surface meshes (see Figure 2). Other alternatives include paramet-
ric (e.g., tensor-product) surfaces, multi-view images [SMKL15],
geometry images [GGH02], and constructed solid geometry. For
the purpose of shape generation, voxel grids are the simplest rep-
resentation to work with: a 3D voxel grid is a straightforward
extension of a 2D pixel grid, making it easy to transfer deep
convolution-based models developed for 2D image synthesis to the
3D domain [WSK∗15, WZX∗16]. However, it is difficult to gener-
ate high-detail shapes with such volumetric representations, as the
memory cost of the representation scales cubically with the reso-
lution of the voxel grid. This problem can be partially alleviated
by using efficient and adaptive volumetric data structures such as
octrees [ROUG17, WLG∗17, KL17, TDB17].

With the proliferation of neural networks for point cloud pro-
cessing [QSMG17, QYSG17], deep generative models for direct
synthesis of 3D point clouds have become popular. A point cloud
represents only the surface of a 3D object and thus sidesteps
the resolution restriction of volumetric representations [FSG17,
ADMG18]. However, point clouds are only discrete samples of a
surface and do not provide information about the continuous be-
havior of the surface between point samples.

A compelling alternative to voxel and point based representa-
tions are implicit representations: functions f (x,y,z) whose output
determines whether a point is inside or outside of a surface. Such a
function captures the smooth, continuous behavior of a surface and
enables sampling the implied surface at arbitrary resolution. Recent
efforts have shown that it is possible to use neural networks to learn
such functions from data [CZ19, PFS∗19, MPJ∗19, MON∗19]. At
present, these methods are the state-of-the-art approaches for gen-
erating unstructured, detailed geometry.

Another possible approach is to consider directly generating a
triangle mesh representation of a surface. This is an appealing idea,
as meshes are the most commonly used geometry representation
for most graphics tasks. An early step in this direction generated
“papier-mache” objects by learning to deform and place multi-
ple regular mesh patches [GFK∗18, YFST18]. Alternatively, one
can define a convolution operator on meshes [MBBV15, HHF∗19]
and attempt to generate meshes by iterative subdivision + convo-
lution starting from some simple initial mesh. This approach has
been used for 3D reconstruction from images [WZL∗18, GG19]
and from 3D scans [DN19].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Figure 3: Representing 3D structure via segmented geometry. Left:
representing the part structure of a 3D object by part-labeled vox-
els [WSH∗18]. Right: Representing a 3D scene via a floor plan
image with per-pixel object type labels [WSCR18].

3.2. Representations of Structure

The previous section outlined the most frequently used represen-
tations for the individual atomic parts of objects (or the objects
within larger scenes). In this section, we survey a range of ways
to represent 3D structures composed of atomic parts (or objects), in
increasing order of structural complexity.

Segmented geometry. Perhaps the simplest way to add structure
to a representation of a 3D entity is to simply associate structural
labels to each part of the entity’s geometry. For example, a voxel-
based representation of a 3D object can become “structured” via
associating a part label with each voxel [LNX19, WSH∗18], or a
surface can be represented by a set of primitive patches [GFK∗18,
DGF∗19]. Analogously, a 3D scene can be represented via a top-
down ‘floor plan’ image, where each pixel in the image denotes the
type of entity present at that location [WSCR18]. Figure 3 shows
examples of both of these settings. This representation is simple to
construct, and carries the advantage that it is easy to analyze and
synthesize via the same machine learning models which operate on
the corresponding unlabeled geometry. However, as the individual
atomic parts/objects are only implicitly defined (e.g. by connected
components of voxels with the same label), machine learning mod-
els which are trained to generate them must learn to identify and
recreate these atoms (or suffer from visual artifacts in their gen-
erated output). In contrast, representations which explicitly denote
individual structural atoms side-step this issue.

Part sets. The simplest explicit representation of structural atoms
is an unordered set of atoms. In such a representation, each atomic
part or object is typically associated with information about the
atom’s spatial configuration (e.g. an affine transformation matrix);
it may also carry a type label [SSK∗17]. These representations
are also typically paired with a part geometry representation from
Section 3.1 to represent the geometry of individual parts; ma-
chine learning models which generate such structures may use
separately-trained components to handle the part set generation
vs. the part geometry generation (which makes these models more
complex than those which generate segmented geometry). This
representation also does not encode any relationships between the
structural atoms: rather, they are ‘free-floating’ objects in space.

Figure 4: Representing 3D structures via relationship
graphs [WLW∗19]. Edges between object nodes for this 3D
scene graph indicate spatial proximity and physical support.

Figure 5: Representing 3D structures via hierarchies. Left: a sym-
metry hierarchy for a 3D architectural shape, formed via repeat-
edly contracting the edges of an adjacency + symmetry relation-
ship graph [WXL∗11]. Right: a 3D bedroom scene represented via
a hierarchical grouping of objects [LPX∗19].

Relationship graphs. An obvious extension of the part set rep-
resentation is to convert the set of parts into a graph by insert-
ing edges between parts denoting pairwise relationships between
them. For 3D objects, these edges typically indicate either physi-
cal adjecencies between parts or higher-level spatial relations such
as symmetries. For 3D scenes, edges can additionally denote se-
mantic and functional relationships such as one object physically
supporting another [FSH11,WLW∗19]. Figure 4 shows a 3D scene
represented in the relationship graph form. The structural relation-
ships encoded by such scene graphs can then be characterized by
descriptors, such as graph kernels [FSH11], for scene comparison.
One can also analyze a collection of scene graphs to extract useful
information such as focal points [XMZ∗14], which are represen-
tative sub-scenes for a given scene collection. These focal points
enable part-in-whole sub-scene retrievals and scene exploration.

While attractive for their generality and representation flexibil-
ity, building effective generative models of arbitrary graphs is at
present still a challenging problem and the subject of much ongo-
ing interest in the broader machine learning community [LVD∗18,
YYR∗18, GZE19].

Hierarchies. One can derive many of the benefits of a graph-based
structure representation, while also reducing the difficulty of learn-
ing from such data, by working with a restricted class of graphs.
Trees are a natural choice, as many 3D structures observed in the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Figure 6: Representing a chair via a hierarchical
graph [MGY∗19a]. Hierarchy levels encode coarse-to-fine
structural grouping, while edges between nodes at the same
hierarchy level encode adjacency and symmetry relationships.

real world exhibit hierarchical organizational patterns. For exam-
ple, a chair contains a back part, which itself may be decomposed
into subparts. Also, a 3D scene may be interpreted as a collection
of “functional groups” of objects which decompose into coherent
arrangements of objects (e,g. many bedrooms consist of a “bed-
and-nightstands” furniture group, as depicted in Figure 5 Right).

One particularly noteworthy type of hierarchy is the sym-
metry hierarchy, which is a tree organization of 3D shape
parts [WXL∗11]. A symmetry hierarchy is a binary tree whose leaf
nodes correspond to parts, and whose internal nodes are formed by
repeatedly merging two nodes which are related via an adjacency
or symmetry relationships; see Figure 5 (left) for an example on
an architectural object. Interestingly, the construction of a symme-
try hierarchy can be viewed as a process of repeatedly contracting
the edges of a relationship graph until only a single (root) node
remains. This mapping from relationship graph to symmetry hier-
archy is not unique, however: there are many possible hierarchies
for each graph, depending on the order of edge contraction chosen.

Hierarchical graphs. An even more flexible representation for
3D structure comes from combining the representational advan-
tages of both hierarchies and graphs in the form of hierarchical
graphs. A hierarchical graph is a graph in which each node can
itself expand into another hierarchical graph, terminating at nodes
which represent atomic geometry. Alternatively, it can be viewed
as a graph in which sub-graph nodes are connected to their hier-
archical parent node via special ‘parent edges.’ This representation
is able to represent the hierarchical grouping patterns observed in
real-world shapes and scenes while also benefiting from undirected
edges at each hierarchy level to represent spatial or functional re-
lationships. While a powerful representation, the machine learning
models needed to generate hierarchical graphs can be very com-
plex, and the data needed to train such models (3D objects/scenes
with complete grouping and relationship annotations) can be hard

Input Program Output

Figure 7: Representing structures via programs that generate them.
Top: a 2D structure represented via a program is ‘extrapolated’ via
editing a loop in the program [ERSLT18]. Bottom: a 3D chair rep-
resented by a simple shape program [TLS∗19].

to come by or expensive to produce. Figure 6 shows the hierarchical
graph representation for a 3D chair model.

Programs. Perhaps the most general way to represent a spatial
structure is via a deterministic program which outputs that struc-
ture. In some sense, this representation subsumes all the others in
this section, in that a program can be made to output any of the
previously-discussed representations. Programs have the advantage
of making patterns and dependencies between structural elements
clear, and expressing them in a way that allows easy editing by a
user (e.g. changing the number of repetitions of a pattern by editing
a for loop). Figure 7 shows examples of program representations
used to represent different structures.

4. Methods

In this section, we cover prominent methodologies for learning
structured models that are applicable to shape and scene generation.
A generative model, strictly speaking, represents a (conditional or
unconditional) joint probability distribution over an input space X
(e.g., a shape space) and hence can be used to sample (i.e., synthe-
size) objects from X . This is in contrast to a discriminative model
which only represents the distribution of some attribute y ∈Y (e.g.,
a class label) conditioned on a given object x ∈ X . Nevertheless,
the term “generative” is sometimes loosely applied to any synthe-
sis method. In this survey, we focus primarily on strictly generative
models, but some cited works may deviate from that rule or come
with caveats.

Early generative methods were mostly based on probabilistic
models which generate outputs by sampling an estimated proba-
bilistic distribution. Then the “era of deep learning” popularized
the use of deep neural networks for generative modeling. While
most deep generative networks such variational autoencoders and
adversarial networks are generic models, there are networks which
are specifically tailored to learning tree and graph structures, e.g.,
recursive neural networks and graph convolutional networks. We
conclude our coverage with methods that synthesize program-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

x1

x2 x4

x3

f2

f1
f3

p(x3 | x1)

p(x2 | x1)
p(x4 | x2, x3)

(a) Factor graph

x1

x2 x4

x3

(b) Bayesian network

x1

x2 x4

x3

(c) Markov random field

Figure 8: Three flavors of probabilistic graphical models can all
represent the same distribution: p(X) = p(x4 | x2,x3)× p(x3 | x1)×
p(x2 | x1)× p(x1).

based representations, including how the adoption of neural net-
works has shape recent developments along this direction.

4.1. Classical Probabilistic Models

A variety of trainable generative models were developed to rep-
resent probability distributions that possess a structure-based fac-
torization. We discuss the most important ones for structure-aware
shape generation in this section.

Probabilistic graphical models. Graphical models are an elegant
method to represent a family of objects as a joint probability distri-
bution p(X) over discrete or continuous-valued object properties
(variables) X = {x1,x2, . . . ,xn}. While the complete distribution
may have a complex mass function, it can often be compactly rep-
resented in a factorized form over subsets of variables:

p(X) =
m

∏
i=1, Xi⊆X

fi(Xi).

Each fi(Xi) is called a factor, and is typically a simple conditional
probability function correlating the variables in Xi. A graphical
model uses a graph (hence the name) G = (V,E) to visually repre-
sent the factorization. There are three principal flavors:

Factor graph: The most general form, with vertices V = X ∪F ,
where F = ∪i{ fi}. The graph is bipartite, with undirected edges
connecting the variables Xi of the ith factor to the factor node fi.

Bayesian network: A directed ayclic graph with vertices V = X .
The joint distribution factorizes over the vertices as

p(X) = ∏
xi∈X

p(xi | Parents(xi)) ,

where Parents(xi) are the parent nodes of xi in the graph. Each
variable is independent of all others, given its parents.

Markov random field (MRF): An undirected graph with vertices
V = X , usually representing a distribution where each vari-
able is independent of all others, given its neighbors. By the

START : F
F⟶ [Left] F (0.2)
F⟶ [Right] F (0.2)
F⟶ [Left] F ∪ [Right] F (0.3)
F⟶ [Leaf] (0.3) 0.3

0.2

0.2

0.3
0.3

0.3

0.3

Figure 9: A simple non-parametric PCFG that generates branching
structures. The grammar has one nonterminal: F ; three terminals: a
leftward arrow, a rightward arrow, and a circle; and four rules with
the indicated probabilities. The probability of the derived tree is the
product of the applied rule probabilities: p(T) = 0.3×0.2×0.3×
0.2×0.3×0.3×0.3.

Hammersley-Clifford Theorem, the probability function, if ev-
erywhere positive, factorizes over maximal cliques of the graph.

The above representations are completed by specifying every fac-
tor’s probability function fi, as either a table (for discrete variables)
or a continuous model. Any Bayes net or MRF can be expressed as
a factor graph. Bayes nets can often be converted to MRFs and
vice versa. Bayes nets are typically used for probabilistic systems
where there are directed/causal relationships, whereas MRFs are
appropriate for undirected, energy-driven systems. Figure 8 shows
three representations of the same distribution.

Various algorithms exist for learning both the graph structure
and factor parameters from training data [KF09]. For instance,
structure can be learned via randomized search, and parameters by
expectation-maximization for each candidate structure. Note that
some variables may be internal to the model and not directly ob-
served in the data: these are called “latent” or “hidden” variables,
and they help mediate correlations. There are also several ways to
sample the learned distribution, and infer conditional distributions
of query variables given observations of other variables.

For the specific purpose of shape synthesis, the variables in a
graphical model typically represent properties of semantic com-
ponents of the shape family, e.g. the seat, arms, legs and back of
a chair. The model is trained on a repository of existing shapes,
and new shapes can be sampled from it, optionally constrained on
known properties. The model can also be used as a generative prior
for other objectives such as language or image-driven synthesis.

The principal limitations of traditional graphical models are that
they require careful structure and feature engineering, do not scale
well to complex high-dimensional (or variable-dimensional) distri-
butions, and training and inference can be difficult. Hence, modern
shape generation has largely moved to deep neural networks and re-
current/recursive models. Nevertheless, with proper care, graphical
models can be powerful, (relatively) interpretable high-level priors,
especially for smaller, well-parametrized datasets.

