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Appendix: Online cut cost learning with Multi-
ple Kernel Learning

We first introduce the general method of Multiple Kernel Learning
(MKL) [Bach et al. 2004]. Then, we show how to extend MKL for
online learning, based on the passive-aggressive algorithm [Cram-
mer et al. 2006]. Finally, we list the kernels and features we em-
ployed for cut cost learning.

1 Multiple Kernel Learning
Given a training data set:
D= {(x17y1) ‘ X € Rn7 Yi € {_1> 1}}?:1 )

where x; is feature vector of i-th data point, and y;, being —1 or
+1, the indicator of the data point’s binary class. The objective of
Multiple Kernel Learning is to learn a prediction function:

f(x) =w'pa(x)+b,

where w and b are the parameters of a Support Vector Ma-
chine (SVM). The function involves a kernel kq(x;,x;) =
&g (x:)pa(x;). The kernel represents the dot product in feature
space ¢ parameterized by d and is used to measure the similarity
of data points. The goal in SVM learning is to learn the globally
optimal parameters, the weight vector w and the bias b, from train-
ing data D. This is achieved by solving the following optimization
problem:

ST
min o[ wl* + 3 Uy, £(x0)),

where [ is loss function of the form [ = C'max(0,1 — y; f(xs))
(C' is a constant). In MKL, besides the two parameters, we also
need to optimize the kernel parameters d, by solving the following
minimization problem:

N SR
vrvngrlliEHwH +Zl('yz;f(xz))+7“(d) st. d>0

where both the regularizer r and the kernel can be any general dif-
ferentiable functions of d with continuous derivative. We use the
£ regularizer proposed in [Chan et al. 2007].

2 Online Multiple Kernel Learning

The main feature of online learning is that the training data points
arrive in a sequential manner. Let us denote the data point pre-
sented to the learning algorithm on round ¢ by x; € R", which
is associated with an observed label y, € {—1,+1}. We refer to
such instance-label pair (x¢,y:) as online example. Online learn-
ing aims to make predictions using a prediction function learned
incrementally with the online examples. In order to update the pre-
diction function, which was learned based on historical examples,
with the newly coming example, a guiding principle is to make the
new prediction function “fits” the new example, while making min-
imal change to the original prediction function. By fitting, we mean
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that the new prediction function should give correct prediction for
the new example.

The passive-aggressive algorithm proposed in [Crammer et al.
2006] is designed for SVM, aiming to find a new SVM predic-
tion function based on a single example (corresponding to an on-
line example) while ensuring it to remain as close as possible to the
original one. This is achieved by constraining the weight vector w
in SVM prediction function. Specifically, we set the weight vector
w1 in round ¢ + 1, given the new example (x¢,y:), to be the
solution to the following constrained optimization problem:

1
W¢4+1 = arg min §||W —wil® st U(w;(x4,9:)) =0
wER™

The optimization has a simple closed form solution:

b

Wil = Wy + TtYtXt with Tt — W
t

To extend the passive-aggressive algorithm to the MKL setting, we
solve the following optimization problem:

1
Wi = argmins ||w — wel|* + > 1y, f(x:)) +r(d)
wern 2 1- M

st. d>0

The optimization of such problem can be solved by reformulating it
as an interleaving optimization [Chapelle et al. 2002]. In the outer
loop, the kernel is learned by optimizing over d. In the inner loop,
the kernel is held fixed and the w is optimized. See more details
in [Chapelle et al. 2002].

3 Kernels and features

Our MKL uses fourteen kernels, which include eleven Gaussian
kernels and three Polynomial kernels. The eleven Gaussian kernel
we used are:

R
k(x,y) =€ 2t
where 0 = 2" withn € {-5,—-4,-3,-2,-1,0,1,2,3,4,5}.
The three Polynomial kernels are:
k(xy) = (x"y +1)%,
with d € {1,2,3}.

We use six features to describe the relations between two adjacent
patches P, and P,:

* Dihedral angle: We compute the dihedral angle between the
two patches using their average normals:

1 = c0S0yy = Ny - Ny,

where n,, and n, are the average normals of patch P, and P,
respectively.

¢ Dihedral angle convexity: We measure the local convexity
of the dihedral angle between P, and P,:

T2 = Kup = [(My X Ny) X (Cu — )] - Dy

where c,, and ¢, are the centers of patch P, and P,, respec-
tively.
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* Difference of normal variance: We compute the difference
of the variance of normals in the two patches:

Tr3 = |Zn(Pu) - En(Pv)|a

where 3, is the variance of the normal directions of all points
in a patch.

* Difference of patch planarity: We compare the patch pla-
narity:
x4 = [m(Pu) = m(P)l,

where patch planarity 7 is measured as the average distance
from all patch point to the least-square fitting plane of the
patch.

* Difference of patch size: We compare the area of the two
patches:
x5 = [s(Pu) = s(Po)l,

where s(-) counts the number of points in a patch, as an ap-
proximation to its area.

* Difference of patch color distribution: We compare the
color distribution of the two patches:

S [Hu(k) — Ho(k))?
; Ho(k)+ Ho(k)

where H, and H, are the color histograms of patch P, and
P, respectively.

Te = Xz(Hu —H,) =

N | =
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