To appear in ACM TOG 34(6).

Autoscanning for Coupled Scene Reconstruction and Proactive Object Analysis

Kai Xu!? Hui Huang'* Yifei Shi? Hao Li3

!Shenzhen VisuCA Key Lab / SIAT

Appendix: Online cut cost learning with Multi-
ple Kernel Learning

We first introduce the general method of Multiple Kernel Learning
(MKL) [Bach et al. 2004]. Then, we show how to extend MKL for
online learning, based on the passive-aggressive algorithm [Cram-
mer et al. 2006]. Finally, we list the kernels and features we em-
ployed for cut cost learning.

1 Multiple Kernel Learning
Given a training data set:
D= {(x17y1) ‘ X € Rn7 Yi € {_1> 1}}?:1)

where x; is feature vector of i-th data point, and y;, being —1 or
+1, the indicator of the data point’s binary class. The objective of
Multiple Kernel Learning is to learn a prediction function:

f(x) =w'pa(x)+b,

where w and b are the parameters of a Support Vector Ma-
chine (SVM). The function involves a kernel kq(x;,x;) =
&g (x:)pa(x;). The kernel represents the dot product in feature
space ¢ parameterized by d and is used to measure the similarity
of data points. The goal in SVM learning is to learn the globally
optimal parameters, the weight vector w and the bias b, from train-
ing data D. This is achieved by solving the following optimization
problem:

ST
min o[wl* + 3 Uy, £(x0)),

where [is loss function of the form [= C'max(0,1 — y; f(xs))
(C' is a constant). In MKL, besides the two parameters, we also
need to optimize the kernel parameters d, by solving the following
minimization problem:

N SR
vrvngrlliEHwH +Zl('yz;f(xz))+7“(d) st. d>0

where both the regularizer r and the kernel can be any general dif-
ferentiable functions of d with continuous derivative. We use the
£ regularizer proposed in [Chan et al. 2007].

2 Online Multiple Kernel Learning

The main feature of online learning is that the training data points
arrive in a sequential manner. Let us denote the data point pre-
sented to the learning algorithm on round ¢ by x; € R", which
is associated with an observed label y, € {—1,+1}. We refer to
such instance-label pair (x¢,y:) as online example. Online learn-
ing aims to make predictions using a prediction function learned
incrementally with the online examples. In order to update the pre-
diction function, which was learned based on historical examples,
with the newly coming example, a guiding principle is to make the
new prediction function “fits” the new example, while making min-
imal change to the original prediction function. By fitting, we mean

*Corresponding authors: {hhzhiyan,baoquan.chen} @ gmail.com

Pinxin Long!
2HPCL, National University of Defense Technology

*

Wei Sun! Baoquan Chen?
3Shandong University

Jianong Caichen?!

that the new prediction function should give correct prediction for
the new example.

The passive-aggressive algorithm proposed in [Crammer et al.
2006] is designed for SVM, aiming to find a new SVM predic-
tion function based on a single example (corresponding to an on-
line example) while ensuring it to remain as close as possible to the
original one. This is achieved by constraining the weight vector w
in SVM prediction function. Specifically, we set the weight vector
w1 in round ¢ + 1, given the new example (x¢,y:), to be the
solution to the following constrained optimization problem:

1
W¢4+1 = arg min §||W —wil® st U(w;(x4,9:)) =0
wER™

The optimization has a simple closed form solution:

b

Wil = Wy + TtYtXt with Tt — W
t

To extend the passive-aggressive algorithm to the MKL setting, we
solve the following optimization problem:

1
Wi = argmins ||w — wel|* + > 1y, f(x:)) +r(d)
wern 2 1- M

st. d>0

The optimization of such problem can be solved by reformulating it
as an interleaving optimization [Chapelle et al. 2002]. In the outer
loop, the kernel is learned by optimizing over d. In the inner loop,
the kernel is held fixed and the w is optimized. See more details
in [Chapelle et al. 2002].

3 Kernels and features

Our MKL uses fourteen kernels, which include eleven Gaussian
kernels and three Polynomial kernels. The eleven Gaussian kernel
we used are:

R
k(x,y) =€ 2t
where 0 = 2" withn € {-5,—-4,-3,-2,-1,0,1,2,3,4,5}.
The three Polynomial kernels are:
k(xy) = (x"y +1)%,
with d € {1,2,3}.

We use six features to describe the relations between two adjacent
patches P, and P,:

* Dihedral angle: We compute the dihedral angle between the
two patches using their average normals:

1 = c0S0yy = Ny - Ny,

where n,, and n, are the average normals of patch P, and P,
respectively.

¢ Dihedral angle convexity: We measure the local convexity
of the dihedral angle between P, and P,:

T2 = Kup = [(My X Ny) X (Cu —)] - Dy

where c,, and ¢, are the centers of patch P, and P,, respec-
tively.

To appear in ACM TOG 34(6).

* Difference of normal variance: We compute the difference
of the variance of normals in the two patches:

Tr3 = |Zn(Pu) - En(Pv)|a

where 3, is the variance of the normal directions of all points
in a patch.

* Difference of patch planarity: We compare the patch pla-
narity:
x4 = [m(Pu) = m(P)l,

where patch planarity 7 is measured as the average distance
from all patch point to the least-square fitting plane of the
patch.

* Difference of patch size: We compare the area of the two
patches:
x5 = [s(Pu) = s(Po)l,

where s(-) counts the number of points in a patch, as an ap-
proximation to its area.

* Difference of patch color distribution: We compare the
color distribution of the two patches:

S [Hu(k) — Ho(k))?
; Ho(k)+ Ho(k)

where H, and H, are the color histograms of patch P, and
P, respectively.

Te = Xz(Hu —H,) =

N | =

References

BACH, F., LANCKRIET, G., AND JORDAN, M. 2004. Multiple
kernel learning, conic duality, and the smo algorithm. In Proc.
ICML, 1-6.

CHAN, A. B., VASCONCELOS, N., AND LANCKRIET, G. 2007.
Direct convex relaxations of sparse svm. In Proc. ICML, 145—
153.

CHAPELLE, O., VAPNIK, V., BOUSQUET, O., AND MUKHERJEE,
S. 2002. Choosing multiple parameters for support vector ma-
chines. Machine Learning 46, 131-159.

CRAMMER, K., DEKEL, O., KESHET, J., SHALEV-SHWARTZ, S.,
AND SINGER, Y. 2006. Online passive-aggressive algorithms.
J. Mach. Learn. Res. 7 (Dec.), 551-585.

