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Abstract— Camera placement is crutial in multi-camera sys-
tems such as virtual reality, autonomous driving, and high-
quality reconstruction. The camera placement challenge lies
in the nonlinear nature of high-dimensional parameters and
the unavailability of gradients for target functions like cover-
age and visibility. Consequently, most existing methods tackle
this challenge by leveraging non-gradient-based optimization
methods. In this work, we present a hybrid camera placement
optimization approach that incorporates both gradient-based
and non-gradient-based optimization methods. This design
allows our method to enjoy the advantages of smooth op-
timization convergence and robustness from gradient-based
and non-gradient-based optimization, respectively. To bridge
the two disparate optimization methods, we propose a neural
observation field, which implicitly encodes the coverage and
observation quality. The neural observation field provides the
measurements of the camera observations and corresponding
gradients without the assumption of target scenes, making
our method applicable to diverse scenarios, including 2D
planar shapes, 3D objects, and room-scale 3D scenes. Extensive
experiments on diverse datasets demonstrate that our method
achieves state-of-the-art performance, while requiring only a
fraction (8x less) of the typical computation time. Furthermore,
we conducted a real-world experiment using a custom-built
capture system, confirming the resilience of our approach to
real-world environmental noise. We provide code and data at:
https://github.com/yhanCao/MultiviewOpt.

I. INTRODUCTION

Camera placement is a long-standing and widely applica-
ble problem [1], [2] across various domains such as motion
tracking [3], [4], surveillance systems [5], and robotics [6].
Through analysis of 3D spatial priors, camera placement
methods optimize placement of multi-cameras, to maximize
visibility metrics such as coverage. However, the camera
placement problem faces two primary challenges: firstly, a
highly non-linear optimization landscape due to the high
dimensionality of multi-camera parameters; secondly, the
process of calculating visibility lacks differentiability, ren-
dering the gradient of visibility unattainable.

To tackle this challenge, most existing methods [5], [7],
[8], [9] leverage non-gradient optimization methods with
explicit scene representation, such as point clouds or voxels.
These methods typically adopt heuristic or greedy search
algorithms, eliminating the need for gradients. However,
they often suffer from issues related to convergence speed
and precision. Additionally, explicit scene representations are
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Fig. 1: We introduce a hybrid optimization method based on
the neural observation field for camera placement estimation.
The target objects are represented by neural observation
fields, which are compatible with any type of objects.

predefined for specific scenarios, such as 2D planar shapes or
3D objects, leading to significant performance drops under
different scenarios.

In this work, we propose a novel hybrid optimization
approach for camera placement optimization, incorporat-
ing both gradient-based and non-gradient-based optimization
methods. Fig.1 illustrates the hybrid optimization results
based on our proposed neural observation field.

For gradient-based optimization, we propose a neural
observation field designed to encode scene observation, fa-
cilitating gradient calculation for maximizing coverage and
observation quality. This neural observation field, represented
by an implicit neural field, encodes the joint configuration
of scene geometry with multi-camera placement, thereby
implicitly capturing multi-view observability. Throughout the
optimization process, the neural observation field undergoes
online updates following each new camera placement itera-
tion. Leveraging the differentiability of the neural observa-
tion field, we compute gradients through gradient backward
propagation and subsequently update camera placements.
This approach ensures a smooth and rapid convergence of
camera placement optimization.

For non-gradient-based optimization, we leverage an elite
selection algorithm that retains cameras with high visibility
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while resampling those with poor visibility. The cameras
with poor visibility are relocated to areas requiring more
observation globally. This strategy reduces the risk of getting
stuck in local optima and enhances the robustness of our
method in complex scenarios, such as regions with large gaps
or non-convex geometries. Unlike approaches such as sim-
ulated annealing [10] or evolutionary strategies [11], which
involve resampling the placement of all cameras, our method
focuses solely on resampling cameras with poor visibility,
as identified by the convergent results of gradient-based
optimization. This approach is more efficient since cameras
with good placement exhibit smaller gradients, which remain
relatively consistent during gradient-based optimizations.