Probabilistic grammars. Context-free grammars (CFGs) are hi-
erarchical models which repeatedly apply production rules to parts
of an object, typically to replace a simple part with a more com-
plex pattern. Different parts may be expanded independently, giv-
ing derivations from a grammar their characteristic branching struc-
ture. Formally, a CFG is a 4-tuple (Σ,V,R,s), where Σ is a set of
terminal symbols, V is a set of nonterminal symbols, R is a set

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

of rules where each rule maps a nonterminal to a layout of termi-
nals/nonterminals, and s ∈ V is a start symbol. A derivation from
the grammar is a sequence of rules that transforms the start symbol
into an output pattern by successively replacing a selected nonter-
minal matching the LHS of a rule with the RHS of the rule, until
the output consists only of terminals.

A probabilistic context-free grammar (PCFG) augments this
setup with a probability for each rule. Such a model is generative:
it defines a probability distribution over derivations. If the deriva-
tion T is the sequence [(r1,s1 = s), . . . ,(rn,sn)], where rule ri is
applied to symbol si in each step, then the probability of the deriva-
tion is simply p(T) = ∏

n
i p(ri). Figure 9 shows an example of a

derivation from a toy PCFG that generates branching structures. A
more general variant is a parametric PCFG, where each symbol
has associated parameters (for example, the size of the correspond-
ing component), and the application of a rule involves sampling the
parameters of the RHS conditioned on the parameters of the LHS.
Thus, if step i replaces symbol si with symbols c1 . . .ck, then

p(T) =
n

∏
i

p(c1 . . .ck | φi(ri,si)) ,

where φi determines the distribution from which the parameters of
the output symbols are drawn. This expression explicitly highlights
the Markovian nature of the derivation: each step in the derivation
is conditioned only on the previous one, and more specifically on
just one symbol – the “parent” – in the intermediate pattern. PCFGs
can be thought of as “dynamic” Bayesian networks, whose output
is variable-dimensional. This gives them richer expressive power
than the “static” graphical models described above.

The dynamic, recursive nature of PCFGs makes them well-suited
for model structures that are defined by recursive or hierarchical
processes. Trees and other types of vegetation are the most com-
mon examples, but buildings and other shape structures that feature
hierarchies of spatial patterns are also good candidates. Typically,
PCFGs model shapes by treating pieces of atomic geometry (i.e.
shape parts) as terminal symbols. Since their derivation process is
tree-structured by nature, PCFGs can be difficult to adapt to shapes
that do not exhibit tree-like structures (e.g. part-based shapes whose
connectivity graphs include cycles).

While PCFG rules are typically designed by hand, and proba-
bilities and other parameters estimated from data, an appropriate
set of rules can also be learned from examples. This is known as
grammar induction, and is a distinctly non-trivial exercise. Exam-
ples from shape generation are rare: some are described below.

Probabilistic programs. In the study of the theory of computa-
tion, context-free grammars (CFGs) are capable of recognizing any
context-free language, whereas a Turing machine can recognize
any language (and thus a language which requires a Turing ma-
chine to be recognized is said to be Turing-complete). Probabilis-
tic programs are to probabilistic context-free grammars (PCFGs)
what Turing machines are to deterministic CFGs: where PCFGs can
represent only a certain class of probability distributions over tree
structures, probabilistic programs can represent any computable
probability distribution [GMR∗08]. In particular, any PCFG can
be represented by a probabilistic program.

Practically, probabilistic programs are usually implemented by
extending existing deterministic Turing-complete programming
languages (e.g. Lisp [GMR∗08], Javascript [GS14], C [PW14],
Matlab [WSG11]) with primitive operators for sampling from el-
ementary probability distributions (e.g. Gaussian, Bernoulli). Ex-
ecuting a probabilistic program produces a trace through the pro-
gram, which is a sequence of all the random sampling decisions
made by the program (analogous to a derivation from a PCFG).
The probability of a particular trace T is

p(T) = ∏
xi∈T

p(xi|φi(x1 . . .xi−1)),

where xi is the ith random choice in the trace and φi(x1 . . .xi−1) en-
capsulates whatever computation the program performs to compute
the parameters of the ith random choice (e.g. mean and variance,
if it is a sample from a Gaussian distribution). Expressed in this
form, it is clear how probablistic programs subsume PCFGs: if the
φ function retrieves data from a parent in a tree structure, then this
equation can be made to exactly express the probability distribution
defined by a PCFG.

Probabilistic programs show their true power as a representation
for generative models with their capabilities for inference: most
probabilistic programming languages come equipped with built-in
operators for sampling conditional probability distributions of the
form

p(T |c(T) = true).

That is, they provide the ability to compute how the distribution
of execution traces changes when some condition c on the trace is
required to be true (e.g. that certain random choices take on spe-
cific values). Computing these kinds of conditional distributions is
intractable in general, so real-world probabilistic programming lan-
guages make sacrifices, either by restricting the types of conditions
c that are expressable and/or by only computing approximations to
the true conditional distribution.

Whereas PCFGs are restricted to generating tree structures,
probabilistic programs can in theory generate any shape struc-
ture (e.g. cyclically-connected arches [RLGH15]). This generality
comes at a cost in terms of learning, though. While it is difficult
to induce a PCFG from data, some approaches do exist. However,
there is no known general-purpose algorithm for inducing proba-
bilistic programs from examples. In the domain of shape synthesis,
some domain-specific approaches have been proposed, though the
kinds of programs they induce are not much more expressive than
grammars [HSG11, RJT18].

4.2. Deep Generative Models

The generative models surveyed in the last section were all devel-
oped before the deep learning “revolution” which began in approx-
imately 2012. Since that time, new types of generative models with
deep neural networks at their core have been developed—so-called
deep generative models. In some cases, these models actually have
close connections to the “classical” models we have already dis-
cussed; we will highlight these connections where they exist.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Current scene Image representation

1 1 0 1 0 1 0 0
Category Counts

Next Category

CNN

Category

Location

CNN

CNN
FCN

Location

Translate Rotate

Orientation

CNN CNN

Snap?
cos 𝜃 , sin 𝜃

Orientation

Dimensions

𝑧

CNN

𝑧

Dimensions

Insert Object

Figure 10: An autoregressive model for generating 3D indoor scenes [RWaL19]. The model generates scenes one object at a time (and one
attribute of each object at a time), conditioned on the partial scene that has been synthesized thus far.

Autoregressive models. An autoregressive model is an iterative
generative model that consumes its own output from one iteration
as the input to its next iteration. That is, an autoregressive model
examines the output it has generated thus far in order to decide
what to generate next. For example, an autoregressive model for
generating 3D indoor scenes could synthesize one object at a time,
where the decision about what type of object to add and where to
place it are based on the partial scene that has been generated so far
(Figure 10). Formally, an autoregressive model defines a probabil-
ity distribution over vectors x as

p(x) =
|x|

∏
i=1

p(xi|NNi(x1 . . .xi−1)),

where NNi denotes a neural network. In other words, the model
represents a distribution over (potentially high-dimensional) vec-
tors via a product of distributions over each of its entries. In the
process of sampling from this distribution, the value for xi−1 must
be fed into the neural network to sample a value for xi, which earns
this type of model its autoregressive name.

If NNi is allowed be a different neural network at each step, this
representation is very similar to a probabilistic program, where the
parameter function φ is a learnable neural network instead of a fixed
function. More commonly, the same neural network is used at ev-
ery step (e.g. recurrent neural networks are a form of autoregressive
generative model that fits this description, as are pixel-by-pixel im-
age generative models [VDOKK16]).

Autoregressive models are well-suited to generating linear struc-
tures (i.e. chains), as well as for mimicking structure design pro-
cesses that involve making a sequence of decisions (e.g. placing
the objects in a scene one after another). Their primary weakness is
their susceptibility to “drift”: if an output of one step differs from
the training data in some statistically noticeable way, then when fed
back into the model as input for the next step, it can cause the sub-
sequent output to diverge further. Such errors can compound over
multiple prediction steps.

Deep latent variable models. Recently, two generative frame-
works have become extremely popular in deep neural network re-
search: variational autoencoders (VAEs) and generative adversar-
ial networks (GANs). Both these methods allow us to efficiently
sample complex, high-dimensional probability distributions, such
as that specified by a plausibility prior over shapes, images or sen-

tences. This is a classic hard problem, traditionally addressed with
slow, iterative methods like Markov Chain Monte Carlo. Under the
right conditions, if the distribution is represented by a set of land-
marks (i.e. an unsupervised training set), sampling can be reduced
to just a forward pass through a neural network, conditioned on
random noise from a known distribution.

The core idea behind both VAEs and GANs is the following:
let p : X → R be the probability function for some hard-to-sample
distribution over (say) 3D shapes X . We will sample instead from
some “easy” distribution (typically the standard Gaussian) over a
low-dimensional latent space Z, and learn a generator function
G : Z→ X that maps latent vectors to actual objects. Training tries
to make p(z) = p(G(z)) for all z ∈ Z, so sampling from the latent
space, followed by decoding with the generator, is equivalent to
sampling from the target distribution. VAEs and GANs are differ-
ent methods to learn a good generator G.

A VAE [KW14] can be thought of as maximizing a variational
Bayes objective p(x) =

∫
p(x | z)p(z)dz over all training exam-

ples x ∈ X , where p(x | z) is modeled by the generator. We desire
p(x | z) to be smooth and compact (a single latent should gener-
ate similar outputs): this is achieved indirectly by making p(z | x)
smooth and compact (a single output can be traced back to a small
range of similar latents). A VAE enforces this with an encoder
neural network that maps a training input x to a small Gaussian
N (µ(x),σ(x)) in latent space. Samples from this Gaussian are fed
to the generator, also modeled with a neural network, and the final
output is constrained to be identical to the input. Thus, a VAE re-
sembles an autoencoder where the bottleneck produces a compact
distribution rather than a single latent vector. Since the prior distri-
bution of latents is assumed to be (typically) the standard normal,
we also constrain the mixture of Gaussians ∑x∈XN (µ(x),σ(x)) to
match the prior. At test time, we simply sample the standard normal
in latent space and decode the sampled vector to an actual object
using the generator. Figure 11 illustrates the framework.

A GAN [GPAM∗14] dispenses with the encoder network and
instead uses the training exemplars to develop a “learned loss
function”, modeled by a discriminator network D. The genera-
tor tries to map latent vectors sampled from the standard nor-
mal prior to plausible objects. The discriminator tries to distin-
guish “fake” objects produced by the generator from “real” ob-
jects from the training set. This constitutes the adversarial na-
ture of the framework, with each network trying to outdo the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

x’GEncx
𝜇(x)

𝜎(x)
Sample

N(𝜇(x), 𝜎(x))
z

+ +…+ ≈

Figure 11: A variational autoencoder (top) has an encoder network
that maps a training exemplar to a small Gaussian in latent space,
and a generator that maps a sample from this Gaussian back to
the exemplar. The mixture of the per-exemplar Gaussians is con-
strained to be the standard normal distribution (bottom). At test
time, sampling from the standard normal and decoding with the
generator has the effect of sampling the probabilistic manifold rep-
resented by the training set.

other. As the generator gets better at fooling the discrimina-
tor, the discriminator also gets better at distinguishing fake from
real. Training minimizes over G, and maximizes over D, the loss
Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))].

Both VAEs and GANs can be conditioned on additional input,
to enable synthesis guided by user actions or data in other modali-
ties. They are suitable for modeling a wide variety of shape struc-
tures, depending upon the specific architectures chosen for their
decoder/generator networks (see the next section for more on this).
The use of a global latent variable to control the generation of the
structure encourages global coherence in the output, in contrast
to the tendency of autoregressive models to drift (i.e. to generate
locally-plausible but globally-incoherent structures). It is also pos-
sible to combine latent variable and autoregressive models, as an
autoregressive model such as a recurrent neural network can be
used as the decoder/generator of a VAE/GAN.

4.3. Neural Networks for Structured Data

The deep generative models defined in the last section used neural
networks, which we denoted as “NN,” as critical building blocks.
The precise form (or architecture, in neural network parlance) that
these networks take depends upon the type of data being modeled.
In this section, we survey the types of neural network architectures
that are most appropriate for the structured data representations dis-
cussed in Section 3.2.

NNs on trees: recursive neural networks. The layout of parts
of a shape inherently induces a non-Euclidean, graph-based topol-
ogy defined by inter-part relations. The main challenge in handling
such graph-based data with deep NN is the non-uniform data for-
mat: the number of parts is arbitrary even for shapes belonging
to the same category. In the field of natural language processing,
researchers adopt a special kind of NN, named Recursive Neural
Networks (RvNN), to encode and decode sentences with arbitrary

lengths [SLNM11]. The premise is that a sentence can be repre-
sented with a parse tree, following which the word vectors can be
aggregated and expanded in a recursive manner, up and down the
tree. The general form of an RvNN is recursive bottom-up merging
of tree nodes for encoding:

xp = tanh(We · [xl xr]+be),

and top-down splitting for decoding:

[xl xr] = tanh(We · xp +be),

where xp,xl ,xr represent the feature vectors of a parent node and
its left and right children, respectively. Wad ∈R2n×n and bad ∈R2n

are network parameters to be learned.

An RvNN encoder repeatedly applies the above merging opera-
tion to build a parse tree that collapses the variable sized input into a
single root node with a fixed-dimensional feature vector. Similarly,
an RvNN decoder recursively decodes the root vector back to con-
stituent leaf nodes. Powerful generative models such as VAEs and
GANs can be trained on these fixed-dimensional feature vectors,
which are then decoded to actual, variable-dimensional objects.

More complicated encoder/decoder operations have been stud-
ied [SPW∗13], but the idea of recursively using exactly the same
NN module for merging (and similarly for splitting) remains the
same. While RvNNs were originally applied to sentences, they can
be applied to arbitrary graphs (including part layouts and scene
graphs), where a merge corresponds to an edge collapse.

RvNNs permit both supervised (with labeled parse trees) and
unsupervised (with just a reconstruction loss) training. At test time,
the tree topology need not be part of the input but can be determined
on the fly, e.g. by examining the reconstruction loss of a candidate
grouping over one or more merge/split steps. Thus, RvNNs can be
an alternative to the convolutional/message-passing networks that
process arbitrary graph inputs, discussed below.