We conduct extensive experiments on diverse datasets,
including 2D planar shapes, 3D objects [12], and room-
scale 3D scenes [13]. We evaluate our method on both
coverage and observation quality. The results demonstrate
that our approach outperforms existing solutions while re-
quiring only a fraction (8x less) of the typical computational
time. Furthermore, we develop a custom capture system to
evaluate our method’s resilience to real-world environmental
noise. We find that our method demonstrates robustness and
outperforms existing methods across a wide range of objects.

In summary, our main contributions include:

• A hybrid camera placement optimization method that
cooperatively incorporates both gradient-based and non-
gradient-based optimization methods.

• A neural observation field that implicitly encodes the
geometry priors and observation of indoor scenes.

• A custom-built capture system powered by our camera
placement optimization method, demonstrating robust-
ness and well-visibility in the real-world environments.

II. RELATED WORKS

A. Camera Placement Application.

Multi-camera systems are extensively employed for cap-
turing and synthesizing realistic 3D content in both research
and real-world development scenarios [1]. Visual sensors,
known for their low cost, lightweight, and image capture
capabilities in various domains. Multi-view applications have
emerged in fields such as industrial inspection [14], surveil-
lance [6], [5], motion capture [4], and navigation [15], [16],
overcoming the limitations of single-camera vision.

B. Camera Placement Optimization Methods.

Multi-view optimization is a well-established NP-hard
problem, making it impractical and time-consuming to find
the optimal solution. The focus of this study is to find a
sub-optimal solution within a reasonable time frame. Various
approaches have been employed for this task [17], [18].
Greedy algorithms, as utilized in [19], iteratively consider
all visibility factors until achieving high-quality results.
The computation time of the greedy algorithm escalates
with scenario scope. Considering time overhead, [20], [7],
[10] optimize camera layouts using heuristic algorithms.

[21] employs Integer programming algorithm to optimize
visibility, single-best coverage quality, and cumulative qual-
ity. [22] utilizes Particle Swarm Optimization (PSO) to
minimize measurement error pixel quantization and mea-
surement based on the environment model. However, the
PSO algorithm’s high computation time is noted in [9].
While considering reconstruction, camera placement problem
escalates from a single-coverage problem to a multi-coverage
problem. The placement of cameras also significantly influ-
ences the quality of the reconstructed 3D content. [4] uses
Simulated Annealing Algorithm (SA) to optimize camera
placements by estimating the three-dimensional positions of
markers through triangulation from multiple cameras. For
3D reconstruction, bundle-based methods in [23], [24], [25]
utilize photogrammetric camera networks or expert systems
to obtain automated camera placement, considering only the
reconstruction quality.

The heuristic function for these tasks primarily revolves
around the coverage rate of the entire scenario. Addition-
ally, [8] minimizes the coverage optimality gap, defined as
the squared error between the desired and achieved coverage.
This metric serves as our coverage metric for assessing multi-
camera coverage.

Greedy-based or heuristic algorithms overlook the prior
information regarding the shape of the scenario, resulting
in time wastage in irrelevant areas. Moreover, the spatial
discretization of solutions can lead to sub-optimal results,
as it depends on the scale of spatial division. Our method
incorporates both gradient-based and non-gradient-based op-
timization methods by taking advantage of scenario geometry
prior to mitigate these challenges.

C. Scene Representation for optimization.

Scene representation in the camera placement problem
involves unstructured point clouds [22], volumes [8], or
polygonal meshes [9]. However, model represented by points
or meshes may degrade the result due to irregular distribu-
tions of points or faces, which fail to adequately describe the
coverage of model space, influenced by density [26]. Vox-
elized scene representation, while effective in some cases,
cannot facilitate gradient backpropagation for gradient-based
optimization. Recently, implicit representation of shapes has
made significant advancements. Implicit model field methods
typically aim to learn a function that maps spatial locations
to feature representations. [27] proposes neural sparse voxel
fields as a novel neural scene representation for fast and high-
quality free-viewpoint rendering. In [28], a constructed voxel
field representation is utilized for cross-modality 3D object
detection. Inspired by these works, we encode the scenario
geometry prior to obtain the visibility of scenes.