NNs on graphs: graph convolutional networks. In recent years,
much research effort has been devoted to the application of neural
network models to arbitrarily structured graphs. The most prevalent
approach has been to generalize the concept of convolution from
regular lattices to irregular graphs, which allows the construction
of graph convolutional networks (GCNs). While some approaches
to defining convolution on graphs are domain-specific [DMI∗15,
HHF∗19], the most popular approaches are general-purpose and
fall into one of two camps: spectral graph convolution or message
passing neural networks.

Spectral graph convolution approaches define convolutional net-
works on graphs by approximating the equations for local spectral
filters on graphs (i.e. multiplying a per-node signal by a filter in the
frequency domain) [HBL15, KW17]. Just as image-based CNNs
compute a sequence of per-pixel learnable feature maps, spectral
GCNs compute a sequence of per-node learnable feature maps H(l)

via update rules like the following:

f (H(l+1)) = σ

(
AH(l)W(l)

)
,

where W(l) is a weight matrix for the l-th neural network layer, σ(·)
is a non-linear activation function, and A is related to the graph’s
Laplacian matrix [KW17].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Recently, message passing approaches (sometimes called mes-
sage passing neural networks or MPNNs) have become more
widespread than spectral approaches. Rather than operating in the
frequency domain, MPNNs define convolution in the spatial do-
main by direct analogy to spatial convolution on images: the output
of a convolution f (hv) on some signal hv at graph vertex v is some
learned combination of the signal values at neighboring vertices.
For a more detailed explanation, see Wang et. al [WLW∗19], which
adopts MPNNs + an autoregressive generative modeling approach
for synthesizing indoor scene relationship graphs.

4.4. Program Synthesis

Finally, we highlight techniques for generating the program-based
representations discussed at the end of Section 3.2. These tech-
niques belong to the field of program synthesis, which is a much
broader field of study that originated with and includes applications
to domains outside of computer graphics (e.g. synthesizing spread-
sheet programs from examples [Gul11]). As mentioned in Sec-
tion 3.2, within the domain of shape synthesis, programs are well-
suited to modeling any shape structure, as a program can be written
to output many types of structure (linear chains, trees, graphs, etc.)

Constraint-based program synthesis. Program synthesis is a
field with a lengthy history, with many different techniques
proposed based on search, enumeration, random sampling,
etc. [GPS17] Of late, the most prominent of these methods is
constraint-based synthesis. In this formulation, the user first spec-
ifies the grammar of a domain-specific language, or DSL, which
is the language in which synthesized programs will be expressed
(for 3D shapes, this might be constructive solid geometry or some
related CAD language). This DSL defines the space of possible pro-
grams that can be synthesized. Constraint-based program synthesis
then attempts to solve the following optimization problem:

argminP∈DSLcost(P),
s.t. c(P) = 0,

where P is a program expressible in the DSL and c is some
constraint function. In other words, the synthesizer tries to find
the minimum-cost program which is consistent with some user-
provided constraints. The constraint function c can take many
forms; it is most commonly used to enforce consistency with a set
of user-provided (input, output) example pairs (i.e. programming
by demonstration). Cost is often defined to be proportional to pro-
gram length / complexity, so as to encourage simpler programs that
are more likely to generalize to unseen inputs (via an appeal to Oc-
cam’s razor).

The optimization problem defined above is an intractable com-
binatorial problem, and the most challenging part of the problem is
merely finding any program which satisfies the constraints. One
approach is to convert this search problem into a Boolean sat-
isfiability (SAT) problem, and then apply a state-of-the-art SAT
solver [DMB08]. The Sketch system is perhaps the most well-
known instance of this kind of constraint-based program synthe-
sizer [Lez08]. While such solvers cannot always return a solution
in a reasonable amount of time (in the worst case, searching for
a satisfying program has exponential time complexity), they often

perform well in practice, and they guarantee that the program they
return is in fact the globally-optimal (i.e. minimum-cost) program.

Neural program synthesis. Beyond traditional program synthesis
algorithms that rely mostly on hand-crafted constraints, neural nets
can also be incorporated for more effective and efficient synthesis.

There are at least two ways that neural nets can be helpful.
First, they can be used to speed up search-based synthesis by sug-
gesting which search sub-trees to explore first, or whether a sub-
tree should be explored at all [KMP∗18, LMTW19]. Similarly,
they may also be used to suggest parameters/attributes of func-
tion calls or programs [BGB∗17, ERSLT18], to suggest program
sketches [Lez08,MQCJ18], to include guidance from program exe-
cution [CLS19,TLS∗19,ZW18,WTB∗18], or to induce subroutines
from existing programs [EMSM∗18]. The main intuition behind
these approaches is that deep networks can learn the distribution of
possible programs from data and use that to guide the search.

Neural nets can also completely replace search-based synthe-
sis by learning to generate program text given input requirements.
Menon et al. [MTG∗13] explored the use of data-driven meth-
ods for program induction. The idea has been extended in various
ways to incorporate deep learning for program synthesis [DUB∗17,
PMS∗17, RDF16]. For example, RobustFill [DUB∗17] is an end-
to-end neural program synthesizer designed for text editing. These
approaches rely purely on neural nets, leading to a huge increase
in speed, but at the expense of flexibility, generality, and complete-
ness: while neural nets are good at capturing complex patterns in
data, they face challenges when generalizing to novel, more com-
plex scenarios. Such generalization can be critical for successful
program synthesis itself, as well as for downstream tasks such as
3D shape and scene synthesis.

As we will see later in Section 7, the graphics and vision com-
munity have applied and extended neural program synthesis ap-
proaches for procedural shape and scene synthesis.

4.5. Summary

To summarize our discussion of different synthesis methods for
structured shapes and scenes, we provide a flowchart detailed
the circumstances under which each should be used (Figure 12).
When only a few training examples are available, or the input pro-
vided to the system is some other form of user-specific constraint,
constraint-based program synthesizers are the best fit (though they
require some effort up-front in order to author the DSL in which
output programs will be synthesized). For small datasets of exam-
ples, deep learning methods can’t be used, so more “classic” proba-
bilistic models are the best bet. If the type of content to be modeled
has a fixed structure (e.g. a fixed grid structure, or some maximum
number of parts which can only connect in so many ways), proba-
bilistic graphical models such as Bayesian networks are applicable.
If the structure can vary dynamically across the dataset, a PCFG or
probabilistic program is a better fit (though learning algorithms are
only known for tree-structured content). Lastly, if a large amount of
training data is available, deep neural networks are the best choice.
If the structures to be generated feature strong global coherence,
then a latent variable model such as a VAE or GAN is desirable. For

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Input type?

Constraint-based
Program Synthesis

A handful of examples, or other

user-provided constraints

Fixed or dynamic
structure?

Small dataset

Fixed
Dynamic

Probabilistic
Graphical Models

Tree-like?

Yes

PCFGs /
Probabilistic Programs

Globally-coherent?

Big dataset

Yes No

VAE/GAN Autoregressive

Structure Type?

Linear Chain GraphTree

RNN RvNN GCN
Editable?YesNeural

Program Synthesis

Figure 12: A flowchart detailing the conditions to which each structure synthesis method discussed in Section 4 is best suited.

more flexible, locally-coherent structures, an autoregressive model
may suffice. Regardless, the particular neural network architecture
used to generate the structure depends on the the type of structure:
RNNs are the natural choice for linear chains, RvNNs are special-
ized for trees, and GCNs handle general graphs. Finally, if the ap-
plication at hand demands a readable and editable representation of
the output structure, neural program synthesis methods should be
investigated.

5. Application: Part-based Shape Synthesis

Structural representations of individual 3D objects typically rely on
compact encodings of discrete components of a shape. These com-
ponents are commonly semantic or functional shape parts, e.g. the
seat, back, legs and arms of a chair, or the head, torso, arms and
legs of a human. In some cases, the parts may not possess obvious
semantic labels, but still have meaningful cognitive identity and
separation, e.g. primitive shapes defining a more complex object.
In either case, part-based generative models typically rely on pre-
segmented shape repositories, with or without part labels. While
this adds a preprocessing overhead to be addressed by manual or
semi/fully-automatic means [YKC∗16, YSS∗17], the major benefit
is a model that can focus on the higher-level aspects of shape struc-
ture in terms of part layout and compatibility. The parts themselves
in the final output can be repurposed from existing shapes, or syn-
thesized separately in a factored representation. This leads to two
main themes, which we now discuss.

Structure synthesis with repurposed parts. Several papers have
developed systems that allow users to create new 3D shapes by
assembling existing parts. Such systems provide automated aids
for retrieving relevant parts, assembling them, and exchanging one
part for another [FKS∗04,KJS07, JTRS12]. Here, we will focus on
methods that rely on learned generative models, instead of manual
or heuristic-based approaches.

A variety of methods learn variations of a fixed template struc-
ture. While pioneering work on human modeling explored struc-
tured variations of body shapes [ASK∗05], later work explored

Learned component “styles”

Learned shape “styles”
R

Figure 13: Top left: A Bayesian network [KCKK12] trained on a
toy table dataset with two part labels. R and S are latent variables
that mediate correlations between observed features (blue circles).
Top right: A full network trained on segmented and labeled chairs
learns to associate stylistic clusters with different latent variable
values. Bottom: Novel chairs (blue) sampled from a model trained
on 88 chairs (green). Note that stylistic constraints are preserved.

other domains as well, e.g. Fish et al. [FAvK∗14] proposed a
“meta-representation” that captured correlations between man-
made shape parts and could be used to guide interactive editing.

Template models are limited by their fixed structure. To capture
greater variation in structural topology, Chaudhuri et al. [CKGK11]
and Kalogerakis et al. [KCKK12] trained Bayesian networks on

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Exemplars

Most
general

Most
specific

S (| |) ⟶ S0.25 S (| | |) ⟶ S0.25

……

S ???⟶

…

Bayes-optimal:
arg max P(X | G) P(G)Exemplars

Figure 14: Top: Given hierarchical exemplars constructed from a
small set of building blocks, Bayesian model merging [TYK∗12]
induces a probabilistic grammar that captures the training set as
high-probability derivations, while being compact. Bottom: Novel
buildings sampled from a grammar induced from a small set of
exemplars.

segmented and labeled 3D repositories, modeling probability dis-
tributions over features, cardinalities, and adjacencies of labeled
parts. While the former method was designed for suggesting parts
that could augment an incomplete shape during interactive mod-
eling, the latter was suitable for unsupervised shape synthesis by
probabilistic sampling. Notable aspects of the Bayesian network of
Kalogerakis et al. are latent variables that implicitly learned geo-
metric clusters roughly corresponding to shape and part “styles”
(Figure 13). In both cases, the sampled part features are used to
retrieve parts from the training repository that are procedurally as-
sembled into the final shape. Bayesian networks were also em-
ployed by Fan and Wonka [FW16] to synthesize residential build-
ings: their method first samples statistical attributes of the build-
ing from the graphical model, and then uses an optimization step
that synthesizes an actual 3D shape obeying the attributes by a
combination of procedural generation and part retrieval. Jaiswal et
al. [JHR16] developed a factor graph that is used to infer part sug-
gestions from a segmented dataset, without the need for part labels.

Further variations are captured by probabilistic grammars
(PCFGs), which also conveniently produce organizational hierar-
chies for sampled shapes. While shape synthesis with grammars
has a rich history [PL96, MWH∗06], there are very few works
that learn the grammar from examples. Bokeloh et al. [BWS10]
reconstruct a grammar from a single exemplar shape, utilizing
symmetries in how parts are connected to each other. Talton et
al. [TYK∗12] use Bayesian model merging to induce a grammar
from several exemplar shapes assembled from a small library of
parts (Figure 14). The method requires known hierarchies for all
exemplars, and constructs the “most specific grammar” describing
the collection as the union of these hierarchies. It then repeatedly
merges (and occasionally splits) rules to obtain a more compact
grammar that can still produce all the hierarchies with high proba-
bility, thus optimizing a Bayesian objective. Rule probabilities are

Figure 15: The ComplementMe neural networks [SSK∗17] learn to
incrementally construct a shape, one part at a time.

estimated via expectation-maximization. Martinović et al. [MG13]
developed a similar method for building facade generation.

Taking generality still further, Ritchie et al. [RJT18] presented
a method to induce simple probabilistic programs that describe a
set of exemplar shapes constructed from a small library of parts.
A preprocessing phase organizes the parts in each shape into a
consistent hierarchy, followed by a learning phase that assembles
the program from predefined synthesis and transformation build-
ing blocks. While the programs studied in this work are essentially
extended grammars, they lay the foundation for induction of more
complicated 3D programs.

In a different direction, Sung et al. [SSK∗17] developed
ComplementMe, a system that trains a deep neural network to re-
trieve parts that can augment an incomplete shape. The application
is similar to [CKGK11] and [JHR16], but the approach avoids both
graphical models and the need to have a labeled dataset. A sec-
ond network predicts part placements. Together, the system is pow-
erful enough to incrementally generate plausible complete shapes
without human input (Figure 15).

Synthesis of both structure and parts. Instead of assembling ex-
isting parts from a repository, it is also possible to synthesize the
parts themselves, along with their organizing structure. A (rela-
tively) early learned generative model that tackled this problem
was by Huang et al. [HKM15]. They developed a Deep Boltzmann
Machine to build part templates for groups of structurally similar
shapes in a collection, and establish part and point correspondences
between the shapes via a learned part-aware deformation model
that smoothly maps between surface points on different shapes. The
grouping, and a labeled segmentation for a shape in each group, are
input to the training. The model is generative and can be used to
synthesize shapes as labeled point clouds with template deforma-
tions: for visual quality, the final output replaces the points of each
part with a deformed existing mesh part (Figure 16). A recent paper
by Gao et al. [GYW∗19] adopts a similar “deform-and-assemble”
approach: a two-level VAE combines structure prediction with part
synthesis, where each part is modeled as a deformed cuboid. The
model jointly predicts the layout of parts as well as the local details
of each part. Instead of learning deformations, Li et al. [LNX19]
train a VAE-GAN to predict voxelized parts (one for each of a
fixed set of semantic labels) from scratch. A second network mod-
ule learns assembly transformations to produce a coherent shape
from the synthesized parts.