III. METHOD

A. Problem Statement and Method Overview

Given a target object S = {sj ,nj |s ∈ R3,n ∈ R3}j=0:n

represented by a point cloud {s}0:n and corresponding



Fig. 2: Method overview. Our method takes target object S and initial camera placement {P0,P1, ...,Pn} as inputs to
construct neural observation field F . We then utilize the non-gradient-based optimization techniques along with gradient-
based optimization methods for camera placement refinement. Throughout this optimization process, the neural observation
field is continually updated (refer to section 1), until the termination criteria are met.

Fig. 3: Illustration of observation attribute o elements: Cov-
erage c in row (A), Camera-to-camera angle in row (B) and
Camera-to-object angle in row (C). Only the third column
satisfies our visibility condition.

normal {n}0:n (where n indicates the number of points), the
camera placement optimization method aims to maximize the
visibility of the target scene, such as coverage or observation
quality. The camera placement P = ⟨pi, ri⟩i=1:k involves
their positions {pi|p ∈ R3}i=1:k and orientations {ri|r ∈
SO(3)}i=1:k (where k indicates the number of cameras).

Our method leverages a hybrid optimization method based
on the neural observation field. The neural observation field
F : (S,P) → (c, ϕcc, ϕco) implicitly encodes scene priors
including coverage (ci)i=1:n (the number of visible cam-
eras), average camera-to-camera viewing angle (ϕcc

i )i=1:n

and average camera-to-object viewing angle (ϕco
i )i=1:n (be-

tween camera ray and target normal vector)(Section III-
B). Then a hybrid optimization method H : (Pt,S,Ft) →
(Pt+1,Ft+1) (Section III-C) is conducted by iteratively per-
forming the gradient-based optimization Hgrad(P,F) and
non-gradient-based optimization Hnon grad(P,F) to achieve
a good trade-off between exploitation and exploration in
camera placement optimization. An overview visualization
of our pipeline is presented in Figure 2.

B. Neural Observation Field

To obtain the visibility of scenes, we divide the target
object S into voxels V . Given the current camera poses, we
can determine the voxels that are visible in a single view.

After acquiring the observation attributes oV of voxels V ,
we encode the joint configuration of scene geometry and
voxels with observation attributes oV to derive the neural
observation field Ft of the target object S and current camera
placement Pt.

a) Observation Attributes: We define the observation
attributes, consisting of three elements: Coverage c defined
by the coverage relationship E, Camera-to-camera angle ϕcc,
and Camera-to-object angle ϕco to represent the visibility of
voxels. We consider the field of view (FOV), image blur, and
occlusion to determine visibility. Voxels within the camera’s
frustum that are not obscured by other voxels in this view
are considered visible to that camera.

The coverage relationship E(i, j) between a voxel Vj

and a camera Ci is represented as a binary number, where
E(i, j) = 1 if Vj is visible in Ci, otherwise E(i, j) = 0. For
a given coverage threshold K, the coverage condition that
voxel j still needs is expressed as :

c(j) = K −
k∑

i=0

E(i, j). (1)

When considering the context of multi-view reconstruction, it
is imperative to ensure the accuracy of the computed target
3D location. This accuracy relies on the error propagation
characteristics of the reconstruction linear solver. In cases
where the rays emanating from the view center towards the
target point are either parallel or nearly parallel, a valid
solution cannot be obtained [4]. Based on the fulfillment
of coverage condition, different target points may have
varying numbers of rays intersecting them, necessary to
adopt a scale-invariant representation to assess the quality
of coverage. To quantify the observation quality of voxel
j, we utilize two metrics: Camera-to-camera angle ϕcc

j , an
internal variability formulated as:

ϕcc
j =

∣∣∣∣∣∣∣∣
π

2
− 1

C2
|Aj |

∑
a1,a2∈Aj

a1 ̸=a2

α(a1, a2)

∣∣∣∣∣∣∣∣ , (2)

and Camera-to-object angle ϕco
j , an external similarity for-

mulated as :