A different approach to shape generation is structure-aware re-
finement. For instance, Balashova et al. [BSW∗18] propose a voxel
VAE that is augmented by a structure-aware loss. A network mod-
ule tries to map a pre-specified, deformable keypoint arrangement

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Figure 16: A Deep Boltzmann Machine [HKM15] can infer se-
mantic parts and point correspondences in a shape collection (left),
while producing a structure-aware generative model which can cre-
ate novel shapes (right).

to a synthesized voxelized shape. The predicted arrangement re-
spects a structural prior trained on shapes annotated with keypoints.
The voxel grid is refined with a structure consistency loss that tries
to ensure the presence of occupied voxels near each predicted key-
point. More explicit part information is introduced by Wang et
al. [WSH∗18], which trains a GAN to output a voxelized shape
with per-voxel part labels. The GAN uses both global (shape-level)
and local (part-level) adversarial losses to enhance shape plausibil-
ity. The GAN output is fed to a denoising autoencoder that refines
and re-assembles the individual parts.

The above methods rely on shapes having a fixed structural
topology, or a set of topologies represented as deformable tem-
plates. Hence, they typically require all parts to conform to a small
set of labels. However, shapes in the real world can have (a) exten-
sive structural variation, (b) difficult-to-label components, and (c)
fine-grained details that themselves have compositional structure.
To address these challenges, Li et al. [LXC∗17] propose GRASS,
a recursive VAE that models layouts of arbitrary numbers of unla-
beled parts, with relationships between them. Based on the observa-
tion that shape parts can be hierarchically organized [WXL∗11], the
method utilizes an RvNN for encoding and decoding shape struc-
tures. The hierarchical organization follows two common percep-
tual/cognitive criteria for recursive merging: a mergeable subset of
parts is either an adjacent pair, or part of a symmetry group. Three
different symmetries are each represented by a generator part plus
further parameters: (1) pairwise reflectional symmetry; (2) k-fold
rotational symmetry; and (3) k-fold translational symmetry. Sepa-
rate adjacency and symmetry encoders/decoders handle the two cri-
teria, and a classifier is trained in parallel to predict which should
be applied during decoding.

Training data is created by randomly sampling multiple hier-
archies that respect the merging criteria [WXL∗11] for each seg-
mented (but not labeled) training shape. Despite the absence of con-
sistent, ground truth training hierarchies, the low-capacity RvNN
modules converge to predict relatively consistent hierarchies for
any input shape. Figure 17 shows an illustration of the symmetry
hierarchy of a chair model and its RvNN encoder. Since the encoder
and decoder are linked by a generative VAE, the method can sample
feature vectors from the latent space and decode them to synthesize
novel shapes, complete with part hierarchies. A GAN loss improves
the plausibility of the output, and a separate network generates fine-
grained part geometry for the synthesized layout. Figure 17 also

Refl. sym.Refl. sym.

R
ec

u
rs

iv
e

p
ar

t
gr

o
u

p
in

g

R
vN

N
 s

tr
u

ct
u

re
 e

n
co

d
in

g

Variational Autoencoder
Generative Adversarial Network

Real structures

fs(x, p) fs(x, p)

fa(x1, x2)

fa(x1, x2)

fa(x1, x2) fa(x1, x2)

fa(x1, x2) fa(x1, x2)

Figure 17: Top: The symmetry hierarchy of a chair model and
the corresponding RvNN encoder. Structure decoding reverses
the process. Middle: The recursive VAE-GAN architecture of
GRASS [LXC∗17]. Bottom: An example of topology-varying
shape interpolation with GRASS. Note the changes in spoke, slat
and arm counts.

shows the RvNN pipeline, and topology-varying interpolation via
the latent space.

Recent work by Zhu et al. [ZXC∗18] uses an RvNN to itera-
tively refine a rough part assembly into a plausible shape, option-
ally adding or removing parts as needed. The method learns a sub-
structure prior to handle novel structures that only locally resem-
ble training shapes. Mo et al. [MGY∗19a] extended the RvNN ap-
proach with graph neural networks as the encoder/decoder mod-
ules, instead of traditional single- or multi-layer perceptrons as in
GRASS. This allows direct encoding of n-ary adjacencies, lead-
ing to better reconstruction and more cognitively plausible hier-
archies. In very recent work, the same group proposed structure-
aware shape editing by encoding and decoding shape differences
(deltas) using the hierarchical graph representation. [MGY∗19b].
Dubrovina et al. [DXA∗19] also proposed structure-aware editing,
by factorizing the latent space of an autoencoder into independent
subspaces for different part types. However, their network is not
strictly speaking a generative model.

Structure-aware models as priors for cross-modal synthesis.
The learned models described above can not only be sampled di-
rectly for unconstrained shape synthesis, they can also be used

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

to generate shapes from cues in other modalities. For instance,
linguistic predicates can be used to interactively create new 3D
shapes guided by discrete [CKGF13] or continuous [YCHK15]
generative priors. Similarly, structure-aware priors have been used
to reconstruct 3D shapes from incomplete, noisy and partially oc-
cluded scans [SKAG15, ZXC∗18], as well as from 2D RGB im-
ages [NLX18]. A full discussion of existing and anticipated work
in this space is beyond the scope of the current report.

6. Application: Indoor Scene Synthesis

With the resurgence of computer surveillance, robotics, virtual and
augmented reality (VR/AR), as well as home safety and intelli-
gence applications, there has been an increasing demand for virtual
models of indoor scenes. At the same time, the recent rapid devel-
opments of machine learning techniques have motivated modern
approaches to scene analysis and synthesis to adopt various data-
driven and learning-based paradigms. In this section, we survey no-
table works on indoor scene synthesis with an emphasis on learn-
ing and generating scene structures. We direct the reader to [Ma17]
for a more comprehensive, albeit less up-to-date, coverage on this
topic, as well as scene analysis and understanding.

There are different ways to examine or classify scene syn-
thesis methods. In terms of input, earlier works on probabilis-
tic models, e.g., [FRS∗12], generates a new scene by taking a
random sample from a learned distribution, while recent works
on deep generative neural networks, e.g., [LPX∗19], can pro-
duce a novel scene from a random noise vector. The input
can also be a hand sketch [XCF∗13], a photograph [ISS17,
LZW∗15], natural language commands [MGPF∗18], or human ac-
tions/activities [FLS∗15, MLZ∗16]. In terms of output, while most
methods have been designed to generate room layouts with 3D
furniture objects, some methods learn to produce floor or build-
ing plans [MSK10, WFT∗19]. Our coverage will mainly organize
the methods based on the methodologies applied, e.g., probabilis-
tic models vs. deep neural networks, interactive vs. fully automated
modeling, and wholistic approaches vs. progressive synthesis.

Shape parts vs. scene objects. The basic building blocks of an
indoor scene are 3D objects whose semantic and functional com-
position and spatial arrangements follow learnable patterns, but still
exhibit rich variations in object geometry, style, arrangements, and
other relations, even within the same scene category (e.g., think of
all the possible layouts of kitchens, living rooms, and bedrooms).
It is natural to regard parts in a 3D object in the same vein as ob-
jects in a 3D scene. However, while object-level part-part relations
and scene-level object-object relations are both highly structured,
there are several important distinctions between them which have
dictated how the various scene generation methods are designed:

• As first observed by Wang et al. [WXL∗11] and then reinforced
by various follow-up works, the constituent parts of a 3D object
are strongly governed by their connectivity and symmetry rela-
tions. In contrast, relations between objects in a scene are much
looser. For example, many objects which are clearly related,
e.g., sofas and sofa tables, desks and chairs, are rarely physi-
cally connected. Also, due to perturbations arising from human

usage, symmetries (e.g., the rotational symmetry of dining chairs
around a dining table) between objects are often not realized.
• In a 3D scene, closely related objects may not even be in close

proximity. For example, TVs and sofas are often found together
in living rooms as they are related by the human action “watch-
ing TV", but that very action dictates that TVs are almost never
close to sofas geometrically. Indeed, the object-object relations
in a scene are often more about semantics or functionality than
geometric proximity. Unlike symmetry and connectivity, which
are central to part-part relations in objects, functional and seman-
tic relations are more difficult to model and learn.
• Alignment between objects is often a prerequisite to further anal-

ysis. Despite the rich geometric and structural variations that
may exist within a category of man-made objects, e.g., chairs
or airplanes, a good alignment is typically achievable. Such an
alignment would bring out more predictability in the positioning
of object parts, so as to facilitate subsequent learning tasks. On
the other hand, it is significantly more difficult, or even impos-
sible, to find reasonable alignments between scene layouts, even
if they are all of kitchens, bedrooms, or living rooms.

Scene retrieve-n-adjust. A straightforward way to generate new
scenes when given a large dataset of available scenes is to retrieve
“pieces” of sub-scenes from the dataset, based on some search cri-
teria, and then adjust the retrieved pieces when composing them
into the final scene. While there may not be a formal training
process in these approaches, some rules/criteria often need to be
learned from the data to guide the scene adjustment step.

In Sketch2Scene, Xu et al. [XCF∗13] propose a framework that
turns a 2D hand drawing of a scene into a 3D scene composed of
semantically valid and well arranged objects. Their retrieval-based
approach centers around the notion of structure groups which are
extracted from an existing 3D scene database; this can be regarded
as a learning process. A structure group is a compact summariza-
tion of re-occurring relationships among objects in a large database
of 3D indoor scenes. Given an input sketch, their method performs
co-retrieval and co-placement of relevant 3D models based on the
“learned” structural groups to produce a 3D scene.

Given a single photograph depicting an indoor scene, Liu et
al. [LZW∗15] reconstruct a corresponding 3D scene by first seg-
menting the photo into objects and estimating their 3D locations.
This is followed by 3D model retrieval from an existing database
by matching the line drawings extracted from the 2D objects and
line features of the 3D models in the database.

Ma et al. [MGPF∗18] use natural language commands as a prior
to guide a classical retrieve-n-adjust paradigm for 3D scene gen-
eration. Natural language commands from the user are first parsed
and then transformed into a semantic scene graph that is used to
retrieve corresponding sub-scenes from an existing scene database.
Known scene layouts from the database also allow the method to
augment retrieved sub-scenes with other objects that may be im-
plied by the scene context. For example, when the input command
only speaks of a TV being in the living room, a TV stand is natu-
rally inserted to support the TV object. The 3D scene is generated
progressively by processing the input commands one by one. At
each step, a 3D scene is synthesized by “splicing” the retrieved
sub-scene, with augmented objects, into the current scene.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Figure 18: A PiGraph [SCH∗16] encodes relations, such as phys-
ical contacts, between human body parts and objects in an indoor
scene. Such representations can be learned from captured human-
scene interaction data and applied to generate interaction snapshots
(middle) and enable text-driven interaction synthesis (right).

Probabilistic synthesis. Example-based approaches to scene syn-
thesis [MSK10, FRS∗12, JLS12, MSSH14, ZHG∗16, SCH∗16] rely
on probabilistic reasoning over exemplars from scene databases.
Fisher et al. [FRS∗12] develop Bayes networks and Gaussian Mix-
ture Models (GMMs) to learn two probabilistic models for mod-
eling sub-scenes (e.g. an office corner or a dining area): (a) object
occurrence, which indicates what objects should be placed in the
scene, and (b) layout optimization, which controls where the ob-
jects ought to be placed. Given an example scene, new variants can
be synthesized based on the learned priors. For floor plan gener-
ation, Merrell et al. [MSK10] learn structured relations between
features of architectural elements using a probabilistic graphical
model. They also train a Bayesian network which represents a
probability distribution over the space of training architectural pro-
grams. Once the Bayesian network is trained, a new floor plan can
be generated by sampling from this distribution.

Progressive synthesis and interactive modeling. Instead of gen-
erating an entire scene or object arrangement in one shot, pro-
gressive synthesis inserts one object or sub-scene at a time, of-
ten based on user inputs such as language commands [MGPF∗18]
or human activities [MLZ∗16, SCH∗16]. As pointed out by Ma et
al. [MLZ∗16], in real life, indoor scenes evolve progressively as a
result of human actions. From a technical point of view, the learn-
ing task for progressive synthesis is more localized and the synthe-
sis process itself offers more controllability.

Sadeghipour et al. [KLTZ16] learn a probabilistic model from a
large annotated RGB-D scene dataset and progressively sample the
model to insert objects into an initial scene. The probabilistic co-
occurrence model learned is represented as a factor graph which
can encode pairwise object relations. What is new compared to
Fisher et al. [FRS∗12] is that the factor graph also encodes higher-
order relations between objects, including support, symmetry, dis-
tinct orientations, and proximity, along with their probabilities.

For interactive modeling, Merrell et al. [MSL∗11] present a sug-
gestive modeling tool for furniture layout. Based on interior de-
sign guidelines, as well as room boundary constraints, the tool can
generate furniture arrangements and present them to the user. The
design guidelines are encoded as terms in a probability density
function and the suggested layouts are generated by conditional
sampling of this function. In Make it Home, Yu et al. [YYT∗11]
synthesize furniture layouts by optimizing a layout function which

Figure 19: Activity-centric scene synthesis [FLS∗15] takes a
RGBD scan of an indoor scene (left) and produces multiple well-
modeled 3D scenes (right) which conform to the input scan and
support plausible human activities therein. The synthesis is based
on an estimated scene template which encodes where activities can
occur and contains a coarse geometric representation describing the
general layout of objects to support those activities (middle).

Figure 20: Action-driven scene evolution [MLZ∗16] progressively
alters an indoor scene which started with just a desk and a dining ta-
ble (left-top). Then a series of plausible human actions are selected
and applied to insert objects into the scene that are likely associated
with the actions. Three intermediate scene snapshots, after 1, 4, and
30 actions, are shown with zoom-ins for a better view (right).

encodes spatial relationships between furniture objects. Another in-
teractive modeling tool is ClutterPalette [YYT16] which allows a
user to insert and position one object at a time to mess up an oth-
erwise clean scene. As the user clicks on a region of the scene, the
tool suggests a set of suitable objects to insert, which are based on
support and co-occurrence relations learned from data.

Human action/activity-driven synthesis. We humans live in a 3D
world and we constantly act on and interact with objects that sur-
round us. There has been a great deal of work in robotics and com-
puter vision on utilizing human-centric approaches for scene un-
derstanding. For scene generation, human actions or activities have
also played a key role in some recent works [FLS∗15, SCH∗16,
MLZ∗16]. From a human-centric perspective, indoor scene model-
ing focuses more on whether the generated scenes are functional or
plausible based on human usage scenarios.

Savva et al. [SCH∗16] develop a probabilistic learning frame-
work which connects human poses and object arrangements in in-
door scenes, where the learning is based on real-world observations
of human-scene interactions. They introduce a novel representation
called Prototypical Interaction Graphs or PiGraphs (see Figure 18),
which can capture representative (i.e., prototypical) physical con-
tacts and visual attention linkages between 3D objects and human
body parts. Joint probability distributions over human pose and ob-
ject geometries are encoded in the PiGraphs and learned from data,
and in turn, the learned PiGraphs serve to guide the generation of
interaction snapshots, as shown in Figure 18. Such snapshots pro-
vide static depictions of human-object interactions.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Figure 21: Scene synthesis pipeline of PlanIT [WLW∗19]. Relation graphs are automatically extracted from scenes (left), which are used to
train a deep generative model of such graphs (middle). In the figure, the graph nodes are labeled with an icon indicating their object category.
Image-based reasoning is then employed to instantiate a graph into a concrete scene by iterative insertion of 3D models for each node (right).

In activity-centric scene synthesis, Fisher et al. [FLS∗15] present
a method which turns an input RGBD scan into multiple well-
modeled 3D scenes. Rather than focusing on realistic 3D recon-
struction, they produce scenes which would allow the same human
activities as the captured environments; see Figure 19. Specifically,
given the input scan of an indoor scene, their method estimates a
scene template which captures both the prominent geometric prop-
erties of the scan as well as human activities that are likely to oc-
cur in the scene. To generate and place objects, activity models are
trained using annotated scene datasets that are endowed with hu-
man activities. These activity models encode object distributions
with respect to human activities and they would guide the scene
synthesis based on the predicted activities in the template.

Ma et al. [MLZ∗16] introduce action-driven 3D scene evolu-
tion, which is motivated by the observation that in real life, indoor
environments evolve due to human actions or activities which af-
fect object placements and movements; see Figure 20. The action
model in their work defines one or more human poses, objects, and
their spatial configurations that are associated with specific human
actions, e.g., “eat dinner at table while sitting”. Importantly, the
action models are learned from annotated photographs in the Mi-
crosoft COCO dataset, not from 3D data which is relatively scarce,
especially in terms of action labels and object/pose designations.
Partial orders between the actions are analyzed to construct an ac-
tion graph, whose nodes correspond to actions and edges encode
transition probabilities between actions. Then, to synthesize an in-
door scene, an action sequence is sampled from the action graph,
where each sampled action would imply plausible object insertions
and placements based on the learned action models.

Deep generative models. Highly structured models, including in-
door scenes and many man-made objects, could be represented as a
volume or using multi-view images and undergo conventional con-
volutionary operations. However, such operations are oblivious to
the underlying structures in the data which often play an essential
role in scene understanding. This could explain in part why deep
convolutional neural networks, which have been so successful in
processing natural images, had not been as widely adopted for the
analysis or synthesis of 3D indoor scenes until recently.

Wang et al. [WSCR18] learn deep convolutional priors for in-

door scene synthesis. Specifically, the deep convolutional neural
network they develop generates top-down views of indoor scene
layouts automatically and progressively, from an input consisting
of a room architecture specification, i.e., walls, floor, and ceiling.
Their method encodes scene composition and layout using multi-
channel top-view depth images. An autoregressive neural network
is then trained with these image channels to output object place-
ment priors as a 2D distribution map. Scene synthesis is performed
via a sequential placement of new objects, guided by the learned
convolutional object placement priors. In one of the follow-ups,
Ritchie et al. [RWaL19] develop a deep convolutional generative
model which allows faster and more flexible scene synthesis.

More recently, Wang et al. [WLW∗19] present PlanIT, a “plan-
and-instantiate” framework for layout generation, which is applica-
ble to indoor scene synthesis. Specifically, their method plans the
structure of a scene by generating a relationship graph, and then
instantiates a concrete 3D scene which conforms to that plan; see
Figure 21. Technically, they develop a deep generative graph model
based on message-passing graph convolution, and a specific model
architecture for generating indoor scene relationship graphs. In ad-
dition, they devise a neurally-guided search procedure for instan-
tiating scene relationship graphs, which utilize image-based scene
synthesis models that are constrained by the input graph.

Like Wang et al. [WLW∗19], Zhou et al. [ZWK19] also develop
a graph neural network to model object-object relations in 3D in-
door scenes and a message passing scheme for scene augmentation.
Specifically, their network is trained to predict a probability distri-
bution over object types that provide a contextual fit at a scene lo-
cation. Rather than focusing on relations between objects in close
proximity, the relation graphs learned by Zhou et al. [ZWK19] en-
codes both short- and long-range relations. Their message passing
relies on an attention mechanism to focus on the most relevant sur-
rounding scene context when predicting object types.

Li et al. [LPX∗19] introduce GRAINS, a generative neural net-
work which can generate plausible 3D indoor scenes in large quan-
tities and varieties. Using their approach, a novel 3D scene can be
generated from a random vector drawn from a Gaussian in a frac-
tion of a second, following the pipeline shown in Figure 22. Their
key observation is that indoor scene structures are inherently hier-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Figure 22: Overall pipeline of scene generation using GRAINS [LPX∗19]. The decoder of the trained RvNN-VAE (variational autoencoder)
turns a randomly sampled code from the learned distribution into a plausible indoor scene hierarchy composed of oriented bounding boxes
(OBBs) with semantic labels. The labeled OBBs are used to retrieve 3D objects to form the final 3D scene.

Figure 23: Overall pipeline of reconstructing 3D shapes via a set of geometric primitives [TSG∗17]. The model learns to decompose shapes
into primitives and uses Chamfer distance, which computes the difference between the reconstructed shape with the input shape, as the loss
function to train the inference network.

archical. Hence, their network is not convolutional; it is a recursive
neural network [SLNM11] (RvNN), which learns to generate hier-
archical scene structures consisting of oriented bounding boxes for
scene objects that are endowed with semantic labels.

Using a dataset of annotated scene hierarchies, they train a varia-
tional recursive autoencoder, or RvNN-VAE, which performs scene
object grouping during its encoding phase and scene generation
during decoding. Specifically, a set of encoders is recursively ap-
plied to group 3D objects in a scene, bottom up, and encodes in-
formation about the objects and their relations, where the resulting
fixed-length codes roughly follow a Gaussian distribution. A new
scene can then be generated top-down, i.e., hierarchically, by de-
coding from a randomly generated code.

Similar to GRAINS, Zhang et al. [ZYM∗18] train a genera-
tive model which maps a normal distribution to the distribution
of primary objects in indoor scenes. They introduce a 3D object
arrangement representation that models the locations and orienta-
tions of objects, based on their size and shape attributes. Moreover,
their scene representation is applicable for 3D objects with dif-
ferent multiplicities or repetition counts, selected from a database.
Their generative network is trained using a hybrid representation,
by combining discriminator losses for both a 3D object arrange-
ment representation and a 2D image-based representation.

Most recently, Wu et al. [WFT∗19] develop a data-driven tech-
nique for automated floor plan generation when given the boundary
of a residential building. A two-stage approach is taken to imitate
the human design process: room locations are estimated first and
then walls are added while conforming to the input building bound-
ary. They follow a heuristic generative process which begins with

the living room and then continues to generate other rooms pro-
gressively. Specifically, an encoder-decoder network is trained to
generate walls first, where the results can be rough; this is followed
by refining the generated walls to vector representations using ded-
icated rules. A key contribution of their work is RPLAN, a large-
scale, densely annotated dataset of floor plans from real residential
buildings, which is used to train their neural network.

7. Application: Visual Program Induction

In addition to synthesizing novel 3D content, structure-aware gen-
erative models can also be used to infer the underlying structure of
existing 3D content (to facilitate editing and other downstream pro-
cessing tasks). Here, the visual input can be 3D shapes and scenes
(voxels, point clouds, etc.), or even 2D images. In this section, we
focus on one particularly active research area along this theme: vi-
sual program induction, i.e. synthesizing a plausible program that
recreates an existing piece of 3D content. While there are non-
learning-based instances of this paradigm [DIP∗18, NAW∗19], we
focus on learning-based methods in this section.

One line of work attempts to recover shape-generating programs
from an existing 3D shape. The earliest instances of this paradigm
are works which learn to reconstruct 3D shapes via a set or se-
quence of simple geometric primitives, which can be interpreted
as very simple shape-generating programs [TSG∗17,ZYY∗17]. As
shown in Figure 23, the model from Tulsiani et al. [TSG∗17] learns
to decompose shapes into primitives and uses Chamfer distance,
which computes the difference between the reconstructed shape
and the input shape, as the loss function during training. A more
complex class of program is constructive solid geometry (CSG);

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Neural	Program	
Generator

Neural	Program	
Executor

Draw(“Top”, “Circle”, position, geometry)

for(i < 2, “translation”, a)
for(j < 2, “translation”, b)

Draw(“Leg”, “Cub”, position + i*a + j*b, geometry)

for(i < 2, “translation”, c)
Draw(“Layer”, “Rec”, position + i*c, geometry)

Figure 24: The shape program representation aims to explain an input shape with high-level programs that encodes basic parts, as well as
their structure such as repetition [TLS∗19].

Program
Generator

Program Block 1

Program Block 2

Program Block 3

Program Block 4

…

Program
Executor

…

Max
Pool

Loss

Back
Prop

…

…

…

…

Figure 25: The model for inferring and executing 3D shape pro-
grams [TLS∗19]. At each step, it infers the next program block (e.g.
a set of cuboids as legs), executes the program block, and compares
the current shape with the input to suggest what to synthesize next.

Sharma et al. [SGL∗18] presented an autoregressive generative
model which synthesizes CSG programs that represent a given in-
put shape (in both 2D and 3D domains).

Very recently, Tian et al. [TLS∗19] presented an autoregressive
model that takes an input 3D shape (represented as a volumetric
grid) and outputs an imperative 3D shape program consisting of
loops and other high-level structures (Figure 24). Their system also
includes a neural network for executing these programs in a differ-
entiable manner, which allows the generative model to be trained
in a self-supervised manner (i.e. generate programs, execute pro-
grams, compare output 3D shape to input 3D shape). An overview
of their model can be found in Figure 25. The model was later ex-
tended by Ellis et al. [ENP∗19], where they formulate the problem
as policy learning in reinforcement learning, and use deep networks
to suggest the action (i.e., what the next program block is) directly.

Another line of work aims to perform visual program induction
directly from 2D images. Kulkarni et al. [KKTM15] formulated
this “inverse graphics” problem as inference in probabilistic pro-
grams that produce 2D contours or images given an underlying 3D
model. Ellis et al. [ERSLT18] combined autoregressive generative
models with constraint-based program synthesis to infer programs
which generate 2D diagrams directly from hand-drawn sketches.
While these approaches focus on cases where the input describes
a single shape, there have also been attempts to apply visual pro-
gram induction to multi-object 3D scenes, and to use the inferred
programs for downstream tasks such as image editing [LWR∗19].
As shown in Figure 26, visual program induction allows efficient
and flexible scene manipulation such as layout extrapolation.

Input Image Input ImagesPatches PatchesEdited Image Edited Image

Input Image Input ImagesPatches PatchesEdited Image Edited Image

Figure 26: Visual program induction allows efficient and flexible
scene manipulation, such as layout extrapolation [LWR∗19].

8. Conclusions and Future Work

In this report, we have surveyed the history of and state-of-the-
art methods for learning structure-aware generative models of 3D
shapes and scenes. We have discussed the array of possible rep-
resentations of both individual structural atoms (parts of objects;
objects in scenes) as well as the structural patterns which com-
bine them together. We have explored how these different repre-
sentations admit different generative modeling methods, each with
unique strengths and weaknesses. Finally, we gave an overview of
applications of these technologies to different 3D shape and scene
generation tasks.

While the field of structure-aware generative modeling has al-
ready delivered impressive results, there is still much to be done.
To conclude this report, we offer thoughts on several of the most
important directions for improvement and further research:

Improving deep generative models of structure. It is very chal-
lenging to learn to generate the kinds of structure representations
described in Section 3.2. These are complex data structures with
discrete topological connections as well as continuous attributes.
Thus, one way to improve structure-aware 3D generative models
is to develop better, more reliable generative models of structures
(e.g. trees, graphs, hierarchical graphs, programs). This is, to some
extent, a task for machine learning researchers. However, graph-
ics researchers can potentially make contributions by leveraging
domain-specific insights (e.g. building a generative model that is
specialized for certain graph topologies which commonly occur in
3D data).

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

Reducing dependence on structural supervision. To date, suc-
cesses in learning-based 3D generative modeling have been due to
supervised learning: training on large collections of 3D shapes and
scenes annotated with ‘ground-truth’ structure. For example, the
StructureNet architecture [MGY∗19a] was trained on the PartNet
dataset [MZC∗19], which is a subset of ShapeNet in which each
object is decomposed into a hierarchical graph of parts and every
part is labeled. These kinds of structural annotations are costly to
produce; heavy reliance on them limits the domains in which these
methods can be applied. It would be better if structure-aware gen-
erative models could be learned directly from raw 3D content (e.g.
meshes or point clouds) without having to manually annotate the
structure of each training item.

One potential way to do this is self-supervised learning (some-
times also called predictive learning). The idea is to use a training
procedure in which the model generates a structure-aware represen-
tation, converts that representation into a raw, unstructured repre-
sentation, and then compares this to the ground-truth unstructured
geometry. Training to minimize this comparison loss allows the
model to learn without ever having access to the ground-truth struc-
ture; instead, it is forced to discover a structure which explains the
geometry well.