ϕco
j = 1−

nj ·
∑

a∈Aj
a

∥nj∥ ·
∥∥∥∑a∈Aj

a
∥∥∥ , (3)



where Aj is the set of vectors from the center of voxel
j to the cameras that observe voxel j, α is the angle
between two vectors, and C2

|Aj | is a combinatorial term
representing the selection of all pairs of vectors from Aj . The
observation attributes consist of three fundamental elements:
o = [c, ϕcc, ϕco] illustrated in Figure 3 .

b) Neural Observation Field: Each voxel Vj is charac-
terized by its center position sj , normal nj and observation
attributes [cj , ϕ

cc
j , ϕco

j ]. The neural observation field F oper-
ates by implicitly encoding scene prior perception and offers
a continuous and efficient observation query mechanism for
optimization, corresponding to the function LeanNeOF in
Algorithm. 1.With a fixed number of cameras, surface points
observed by each camera are expected to be parts of objects
that are less observed in current camera placement.

We employ the Scaled Dot-Product Attention function,
which enables the model to focus more on the parts that
are relevant to the current or other contextual informa-
tion [29]. This function is denoted as F , which aggregates
target object surface information to obtain query point at-
tributes and optimization directions to optimize correspond-
ing cameras. Common methods for aggregating information
for 3D point clouds or voxels are trilinear interpolation [30]
or KNN algorithm [31]. However, these methods can only
aggregate information from nearby small areas, potentially
slowing down camera optimization or getting stuck in locally
optimal solutions. According to the concentration mechanism
of Attention [29], we can adaptly learn the appropriate
weights of all known voxels with attributes via gradient
backpropagation.

We compute the relative position and normal of voxels
on S centered at Si and then process through an MLP
layer(using ReLU activation and 32 channels) to serve as
input X of queries and keys. Subsequently, X is separately
multiplied with query and key weight matrices denoted as

Q = XWQ, K = XWK . (4)

WQ,WK are the weight matrices for queries and keys,
respectively. The observation attribute of target object S is
calculated as:

oS = softmax(
QKT

√
dk

) oV , (5)

where dk is the dimension of the keys. Calculating by Eq. 5,
target object S have equivalent attributes oS . According to
Eq.2, 3, Attribute oS = [c, ϕccϕco] has a maximum value
sup = [K,π/2, 1]. The sum attributes of all points in all
views have a maximum value as well :

k∑
i=1

|Si|∑
j=1

oSij
≤

k∑
i=1

n∑
j=1

sup, (6)

where |Si| is the number of points in view i and Sij is the
jth point of points in view i. After generating the Neural
Observation Field, we optimize the camera placement by a
hybrid optimization method.

Algorithm 1: Hybrid camera placement optimization H
Input : Target object S
Output: Optimized camera placement P

1 P0 ← Initialize(S);
2 c0, ϕ

co
0 , ϕcc

0 ← ShapeAnalyze(S, P0);
3 F0 ← LeanNeOF(c0, ϕco

0 , ϕcc
0 ,S );

4 L0 ←∞; t← 0; // Initialize the NeOF
5 ex
6 repeat
7 Pt+1,Lt+1 ← Hgrad(Pt,Ft);
8 ct+1, ϕ

co
t+1, ϕ

cc
t+1 ← ShapeAnalyze(S, Pt+1);

9 Ft+1 ← LeanNeOF(ct+1, ϕco
t+1, ϕcc

t+1, S, Ft );
// Fine-tune the NeOF

10 if CheckLossUpdate(Lt,Lt+1)< 1e−4 then
11 Pt+1 ← Hnon grad(Pt+1,Ft+1) ;
12 ct+1, ϕ

co
t+1, ϕ

cc
t+1 ← ShapeAnalyze(S, Pt+1);

13 Ft+1 ← LeanNeOF(ct+1, ϕ
co
t+1, ϕ

cc
t+1,S,Ft+1 );