Self-supervision has been applied successfully to train models
which can reconstruct a 3D shape from a 2D image without hav-
ing access to ground truth 3D shapes at training time [YYY∗16].
As far as we are aware, the only instance of self-supervised
learning for structure-aware generative models is the work of
Tian et al. [TLS∗19], which still required supervised pre-training.
The challenge with applying self-supervised learning to structure-
aware generative models is that the entire training pipeline needs
to be end-to-end differentiable in order to train via gradient-
based methods, but generating structures inherently requires non-
differentiable, discrete decisions. Sometimes it is possible to learn
a smooth, differentiable approximation to this discrete process (this
is the method employed by Tian et al.). It is also possible that ad-
vances in reinforcement learning will allow self-supervised struc-
ture generation with non-differentiable training pipelines.

Improving the coupling of structure and geometry. As men-
tioned in Section 3, there are two parts to a representation: the
geometry of individual structural atoms and the structure that com-
bines them. We surveyed the different possible representations for
each and different generative models for them. But we have treated
them as separate components, when they are in actuality coupled:
structure influences the geometry and vice-versa. Most prior work
largely ignores this coupling and trains separate generative mod-
els for the structure vs. the fine-grained geometry of individual
atoms. One recent work recognizes the necessity of this coupling
and defines a structure-aware generative model that attempts to bet-
ter couple the two [WWL∗19]. Another line of research tries to
impose structural constraints (symmetries) on implicit surface rep-
resentations through learning a structured set of local deep implicit
functions [GCV∗19, GCS∗19]. Such structured implicit functions
ensure both accurate surface reconstruction and structural correct-
ness. Overall, this direction of research is still under-explored.

Modeling the coupling of geometry and appearance. The gener-
ative models we have surveyed generate geometric models without
materials or textures, but these are critical components of actual
objects and scenes, and they are strongly coupled to the structure
and geometry (i.e. structure and geometry provide strong cues to
material and texture appearance). There is some work on inferring
materials for parts of objects [Arj12, LAK∗18] and for objects in
scenes [CXY∗15], as well as more recent explorations on generat-
ing colored and textured 3D objects [CCS∗18,ZZZ∗18]. In general,
however, this area is also under-explored.

Modeling object and scene style. Material and texture appear-
ance contributes strongly to an object or scene’s perceived “style.”
State-of-the-art generative models of 2D images have developed
powerful facilities for controlling the style of their synthesized out-
put [KLA19]; in comparison, 3D generative models lag behind.
Style can be a function of both geometry (e.g. a sleek modern chair
vs. ornate antique chair) as well as structure (e.g. a compact, cozy
living space vs. an airy, open one).

One form of style that is worth mentioning especially is “messi-
ness.” Computer graphics has historically suffered from produc-
ing imagery that looks ‘too perfect’ and thus appears obviously
fake. In the realm of artist-created 3D content, this problem has
largely been solved via more photorealistic rendering algorithms
and higher-detail modeling and texturing tools. However, it is still
a problem with content created by learned generative models. It
is particularly problematic for 3D scenes: generating scenes which
appear ‘cluttered’ in a naturalistic way is extremely difficult and
still an open problem.

Modeling object and scene functionality. Existing generative
models focus on visual plausibility: that is, they attempt to generate
3D content that looks convincingly like a particular type of entity
(e.g. a chair). However, the content being generated by these mod-
els increasingly needs to do more than just look good: it needs to be
interacted with in a virtual environment, or even physically fabri-
cated and brought into the real world. Thus, we need generative
models that create functionally plausible 3D content, too. Func-
tional plausibility can have a variety of meanings, ranging from
ensuring that generated objects are equipped with expected affor-
dances (e.g. the drawers of a generated desk can open), that gen-
erated scenes support desired activities (e.g. that the living room
of a five-bedroom house contains enough seating arranged appro-
priately to allow the whole family to watch television), and that
synthesized content is physically realizable (i.e. it will not collapse
under gravity or under typical external loads placed upon it).

9. Author Bios

Siddhartha Chaudhuri is a Senior Research Scientist in the Cre-
ative Intelligence Lab at Adobe Research, and Assistant Professor
(on leave) of Computer Science and Engineering at IIT Bombay.
He obtained his Ph.D. from Stanford University, and his under-
graduate degree from IIT Kanpur. He subsequently did postdoc-
toral research at Stanford and Princeton, and taught for a year at
Cornell. Siddhartha’s work combines geometric analysis, machine
learning, and UI innovation to make sophisticated 3D geomet-
ric modeling accessible even to non-expert users. He also studies

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

foundational problems in geometry processing (retrieval, segmen-
tation, correspondences) that arise from this pursuit. His research
themes include probabilistic assembly-based modeling, semantic
attributes for design, generative neural networks for 3D structures,
and other applications of deep learning to 3D geometry process-
ing. He is the original author of the commercial 3D modeling tool
Adobe Fuse, and has taught tutorials on data-driven 3D design
(SIGGRAPH Asia 2014), shape “semantics” (ICVGIP 2016), and
structure-aware 3D generation (Eurographics 2019).

Daniel Ritchie is an Assistant Professor of Computer Science at
Brown University. He received his PhD from Stanford University,
advised by Pat Hanrahan and Noah Goodman. His research sits
at the intersection of computer graphics and artificial intelligence,
where he is particularly interested in data-driven methods for de-
signing, synthesizing, and manipulating visual content. In the area
of generative models for structured 3D content, he co-authored the
first data-driven method for synthesizing 3D scenes, as well as the
first method applying deep learning to scene synthesis. He has also
worked extensively on applying techniques from probabilistic pro-
gramming to procedural modeling problems, including to learning
procedural modeling programs from examples. In related work, he
has developed systems for inferring generative graphics programs
from unstructured visual inputs such as hand-drawn sketches

Jiajun Wu is an Acting Assistant Professor at the Department of
Computer Science, Stanford University, and will join the depart-
ment as an Assistant Professor in Summer 2020. He received his
Ph.D. and S.M. in Electrical Engineering and Computer Science,
both from Massachusetts Institute of Technology, and his B.Eng.
from Tsinghua University. His research interests lie in the intersec-
tion of computer vision (in particular 3D vision), computer graph-
ics, machine learning, and computational cognitive science. On
topics related to this STAR, he has worked extensively on generat-
ing 3D shapes using modern deep learning methods such as gener-
ative adversarial nets. He has also developed novel neural program
synthesis algorithms for explaining structures within 3D shapes and
scenes and applied them in downstream tasks such as shape and
scene editing.

Kai (Kevin) Xu is an Associate Professor at the School of Com-
puter Science, National University of Defense Technology, where
he received his Ph.D. in 2011. He conducted visiting research
at Simon Fraser University (2008-2010) and Princeton University
(2017-2018). His research interests include geometry processing
and geometric modeling, especially on data-driven approaches to
the problems in those directions, as well as 3D vision and its
robotic applications. He has published 70+ research papers, includ-
ing 20+ SIGGRAPH/TOG papers. He organized two SIGGRAPH
Asia courses and a Eurographics STAR tutorial, both on data-driven
shape analysis and processing. He is currently serving on the edi-
torial board of ACM Transactions on Graphics, Computer Graph-
ics Forum, Computers & Graphics, and The Visual Computer. Kai
has made several major contributions to structure-aware 3D shape
analysis and modeling with data-driven approach, and recently with
deep learning methods.

Hao (Richard) Zhang is a professor in the School of Comput-
ing Science at Simon Fraser University, Canada. He obtained his
Ph.D. from the Dynamic Graphics Project (DGP), University of
Toronto, and M.Math. and B.Math degrees from the University of
Waterloo, all in computer science. Richard’s research is in com-
puter graphics with special interests in geometric modeling, analy-
sis and synthesis of 3D contents (e.g., shapes and indoor scenes),
machine learning (e.g., generative models for 3D shapes), as well as
computational design, fabrication, and creativity. He has published
more than 120 papers on these topics. Most relevant to the STAR
topic, Richard was one of the co-authors of the first Eurographics
STAR on structure-aware shape processing and taught SIGGRAPH
courses on the topic. With his collaborators, he has made origi-
nal and impactful contributions to structural analysis and synthesis
of 3D shapes and environments including co-analysis, hierarchical
modeling, semi-supervised learning, topology-varying shape corre-
spondence and modeling, and deep generative models.

References
[ADMG18] ACHLIOPTAS P., DIAMANTI O., MITLIAGKAS I., GUIBAS

L.: Learning Representations and Generative Models for 3D Point
Clouds. In International Conference on Machine Learning (ICML)
(2018). 3

[Arj12] ARJUN JAIN AND THORSTEN THORMÄHLEN AND TOBIAS
RITSCHEL AND HANS-PETER SEIDEL: Material Memex: Automatic
material suggestions for 3D objects. In Annual Conference on Computer
Graphics and Interactive Techniques Asia (SIGGRAPH Asia) (2012). 19

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D., THRUN S.,
RODGERS J., DAVIS J.: SCAPE: Shape Completion and Animation of
People. ACM Transactions on Graphics (TOG) 24, 3 (2005), 408–416.
11

[BGB∗17] BALOG M., GAUNT A. L., BROCKSCHMIDT M., NOWOZIN
S., TARLOW D.: DeepCoder: Learning to Write Programs. In Interna-
tional Conference on Learning Representations (ICLR) (2017). 10

[BLRW16] BROCK A., LIM T., RITCHIE J. M., WESTON N.: Gener-
ative and discriminative voxel modeling with convolutional neural net-
works. In Advances in Neural Information Processing Systems Work-
shops (NeurIPS Workshop) (2016). 3

[BSW∗18] BALASHOVA E., SINGH V. K., WANG J., TEIXEIRA B.,
CHEN T., FUNKHOUSER T.: Structure-aware shape synthesis. In In-
ternational Conference on 3D Vision (3DV) (2018). 12

[BWS10] BOKELOH M., WAND M., SEIDEL H.-P.: A connection be-
tween partial symmetry and inverse procedural modeling. ACM Trans-
actions on Graphics (TOG) 29, 4 (2010). 12

[CCS∗18] CHEN K., CHOY C. B., SAVVA M., CHANG A. X.,
FUNKHOUSER T., SAVARESE S.: Text2Shape: Generating shapes from
natural language by learning joint embeddings. In Asian Conference on
Computer Vision (ACCV) (2018). 19

[CFG∗15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., LI Z., SAVARESE S., SAVVA M., SONG S., SU H.,
XIAO J., YI L., YU F.: ShapeNet: An Information-Rich 3D Model
Repository. arXiv:1512.03012 (2015). 3

[CKGF13] CHAUDHURI S., KALOGERAKIS E., GIGUERE S.,
FUNKHOUSER T.: AttribIt: Content creation with semantic at-
tributes. In ACM Symposium on User Interface Software and Technology
(UIST) (2013), pp. 193–202. 14

[CKGK11] CHAUDHURI S., KALOGERAKIS E., GUIBAS L., KOLTUN
V.: Probabilistic Reasoning for Assembly-Based 3D Modeling. ACM
Transactions on Graphics (TOG) 30, 4 (2011), 35. 11, 12

[CLS19] CHEN X., LIU C., SONG D.: Execution-Guided Neural Pro-
gram Synthesis. In International Conference on Learning Representa-
tions (ICLR) (2019). 10

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

[CRXZ19] CHAUDHURI S., RITCHIE D., XU K., ZHANG H.: Learning
Generative Models of 3D Structures. Eurographics Tutorial. https:
//3dstructgen.github.io/, 2019. 2

[CXY∗15] CHEN K., XU K., YU Y., WANG T.-Y., HU S.-M.: Magic
Decorator: Automatic Material Suggestion for Indoor Digital Scenes. In
Annual Conference on Computer Graphics and Interactive Techniques
Asia (SIGGRAPH Asia) (2015). 19

[CZ19] CHEN Z., ZHANG H.: Learning Implicit Fields for Generative
Shape Modeling. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019). 3

[DGF∗19] DEPRELLE T., GROUEIX T., FISHER M., KIM V., RUSSELL
B., AUBRY M.: Learning elementary structures for 3D shape generation
and matching. In Advances in Neural Information Processing Systems
(NeurIPS) (2019). 4

[DIP∗18] DU T., INALA J. P., PU Y., SPIELBERG A., SCHULZ A., RUS
D., SOLAR-LEZAMA A., MATUSIK W.: InverseCSG: Automatic con-
version of 3D models to CSG trees. ACM Transactions on Graphics
(TOG) 37, 6 (2018). 17

[DMB08] DE MOURA L., BJØRNER N.: Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems (2008), Springer, pp. 337–340. 10

[DMI∗15] DUVENAUD D. K., MACLAURIN D., IPARRAGUIRRE J.,
BOMBARELL R., HIRZEL T., ASPURU-GUZIK A., ADAMS R. P.: Con-
volutional networks on graphs for learning molecular fingerprints. In
Advances in Neural Information Processing Systems (NeurIPS) (2015).
9

[DN19] DAI A., NIESSNER M.: Scan2Mesh: From unstructured range
scans to 3D meshes. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2019). 3

[DUB∗17] DEVLIN J., UESATO J., BHUPATIRAJU S., SINGH R., MO-
HAMED A.-R., KOHLI P.: RobustFill: Neural Program Learning under
Noisy I/o. In International Conference on Machine Learning (ICML)
(2017). 10

[DXA∗19] DUBROVINA A., XIA F., ACHLIOPTAS P., SHALAH M., GR-
VOSCOT R., GUIBAS L.: Composite shape modeling via latent space
factorization. In IEEE International Conference on Computer Vision
(ICCV) (2019). 13

[EMSM∗18] ELLIS K., MORALES L., SABLÉ-MEYER M., SOLAR-
LEZAMA A., TENENBAUM J. B.: Library Learning for Neurally-Guided
Bayesian Program Induction. In Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2018). 10

[ENP∗19] ELLIS K., NYE M., PU Y., SOSA F., TENENBAUM J.,
SOLAR-LEZAMA A.: Write, execute, assess: Program synthesis with a
repl. In Advances in Neural Information Processing Systems (NeurIPS)
(2019). 18

[ERSLT18] ELLIS K., RITCHIE D., SOLAR-LEZAMA A., TENENBAUM
J.: Learning to Infer Graphics Programs from Hand-Drawn Images. In
Advances in Neural Information Processing Systems (NeurIPS) (2018).
5, 10, 18