// Extensively fine-tune the NeOF

14 Lt ← Lt+1; t← t+ 1;
15 until CheckStepUpdate(Pt, Pt−1) < 10−4;

C. Hybrid Placement Optimization method

Utilizing the differentiable and efficient scene priors query
facilitated by the neural observation field, our approach
strategically employs both gradient-based optimization and
non-gradient-based optimization to strike a favorable bal-
ance between exploitation and exploration. Gradient-based
optimization enables direct access to gradients derived from
the neural observation field, facilitating fine-grained opti-
mization. Nevertheless, it is susceptible to being trapped
in local optima. To mitigate this risk and escape local op-
tima, non-gradient-based optimization comes into play. Non-
gradient-based optimization identifies and stabilizes camera
poses associated with superior coverage and observation
quality, subsequently reevaluating sub-optimal camera poses
by leveraging analysis of scene priors and convergent results
of gradient-based optimization method. For a more compre-
hensive understanding of the methodology, the details can be
found in Algorithm. 1.

Gradient-based camera placement optimization. Gradi-
ent optimization is widely used to have fine-grained updating
steps for high-quality optimization. With the differentiable
neural observation field F , our method can obtain the gradi-
ent via a self-defined loss. Based on Eq. 5, 6, maximizing the
coverage and observation quality is equivalent to minimize

[Lvis,Lcc,Lco] = sup−
∑k

i=1

∑|Si|
j=1 oSij

k · n
, (7)

where [Lvis,Lcc,Lco] are three different metrics, including
(1) Coverage loss Lvis guiding the camera to maximize its
observation of objects, (2) Camera-to-camera viewing angle
loss Lcc, to enable triangular perception, and (3) Camera-
to-object viewing angle loss Lco, to enable cameras to face
directly to the object.

To increase the coverage and observation quality, we
use Hgrad(P,F) to optimize the camera placement P =



⟨pi, ri⟩i=1:k through a combination loss of three metrics:

L(P,F) = wvisLvis + wccLcc + wcoLco, (8)

where the wvis, wcc and wco are the weights of each cost
term. We empirically set the weights as wvis = 0.4, wcc =
0.3 and wco = 0.3, and the weights can be flexibly adjusted
for specific requirements, like maximizing the visibility
(wvis = 1.0, wcc = 0.0 and wco = 0.0).

Camera poses P = ⟨p, r⟩ are optimized using the gradient
of L(P,F) as the optimization parameters. The camera
transforms the point cloud observed in its view to the
Neural Observation Field coordinate system using its camera
parameters and calculates the loss. Due to this differentiable
forward propagation, the gradient can backpropagate to the
camera parameters using PyTorch [32].

After each iteration of gradient-based optimization, our
method recalculates the visibility, as ShapeAnalyze and fine-
tunes the neural observation field with significant down-
sampled points for efficiency, as LeanNeOF. The gradient-
based optimization stops when the gradient of camera pa-
rameters and the difference between two consecutive losses
is less than 1e-4. This stopping criterion corresponds to
CheckStepUpdate in Algorithm. 1.

Non-gradient-based camera placement optimization.
The gradient optimization performs well when the object
exhibits weak non-convexity. However, objects in real-world
scenarios are often diverse and highly non-convex. To es-
cape from local optima, we employ a non-gradient-based
optimization method Hnon grad(P,F), akin to trust-region
optimization. This method fixes the well-optimized camera
placements and recalculates the positions and orientations of
less optimal cameras.

We update the camera that satisfies two conditions: first,
the gradient is less than 1e-4, indicating that the camera has
converged; second, the camera still has a large loss after
convergence, indicating a better observation camera pose in
global space than this one. To replace this camera, we filter
the m least-covered regions to calculate the current camera
placement neural field. The coverage and observation quality
are compared using Equation 8 to generate a new camera
pose, set directly above the poorly covered area of the object
surface. After generating a new camera pose, we update
the neural observation field. After traversing throughout m
regions, we choose the best camera pose with the minimum
L:

pwnew
= argmin

j
L(Pti→j

,Ft)j=1:m. (9)

We continue replacing worse camera poses until no better
new camera pose can be found.

D. Implementation details

The initialization of camera placements is randomly sam-
pled points within the space of the scene. For differentiable
optimization, we use the Adam optimizer to optimize pa-
rameters containing both camera poses and the Attention
layer. The initial learning rate of the optimizer is 1e−3, with

Fig. 4: Camera placement control system. This system is
able to control six 4K RGB cameras in SE(3) with a
uniform distributed lighting source. Real images captured by
optimized cameras.

a gradual decrease during the optimization process. While
dealing with occlusion in view, we employ spherical inverse
flipping and convex hull construction from [33] to obtain
points not hidden by other points in one view, reducing the
rendering time and input complexity.

IV. EXPERIMENTS

A. Experiment setup

Synthetic environments setup:. The synthetic environ-
ment is composed of 2D planar shapes (25), 3D objects
(28), and room-scale 3D scenes (8), leading to a total
number of 56 which is more than existing methods. The 2D
planar shapes are self-generated with random shape (circle,
triangular, cube) combinations. For the 3D object models and
3D scenes, we leverage high-quality real scanned reconstruc-
tion from Google Scanned Objects (GSO) dataset [12] and
Replica dataset [13], respectively.

Real-world experiments setup: We construct a camera
placement control system as shown in Fig. 4, composed of
six 4K RGB cameras and constant lighting sources. All six
cameras can be freely adjusted to capture RGB images. The
camera placement can be dynamically adjusted based on the
results of camera placement optimization methods. Here, we
leverage five diverse objects including the bag, flower, laptop,
and motor Lego, for evaluating the performance of methods
in the real-world environment.

Baseline methods. Coverage in multi-media placement is
an NP-hard problem [18], and various approaches have been
proposed to solve this problem. We compare our methods
with mainstream methods:

• Genetic Algorithm (GA) in [20], emulates natural
process to select, generate and evaluate for fitness.

• Simulated Annealing (SA) in [10], iteratively replaces
inferior solutions until algorithm’s temperature reaches
a predefined threshold, akin to metal heat treatment.

• Particle Swarm Optimization (PSO) in [9], leverages
the exchange of information among individuals within
a group to facilitate the transition.

• Differential Evolution (DE) in [11], distinguishes from
GA by crossing with parent individual vectors to gen-
erate new ones, proving more effective than GA.

• Mixed-Integer Programming (MIP) in [8], employs
a branch-and-bound algorithm, solving a sequence of



TABLE I: Comparing Coverage optimality gap and Observation angle quality in 2D Plane and 3D Model datasets. We
present the average outcomes for each method across varying numbers of cameras. The best results are highlighted. Here,
cam. indicates the number of cameras.

Methods
2D planar shapes 3D objects

Coverage optimality gap ↓ Observation angle quality ↑ Coverage optimality gap ↓ Observation angle quality ↑
5 cam. 10 cam. 15 cam. 20 cam. 5 cam. 10 cam. 15 cam. 20 cam. 5 cam. 10 cam. 15 cam. 20 cam. 5 cam. 10 cam. 15 cam. 20 cam.

Init 0.77 0.54 0.37 0.28 0 0 0.44 0.69 0.75 0.51 0.34 0.29 0.39 0.93 0.91 0.80
DE[11] 0.75 0.64 0.52 0.50 0.09 0.10 0.58 0.64 0.82 0.67 0.56 0.46 0.34 0.91 0.86 0.88
PSO[34] 0.77 0.61 0.52 0.45 0.02 0.28 0.54 0.52 0.83 0.72 0.31 0.27 0.49 0.88 0.85 0.84
GA [20] 0.87 0.79 0.71 0.70 0.00 0.09 0.37 0.37 0.83 0.76 0.37 0.34 0.41 0.80 0.85 0.86
SA[10] 0.77 0.55 0.36 0.28 0.03 0.15 0.54 0.67 0.76 0.54 0.31 0.24 0.45 0.79 0.81 0.69
MIP[8] 0.68 0.58 0.55 0.53 0.53 0.45 0.40 0.38 0.69 0.52 0.45 0.38 0.62 0.83 0.82 0.81
Ours 0.64 0.43 0.30 0.17 0.57 0.54 0.73 0.72 0.63 0.40 0.28 0.20 0.70 0.96 0.91 0.89

TABLE II: Comparing Coverage optimality gap and Obser-
vation angle quality in 3D Scene datasetssame as tested in
2D Plane and 3D Model datasets.