[FAvK∗14] FISH N., AVERKIOU M., VAN KAICK O., SORKINE-
HORNUNG O., COHEN-OR D., MITRA N. J.: Meta-representation of
shape families. ACM Transactions on Graphics (TOG) 33, 4 (2014). 11

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN P.,
KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Modeling by
example. ACM Transactions on Graphics (TOG) 23, 3 (2004), 652–663.
11

[FLS∗15] FISHER M., LI Y., SAVVA M., HANRAHAN P., NIESSNER
M.: Activity-centric scene synthesis for functional 3D scene modeling.
ACM Transactions on Graphics (TOG) 34, 6 (2015), 212:1–10. 14, 15,
16

[FRS∗12] FISHER M., RITCHIE D., SAVVA M., FUNKHOUSER T.,
HANRAHAN P.: Example-based synthesis of 3D object arrangements.
ACM Transactions on Graphics (TOG) 31, 6 (2012), 135:1–11. 1, 14, 15

[FSG17] FAN H., SU H., GUIBAS L. J.: A point set generation network
for 3D object reconstruction from a single image. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017). 3

[FSH11] FISHER M., SAVVA M., HANRAHAN P.: Characterizing struc-
tural relationships in scenes using graph kernels. ACM Transactions on
Graphics (TOG) 30, 4 (2011), 34. 4

[FW16] FAN L., WONKA P.: A probabilistic model for exteriors of res-
idential buildings. ACM Transactions on Graphics (TOG) 35, 5 (2016),
155:1–155:13. 12

[GCS∗19] GENOVA K., COLE F., SUD A., SARNA A., FUNKHOUSER
T.: Deep structured implicit functions. In IEEE International Conference
on Computer Vision (ICCV) (2019). 19

[GCV∗19] GENOVA K., COLE F., VLASIC D., SARNA A., FREEMAN
W. T., FUNKHOUSER T.: Learning shape templates with structured im-
plicit functions. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019). 19

[GFK∗18] GROUEIX T., FISHER M., KIM V. G., RUSSELL B. C.,
AUBRY M.: AtlasNet: A Papier-Mâché Approach to Learning 3D Sur-
face Generation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2018). 3, 4

[GFRG16] GIRDHAR R., FOUHEY D. F., RODRIGUEZ M., GUPTA A.:
Learning a Predictable and Generative Vector Representation for Ob-
jects. In European Conference on Computer Vision (ECCV) (2016). 3

[GG19] GEORGIA GKIOXARI JITENDRA MALIK J. J.: Mesh R-CNN.
In IEEE International Conference on Computer Vision (ICCV) (2019). 3

[GGH02] GU X., GORTLER S., HOPPE H.: Geometry images. In Annual
Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH) (2002). 3

[GMR∗08] GOODMAN N. D., MANSINGHKA V. K., ROY D. M.,
BONAWITZ K., TENENBAUM J. B.: Church: a language for generative
models. In Conference on Uncertainty in Artificial Intelligence (UAI)
(2008). 7

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative Adversarial Nets. In Advances in Neural Information Processing
Systems (NeurIPS) (2014). 3, 8

[GPS17] GULWANI S., POLOZOV A., SINGH R.: Program synthesis.
Foundations and Trends R© in Programming Languages 4, 1-2 (2017),
1–119. 10

[GS14] GOODMAN N. D., STUHLMÜLLER A.: The Design and Imple-
mentation of Probabilistic Programming Languages. http://dippl.
org, 2014. Accessed: 2015-12-23. 7

[Gul11] GULWANI S.: Automating string processing in spreadsheets us-
ing input-output examples. In ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL) (2011). 10

[GYW∗19] GAO L., YANG J., WU T., YUAN Y.-J., FU H., LAI Y.-
K., ZHANG H. R.: SDM-NET: Deep generative network for structured
deformable mesh. In Annual Conference on Computer Graphics and
Interactive Techniques Asia (SIGGRAPH Asia) (2019). 12

[GZE19] GROVER A., ZWEIG A., ERMON S.: Graphite: Iterative gen-
erative modeling of graphs. In International Conference on Machine
Learning (ICML) (2019). 4

[HBL15] HENAFF M., BRUNA J., LECUN Y.: Deep convolutional net-
works on graph-structured data. arXiv:1506.05163 (2015). 9

[HHF∗19] HANOCKA R., HERTZ A., FISH N., GIRYES R., FLEISH-
MAN S., COHEN-OR D.: MeshCNN: A network with an edge. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 90. 3, 9

[HKM15] HUANG H., KALOGERAKIS E., MARLIN B.: Analysis and
synthesis of 3d shape families via deep-learned generative models of sur-
faces. Computer Graphics Forum (CGF) 34, 5 (2015). 1, 12, 13

[HSG11] HWANG I., STUHLMÜLLER A., GOODMAN N. D.: Inducing
Probabilistic Programs by Bayesian Program Merging. arXiv:1110.5667
(2011). 7

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://3dstructgen.github.io/
https://3dstructgen.github.io/
http://dippl.org
http://dippl.org

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

[ISS17] IZADINIA H., SHAN Q., SEITZ S. M.: IM2CAD. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2017). 14

[JHR16] JAISWAL P., HUANG J., RAI R.: Assembly-based concep-
tual 3D modeling with unlabeled components using probabilistic factor
graph. Computer-Aided Design 74 (2016), 45–54. 12

[JLS12] JIANG Y., LIM M., SAXENA A.: Learning object arrangements
in 3D scenes using human context. In International Conference on Ma-
chine Learning (ICML) (2012). 15

[JTRS12] JAIN A., THORMÄHLEN T., RITSCHEL T., SEIDEL H.-P.: Ex-
ploring shape variations by 3D-model decomposition and part-based re-
combination. Computer Graphics Forum (CGF) 31, 2 (2012). 11

[KCKK12] KALOGERAKIS E., CHAUDHURI S., KOLLER D., KOLTUN
V.: A probabilistic model of component-based shape synthesis. ACM
Transactions on Graphics (TOG) 31, 4 (2012). 11

[KF09] KOLLER D., FRIEDMAN N.: Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009. 6

[KJS07] KRAEVOY V., JULIUS D., SHEFFER A.: Model composition
from interchangeable components. In Pacific Conference on Computer
Graphics and Applications (Pacific Graphics) (2007). 11

[KKTM15] KULKARNI T. D., KOHLI P., TENENBAUM J. B., MANS-
INGHKA V.: Picture: A Probabilistic Programming Language for Scene
Perception. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2015). 18

[KL17] KLOKOV R., LEMPITSKY V.: Escape from cells: Deep kd-
networks for the recognition of 3D point cloud models. In IEEE In-
ternational Conference on Computer Vision (ICCV) (2017). 3

[KLA19] KARRAS T., LAINE S., AILA T.: A style-based generator ar-
chitecture for generative adversarial networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2019). 19

[KLTZ16] KERMANI Z. S., LIAO Z., TAN P., ZHANG H.: Learning
3D scene synthesis from annotated RGB-D images. Computer Graphics
Forum (CGF) 35, 5 (2016), 197–206. 15

[KMP∗18] KALYAN A., MOHTA A., POLOZOV O., BATRA D., JAIN P.,
GULWANI S.: Neural-Guided Deductive Search for Real-Time Program
Synthesis from Examples. In International Conference on Learning Rep-
resentations (ICLR) (2018). 10

[KW14] KINGMA D. P., WELLING M.: Auto-Encoding Variational
Bayes. In International Conference on Learning Representations (ICLR)
(2014). 3, 8

[KW17] KIPF T. N., WELLING M.: Semi-supervised classification with
graph convolutional networks. In International Conference on Learning
Representations (ICLR) (2017). 9

[LAK∗18] LIN H., AVERKIOU M., KALOGERAKIS E., KOVACS B.,
RANADE S., KIM V., CHAUDHURI S., BALA K.: Learning material-
aware local descriptors for 3D shapes. In International Conference on
3D Vision (3DV) (2018). 19

[Lez08] LEZAMA A. S.: Program synthesis by sketching. PhD thesis,
University of California Berkeley, 2008. 10

[LMTW19] LU S., MAO J., TENENBAUM J. B., WU J.: Neurally-
Guided Structure Inference. In International Conference on Machine
Learning (ICML) (2019). 10

[LNX19] LI J., NIU C., XU K.: Learning part generation and assembly
for structure-aware shape synthesis. arXiv:1906.06693 (2019). 4, 12

[LPX∗19] LI M., PATIL A. G., XU K., CHAUDHURI S., KHAN O.,
SHAMIR A., TU C., CHEN B., COHEN-OR D., ZHANG H.: GRAINS:
Generative recursive autoencoders for indoor scenes. ACM Transactions
on Graphics (TOG) 38, 2 (2019), 12:1–12:16. 4, 14, 16, 17

[LVD∗18] LI Y., VINYALS O., DYER C., PASCANU R., BATTAGLIA
P. W.: Learning deep generative models of graphs. arXiv:1803.03324
(2018). 4

[LWR∗19] LIU Y., WU Z., RITCHIE D., FREEMAN W. T., TENEN-
BAUM J. B., WU J.: Learning to Describe Scenes with Programs. In

International Conference on Learning Representations (ICLR) (2019).
18

[LXC∗17] LI J., XU K., CHAUDHURI S., YUMER E., ZHANG H.,
GUIBAS L.: GRASS: Generative recursive autoencoders for shape struc-
tures. ACM Transactions on Graphics (TOG) 36, 4 (2017), 52. 1, 13

[LYF17] LIU J., YU F., FUNKHOUSER T.: Interactive 3D Modeling with
a Generative Adversarial Network. In International Conference on 3D
Vision (3DV) (2017). 3

[LZW∗15] LIU Z., ZHANG Y., WU W., LIU K., SUN Z.: Model-driven
indoor scenes modeling from a single image. In Graphics Interface
(2015). 14

[Ma17] MA R.: Analysis and modeling of 3D indoor scenes.
arXiv:1706.09577 (2017). 14

[MBBV15] MASCI J., BOSCAINI D., BRONSTEIN M., VAN-
DERGHEYNST P.: Geodesic convolutional neural networks on
Riemannian manifolds. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPR Workshop) (2015). 3

[MG13] MARTINOVIĆ A., GOOL L. V.: Bayesian grammar learning for
inverse procedural modeling. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2013). 12

[MGPF∗18] MA R., GADI PATIL A., FISHER M., LI M., PIRK S., HUA
B.-S., YEUNG S.-K., TONG X., GUIBAS L., ZHANG H.: Language-
driven synthesis of 3D scenes from scene databases. ACM Transactions
on Graphics (TOG) 37, 6 (2018), 212:1–212:16. 14, 15

[MGY∗19a] MO K., GUERRERO P., YI L., SU H., WONKA P., MITRA
N., GUIBAS L.: StructureNet: Hierarchical graph networks for 3D shape
generation. In Annual Conference on Computer Graphics and Interactive
Techniques Asia (SIGGRAPH Asia) (2019). 5, 13, 19

[MGY∗19b] MO K., GUERRERO P., YI L., SU H., WONKA P., MI-
TRA N., GUIBAS L. J.: StructEdit: Learning structural shape variations.
arXiv:1911.11098 (2019). 13

[MLZ∗16] MA R., LI H., ZOU C., LIAO Z., TONG X., ZHANG H.:
Action-driven 3D indoor scene evolution. ACM Transactions on Graph-
ics (TOG) 35, 6 (2016). 14, 15, 16

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy Networks: Learning 3D Reconstruction in
Function Space. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019). 3

[MPJ∗19] MICHALKIEWICZ M., PONTES J. K., JACK D., BAKTASH-
MOTLAGH M., ERIKSSON A. P.: Deep level sets: Implicit surface rep-
resentations for 3D shape inference. arXiv:1901.06802 (2019). 3

[MQCJ18] MURALI V., QI L., CHAUDHURI S., JERMAINE C.: Neural
Sketch Learning for Conditional Program Generation. In International
Conference on Learning Representations (ICLR) (2018). 10

[MSK10] MERRELL P., SCHKUFZA E., KOLTUN V.: Computer-
generated residential building layouts. In Annual Conference on Com-
puter Graphics and Interactive Techniques Asia (SIGGRAPH Asia)
(2010). 14, 15

[MSL∗11] MERRELL P., SCHKUFZA E., LI Z., AGRAWALA M.,
KOLTUN V.: Interactive Furniture Layout Using Interior Design Guide-
lines. In Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH) (2011). 2, 15

[MSSH14] MAJEROWICZ L., SHAMIR A., SHEFFER A., HOOS H. H.:
Filling your shelves: Synthesizing diverse style-preserving artifact ar-
rangements. IEEE Transactions on Visualization and Computer Graph-
ics (TVCG) 20, 11 (2014), 1507–1518. 15

[MTG∗13] MENON A., TAMUZ O., GULWANI S., LAMPSON B.,
KALAI A.: A Machine Learning Framework for Programming by Exam-
ple. In International Conference on Machine Learning (ICML) (2013).
10

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. In Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH) (2006).
2, 12

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

[MZC∗19] MO K., ZHU S., CHANG A. X., YI L., TRIPATHI S.,
GUIBAS L. J., SU H.: PartNet: A large-scale benchmark for fine-grained
and hierarchical part-level 3D object understanding. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2019). 19

[MZWVG07] MÜLLER P., ZENG G., WONKA P., VAN GOOL L.:
Image-based procedural modeling of facades. In Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH) (2007). 2

[NAW∗19] NANDI C., ANDERSON A., WILLSEY M., WILCOX J. R.,
DARULOVA E., GROSSMAN D., TATLOCK Z.: Using e-graphs for CAD
parameter inference. arXiv:1909.12252 (2019). 17

[NLX18] NIU C., LI J., XU K.: Im2Struct: Recovering 3D shape struc-
ture from a single RGB image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2018). 14

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: DeepSDF: Learning continuous signed distance func-
tions for shape representation. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2019). 3

[PL96] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic Beauty
of Plants. Springer-Verlag, Berlin, Heidelberg, 1996. 2, 12

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of cities. In
Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH) (2001). 2