Method Coverage optimality gap ↓ Observation angle quality ↑
10 cam. 20 cam. 30 cam. 10 cam. 20 cam. 30 cam.

Init. 0.23 0.12 0.09 0.07 0.07 0.06
DE [11] 0.20 0.08 0.04 0.31 0.26 0.28
GA [20] 0.38 0.13 0.06 0.33 0.37 0.38
PSO [34] 0.21 0.08 0.05 0.55 0.45 0.44
SA [10] 0.20 0.07 0.04 0.44 0.47 0.42
Ours 0.16 0.04 0.03 0.58 0.46 0.47

Fig. 5: The robustness and time cost of our algorithm,
we optimize 10 sets of camera placements with different
initializations. The solid line is the mean value, with the
shading represents the upper and lower bounds. Additionally,
we have tested the time cost of different parts in our method.

linear programming derived from original problem.
• Graph Neural Network (GNN) in [3] leverages a

graph neural network to capture local interactions of
the robots on 2D planar shapes.

We compare results with GA, SA, PSO, DE, MIP methods
on all 2D planar shapes, 3D objects and room-scale 3D
scenes. For GNN, we test only on 2D planar shapes due
to the limitation of their method.

Metrics. We plan to evaluate the camera placement in
terms of both coverage and observation quality. For coverage
evaluation,we consider Coverage optimality gap [8], given
by the formula:

uc =
(K −

∑n
i=0 covi)

2

K · n2
, (10)

where K represents the required coverage number, (we use
3 in our experiment), n is the number of total visible points,
and covi represents the number of cameras able to observe
point i in current camera placement. Smaller values of the
Coverage optimality gap indicate better performance.

For quality evaluation, we consider the Camera-to-object
angle and the Camera-to-camera angle as proposed in Section
III-B. The angles among vectors from camera rays to the

Fig. 6: Comparisons of reconstruction completeness between
3 cameras uniformly distributed and by our optimization
method. Missing parts are ones not observed by any camera.

target point within [45◦, 145◦] has been shown to approx-
imate triangular perception, leading to better observation
quality [4]. We calculate the rate of satisfied rays among all
camera-to-camera rays as an angle rate to assess the quality,
called Observation angel quality.

B. Results and analysis

Comparison on 2D planar shapes, 3D objects, Room-
scale 3D scenes. We extensively compare our methods in
diverse environments (2D planar shapes, 3D objects, and
3D scenes) with different camera numbers. The results of
2D planar shapes and 3D object datasets can be found in
Table I, and for 3D scenes, the results are presented in
Table II. We use an acceptable number of particles (30) to
test all datasets. We also perform extensive experiments with
different particle numbers, finding that the methods reach
convergence as the particle number increases. While these
methods are comparable with ours in terms of performance
when converged, their time overhead is at least one hour,
which is 48 times longer than ours. The results prove that
our method has significant advantages in both coverage and
observation quality over existing methods across different
camera numbers. Specifically, we find our method showcases
stable improvement along with the increase in the number
of cameras, constantly showing better performance than
existing methods. As for 3D scene datasets, we report the
results in Table II, where we continue to achieve state-of-
the-art performance compared to all methods. Experiments



Fig. 7: Visual results of neural observation field during optimization. From left to right, the optimization step increases and
the color to blue, the better observation and reconstruction quality.

TABLE III: Comparing single-coverage of learning-based
GNN method [3] with our method.We compare results on
their self-generated plane dataset with single-coverage met-
ric, the percentage of covered targets number. Here, cam.
indicates the number of cameras.

Method Single-coverage metric [3] ↓
10 cam. 20 cam. 30 cam. 40 cam.

GNN [3] 0.41 0.36 0.23 0.14
Ours 0.36 0.33 0.21 0.13

on synthetic datasets show the applicability of our approach
in various scenarios. The corresponding visual results can
be found in Fig. 7, where models from crippled or red to
complete and blue, reflecting our optimization process. To
exclude the effect of initialization, we perform 10 times
experiments with different random initializations to verify the
robustness of the approach in Fig. 5. Thin shading bounds
of our method illustrate its non-dependency on the quality of
initial camera placement. The visualization of reconstruction
shown in Fig. 6 as a downstream task, illustrates better
completeness and accuracy of reconstructed models achieved
by our optimization method.

Comparison with the learning-based method [3]. In
addition to traditional methods, we experiment to compare
with the learning-based method presented in [3]. Camera
poses in [3] can only optimize on 2D planar shapes, thus
we adjust ours accordingly. The results are provided in
Table III. Our method outperforms the GNN method [3] for
various camera placement numbers, which is the state-of-
the-art camera placement optimization on 2D planar shapes.
However, it’s worth noting that our advantage diminishes as
the number of cameras increases because it becomes easier
to achieve better coverage with more cameras.

Ablation Study. We conduct an ablation study to verify
the effectiveness of key components in our method using 2D
planar shapes dataset. Optimization targets of all methods are
both Coverage optimality gap and Observation angle quality.
The results can be found in Table IV, demonstrates better
performance than gradient- or non-gradient optimization

TABLE IV: Ablation study of Hybrid optimization and
neural observation field. Rows 1-2 use only gradient-based
or non-gradient-based optimization methods, and rows 3-5
use discrete or distance-based neural fields as comparison.

Method Coverage optimality gap ↓ Observation angle quality ↑
Grad. opt. + neural obs. filed 0.510 0.880
Non-grad. opt. + neural obs. field 0.473 0.896
Hybrid opt. + trilinear interpolation 0.588 0.818
Hybrid opt. + neural distance field 0.512 0.937
Hybrid opt. + neural obs. field (Ours) 0.398 0.933

TABLE V: Real-world experiments on our camera placement
control system, we dynamically optimize the placement
of six cameras on five real-world models and obtain the
coverage and observation quality.

Models Coverage optimality gap ↓ Observation angle quality↑
Moto 0.06 0.87
Laptop 0.00 0.81
Flower 0.10 0.72
Sandbox 0.00 0.92
Bag 0.03 0.88

(rows 1-2) as the gradient optimization method suffers from a
highly non-linearity optimization landscape. While combin-
ing it with non-gradient optimization, we observe a signif-
icant improvement which proves the effectiveness of using
hybrid optimization. Moreover, rows 3-5 demonstrate that
our neural observation field outperforms other alternatives,
underscoring its capability to provide both differentiable and
observation measurements to guide the optimization, result-
ing in better observation quality that underlies coverage.

Real-world experiments. The real-world experiments
conducted using our camera placement control system are
summarized in table V. Here, we leverage five real-world
models and dynamically adjust the camera placement by
our optimization, with input shapes scanned roughly. The
results clearly demonstrate that our method still has good
performance in real-world environments by almost fully
covering the target objects while having good camera quality,
capturing information from concave planes of objects as well.

Analysis of Computational Cost. Our method exhibits
high efficiency in both learning the neural observation field
and the optimization process shown in Fig. 5. Under typical



10-camera seniors, our method requires only 0.08 seconds
per iteration for learning the neural observation field and
0.1 seconds for the optimization process in each iteration.
Throughout our experiments, our method consistently exhib-
ited the fastest speed (eight times faster than mainstream
methods, as reported in [8], [9], [11], [34]), while also
achieving state-of-the-art performance.

V. CONCLUSIONS

In this work, we present a novel camera placement hybrid
optimization method leveraging the neural observation field.
Our method amalgamates the strengths of both gradient-
based and non-gradient-based optimization techniques, strik-
ing a balance between their respective advantages. To enable
a unified observation for both methods, the neural observa-
tion field learns the coverage and observation quality of cam-
era placement in a differentiable manner. The results on both
synthetic datasets and real-world datasets clearly demonstrate
the superiority of our methods. In the future, we would like to
exploit our approach under dynamic environments or large-
scale scenes e.g. a whole building.
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