[PMS∗17] PARISOTTO E., MOHAMED A.-R., SINGH R., LI L., ZHOU
D., KOHLI P.: Neuro-Symbolic Program Synthesis. In International
Conference on Learning Representations (ICLR) (2017). 10

[PW14] PAIGE B., WOOD F.: A Compilation Target for Probabilis-
tic Programming Languages. In International Conference on Machine
Learning (ICML) (2014). 7

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: PointNet: deep
learning on point sets for 3D classification and segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017). 3

[QYSG17] QI C. R., YI L., SU H., GUIBAS L. J.: PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances
in Neural Information Processing Systems (NeurIPS) (2017). 3

[RBSB18] RANJAN A., BOLKART T., SANYAL S., BLACK M. J.: Gen-
erating 3D Faces Using Convolutional Mesh Autoencoders. In European
Conference on Computer Vision (ECCV) (2018). 3

[RDF16] REED S., DE FREITAS N.: Neural Programmer-Interpreters. In
International Conference on Learning Representations (ICLR) (2016).
10

[RJT18] RITCHIE D., JOBALIA S., THOMAS A.: Example-based au-
thoring of procedural modeling programs with structural and continuous
variability. In Annual Conference of the European Association for Com-
puter Graphics (EuroGraphics) (2018). 7, 12

[RLGH15] RITCHIE D., LIN S., GOODMAN N. D., HANRAHAN P.:
Generating Design Suggestions under Tight Constraints with Gradient-
based Probabilistic Programming. In Annual Conference of the European
Association for Computer Graphics (EuroGraphics) (2015). 7

[RMGH15] RITCHIE D., MILDENHALL B., GOODMAN N. D.,
HANRAHAN P.: Controlling procedural modeling programs with
stochastically-ordered sequential monte carlo. ACM Transactions on
Graphics (TOG) 34, 4 (2015), 1–11. 2

[ROUG17] RIEGLER G., OSMAN ULUSOY A., GEIGER A.: OctNet:
Learning deep 3D representations at high resolutions. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (2017). 3

[RWaL19] RITCHIE D., WANG K., AN LIN Y.: Fast and Flexible In-
door Scene Synthesis via Deep Convolutional Generative Models. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2019). 8, 16

[SCH∗16] SAVVA M., CHANG A. X., HANRAHAN P., FISHER M.,
NIEÃ§NER M.: PiGraphs: Learning interaction snapshots from obser-
vations. ACM Transactions on Graphics (TOG) 35, 4 (2016). 15

[SGF16] SHARMA A., GRAU O., FRITZ M.: VConv-DAE: Deep Volu-
metric Shape Learning without Object Labels. In European Conference
on Computer Vision Workshops (ECCV Workshop) (2016). 3

[SGL∗18] SHARMA G., GOYAL R., LIU D., KALOGERAKIS E., MAJI
S.: CSGNet: Neural Shape Parser for Constructive Solid Geometry. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018). 18

[SHW∗17] SOLTANI A. A., HUANG H., WU J., KULKARNI T. D.,
TENENBAUM J. B.: Synthesizing 3D Shapes via Modeling Multi-
View Depth Maps and Silhouettes with Deep Generative Networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017). 3

[SKAG15] SUNG M., KIM V. G., ANGST R., GUIBAS L.: Data-driven
structural priors for shape completion. ACM Transactions on Graphics
(TOG) 34, 6 (2015), 175:1–175:11. 14

[SLNM11] SOCHER R., LIN C. C., NG A. Y., MANNING C. D.: Parsing
natural scenes and natural language with recursive neural networks. In
International Conference on Machine Learning (ICML) (2011). 9, 17

[SMKL15] SU H., MAJI S., KALOGERAKIS E., LEARNED-MILLER
E. G.: Multi-view convolutional neural networks for 3D shape recog-
nition. In IEEE International Conference on Computer Vision (ICCV)
(2015). 3

[SPW∗13] SOCHER R., PERELYGIN A., WU J., CHUANG J., MANNING
C., NG A., POTTS C.: Recursive deep models for semantic composition-
ality over a sentiment treebank. In Conference on Empirical Methods in
Natural Language Processing (EMNLP) (2013). 9

[SSK∗17] SUNG M., SU H., KIM V. G., CHAUDHURI S., GUIBAS
L.: ComplementMe: Weakly-supervised component suggestions for 3D
modeling. In Annual Conference on Computer Graphics and Interactive
Techniques Asia (SIGGRAPH Asia) (2017). 4, 12

[TDB17] TATARCHENKO M., DOSOVITSKIY A., BROX T.: Octree
Generating Networks: Efficient Convolutional Architectures for High-
Resolution 3D Outputs. In IEEE International Conference on Computer
Vision (ICCV) (2017). 3

[TGLX18] TAN Q., GAO L., LAI Y.-K., XIA S.: Variational Autoen-
coders for Deforming 3D Mesh Models. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2018). 3

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH R.,
KOLTUN V.: Metropolis Procedural Modeling. ACM Transactions on
Graphics (TOG) 30, 2 (2011). 2

[TLS∗19] TIAN Y., LUO A., SUN X., ELLIS K., FREEMAN W. T.,
TENENBAUM J. B., WU J.: Learning to Infer and Execute 3D Shape
Programs. In International Conference on Learning Representations
(ICLR) (2019). 5, 10, 18, 19

[TSG∗17] TULSIANI S., SU H., GUIBAS L. J., EFROS A. A., MALIK J.:
Learning Shape Abstractions by Assembling Volumetric Primitives. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017). 17

[TYK∗12] TALTON J. O., YANG L., KUMAR R., LIM M., GOODMAN
N. D., MECH R.: Learning design patterns with Bayesian grammar in-
duction. In ACM Symposium on User Interface Software and Technology
(UIST) (2012). 12

[VDOKK16] VAN DEN OORD A., KALCHBRENNER N.,
KAVUKCUOGLU K.: Pixel recurrent neural networks. In Interna-
tional Conference on Machine Learning (ICML) (2016). 8

[WFT∗19] WU W., FU X.-M., TANG R., WANG Y., QI Y.-H., LIU
L.: Data-driven interior plan generation for residential buildings. ACM
Transactions on Graphics (TOG) 38, 6 (2019). 14, 17

[WLG∗17] WANG P.-S., LIU Y., GUO Y.-X., SUN C.-Y., TONG X.:
O-CNN: Octree-based convolutional neural networks for 3D shape anal-
ysis. ACM Transactions on Graphics (TOG) 36, 4 (2017), 72. 3

[WLW∗19] WANG K., LIN Y.-A., WEISSMANN B., SAVVA M.,
CHANG A. X., RITCHIE D.: PlanIt: Planning and instantiating indoor

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, & H. Zhang / Learning Generative Models of 3D Structures

scenes with relation graph and spatial prior networks. ACM Transactions
on Graphics (TOG) 38, 4 (2019), 132. 1, 4, 10, 16

[WSCR18] WANG K., SAVVA M., CHANG A. X., RITCHIE D.: Deep
Convolutional Priors for Indoor Scene Synthesis. In Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH) (2018).
4, 16

[WSG11] WINGATE D., STUHLMÜLLER A., GOODMAN N. D.:
Lightweight Implementations of Probabilistic Programming Languages
Via Transformational Compilation. In International Conference on Arti-
ficial Intelligence and Statistics (AISTATS) (2011). 7

[WSH∗18] WANG H., SCHOR N., HU R., HUANG H., COHEN-OR D.,
HUANG H.: Global-to-local generative model for 3D shapes. ACM
Transactions on Graphics (TOG) 37, 6 (2018), 214:1–214:10. 4, 13

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG
X., XIAO J.: 3D ShapeNets: A Deep Representation for Volumetric
Shapes. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2015). 2, 3

[WTB∗18] WANG C., TATWAWADI K., BROCKSCHMIDT M., HUANG
P.-S., MAO Y., POLOZOV O., SINGH R.: Robust Text-to-SQL Genera-
tion with Execution-Guided Decoding. arXiv:1807.03100 (2018). 10

[WWL∗19] WU Z., WANG X., LIN D., LISCHINSKI D., COHEN-OR
D., HUANG H.: SAGNet: Structure-aware generative network for 3D-
shape modeling. ACM Transactions on Graphics (TOG) 38, 4 (2019),
91:1–91:14. 19

[WXL∗11] WANG Y., XU K., LI J., ZHANG H., SHAMIR A., LIU L.,
CHENG Z., XIONG Y.: Symmetry hierarchy of man-made objects. Com-
puter Graphics Forum (CGF) (2011). 4, 5, 13, 14

[WZL∗18] WANG N., ZHANG Y., LI Z., FU Y., LIU W., JIANG Y.-G.:
Pixel2Mesh: Generating 3D mesh models from single RGB images. In
European Conference on Computer Vision (ECCV) (2018). 3

[WZX∗16] WU J., ZHANG C., XUE T., FREEMAN W. T., TENENBAUM
J. B.: Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling. In Advances in Neural Information
Processing Systems (NeurIPS) (2016). 3

[XCF∗13] XU K., CHEN K., FU H., SUN W.-L., HU S.-M.:
Sketch2Scene: Sketch-based co-retrieval and co-placement of 3D mod-
els. ACM Transactions on Graphics (TOG) 32, 4 (2013), 123. 14

[XMZ∗14] XU K., MA R., ZHANG H., ZHU C., SHAMIR A., COHEN-
OR D., HUANG H.: Organizing heterogeneous scene collection through
contextual focal points. ACM Transactions on Graphics (TOG) 33, 4
(2014), Article 35. 4

[YCHK15] YUMER M. E., CHAUDHURI S., HODGINS J. K., KARA
L. B.: Semantic shape editing using deformation handles. ACM Trans-
actions on Graphics (TOG) 34 (2015). 14

[YFST18] YANG Y., FENG C., SHEN Y., TIAN D.: FoldingNet: Point
Cloud Auto-encoder via Deep Grid Deformation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2018). 3

[YKC∗16] YI L., KIM V. G., CEYLAN D., SHEN I.-C., YAN M., SU
H., LU C., HUANG Q., SHEFFER A., GUIBAS L.: A scalable active
framework for region annotation in 3D shape collections. In Annual Con-
ference on Computer Graphics and Interactive Techniques Asia (SIG-
GRAPH Asia) (2016). 11

[YSS∗17] YI L., SHAO L., SAVVA M., HUANG H., ZHOU Y., WANG
Q., GRAHAM B., ENGELCKE M., KLOKOV R., LEMPITSKY V. S.,
GAN Y., WANG P., LIU K., YU F., SHUI P., HU B., ZHANG Y., LI Y.,
BU R., SUN M., WU W., JEONG M., CHOI J., KIM C., GEETCHAN-
DRA A., MURTHY N., RAMU B., MANDA B., RAMANATHAN M.,
KUMAR G., PREETHAM P., SRIVASTAVA S., BHUGRA S., LALL B.,
HÄNE C., TULSIANI S., MALIK J., LAFER J., JONES R., LI S.,
LU J., JIN S., YU J., HUANG Q., KALOGERAKIS E., SAVARESE S.,
HANRAHAN P., FUNKHOUSER T. A., SU H., GUIBAS L. J.: Large-
scale 3D shape reconstruction and segmentation from ShapeNet Core55.
arXiv:1710.06104 (2017). 11

[YYR∗18] YOU J., YING R., REN X., HAMILTON W. L., LESKOVEC
J.: GraphRNN: A deep generative model for graphs. In International
Conference on Machine Learning (ICML) (2018). 4

[YYT∗11] YU L.-F., YEUNG S. K., TANG C.-K., TERZOPOULOS D.,
CHAN T. F., OSHER S.: Make it home: automatic optimization of furni-
ture arrangement. ACM Transactions on Graphics (TOG) 30, 4 (2011),
86:1–12. 2, 15

[YYT16] YU L.-F., YEUNG S. K., TERZOPOULOS D.: The Clutter-
palette: An interactive tool for detailing indoor scenes. IEEE Trans-
actions on Visualization and Computer Graphics (TVCG) 22, 2 (2016),
1138–1148. 15

[YYW∗12] YEH Y.-T., YANG L., WATSON M., GOODMAN N. D.,
HANRAHAN P.: Synthesizing Open Worlds with Constraints Using Lo-
cally Annealed Reversible Jump MCMC. In Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH) (2012). 2

[YYY∗16] YAN X., YANG J., YUMER E., GUO Y., LEE H.: Perspective
transformer nets: Learning single-view 3D object reconstruction without
3D supervision. In Advances in Neural Information Processing Systems
(NeurIPS) (2016). 19

[ZHG∗16] ZHAO X., HU R., GUERRERO P., MITRA N. J., KOMURA T.:
Relationship templates for creating scene variations. ACM Transactions
on Graphics (TOG) 35, 6 (2016), 1–13. 15

[ZW18] ZOHAR A., WOLF L.: Automatic Program Synthesis of Long
Programs with a Learned Garbage Collector. In Advances in Neural
Information Processing Systems (NeurIPS) (2018). 10

[ZWK19] ZHOU Y., WHILE Z., KALOGERAKIS E.: SceneGraphNet:
Neural message passing for 3D indoor scene augmentation. In IEEE
International Conference on Computer Vision (ICCV) (2019). 16

[ZXC∗18] ZHU C., XU K., CHAUDHURI S., YI R., ZHANG H.:
SCORES: Shape composition with recursive substructure priors. ACM
Transactions on Graphics (TOG) 37, 6 (2018), 211:1–211:14. 13, 14

[ZYM∗18] ZHANG Z., YANG Z., MA C., LUO L., HUTH A., VOUGA
E., HUANG Q.: Deep generative modeling for scene synthesis via hybrid
representations. arXiv:1808.02084 (2018). 17

[ZYY∗17] ZOU C., YUMER E., YANG J., CEYLAN D., HOIEM D.: 3D-
PRNN: Generating Shape Primitives with Recurrent Neural Networks.
In IEEE International Conference on Computer Vision (ICCV) (2017).
17

[ZZZ∗18] ZHU J.-Y., ZHANG Z., ZHANG C., WU J., TORRALBA A.,
TENENBAUM J., FREEMAN B.: Visual object networks: Image gen-
eration with disentangled 3D representations. In Advances in Neural
Information Processing Systems (NeurIPS) (2018). 19

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

